Math 539 Homework \#6

due Wednesday, April 21, 2010 at the beginning of class
I. Montgomery and Vaughan, Section 10.1, p. 336, \#13
II. Montgomery and Vaughan, Section 10.1, p. 342, \#24. There is a negative sign missing on the right-hand side of part (c): it should say $L^{\prime}(0, \chi)=-L(0, \chi) \log q+\cdots$. The Hurwitz zeta function $\zeta(s, \alpha)$ is defined in problem \#22 on page 340. When solving this problem, you may use the conclusions in Montgomery and Vaughan, Section 10.1, pp. 340342, \#22-23 (just state clearly what you're using). Caution: do not overlook issues of convergence in part (a) of this problem.
III. Montgomery and Vaughan, Section 11.1, p. 366, \#4. You should assume that χ is a nonprincipal character. Part (c) is a bonus: you can do part (c) for extra marks, or you can simply assume part (c) when doing parts (d) and (e).
IV. Montgomery and Vaughan, Section 11.2, p. 374, \#1
V. Define $F(x)=\sum_{p \leq x} \phi(p-1) /(p-1)$.
(a) Justify the identity

$$
F(x)=\sum_{d \leq x-1} \frac{\mu(d)}{d} \pi(x ; d, 1)
$$

Hint: adapt the proof of Theorem 2.1.
(b) Prove that $F(x)=\alpha \operatorname{li}(x)+O_{A}\left(x / \log ^{A} x\right)$ for every constant $A>0$, where

$$
\alpha=\prod_{p}\left(1-\frac{1}{p(p-1)}\right) .
$$

Hint: split the sum in part (a) at a suitable point, and use Corollary 11.21 for the small values of d and the trivial bound $\pi(x ; d, 1) \leq x / d$ for the large values of d.
VI. Let $(a, q)=1$. In this problem, (lowercase) c is some convenient small positive constant.
(a) Given $\delta>0$, prove that there exists an effective constant $C(\delta)$ such that

$$
\left|\psi(x ; q, a)-\frac{x}{\phi(q)}\right| \leq C(\delta) x \exp (-c \sqrt{\log x})
$$

uniformly for $q \leq(\log x)^{1-\delta}$. Hint: use Corollary 11.17 and Corollary 11.12.
(b) Prove that

$$
\sum_{\substack{p \leq x \\ p \equiv a(\bmod q)}} \frac{1}{p}=\frac{\log \log x}{\phi(q)}+O_{\delta}(1)
$$

uniformly for $q \leq(\log x)^{1-\delta}$. Hint: explain why the left-hand side equals

$$
\int_{2-}^{x} \frac{1}{t \log t} d\left(\frac{t}{\phi(q)}+\left(\theta(t ; q, a)-\frac{t}{\phi(q)}\right)\right)
$$

then use part (a). You might also find problem VIII below helpful.
VII. Define $\nu_{2}(m)$ to be the exponent of 2 in the prime factorization of m, so that $2^{\nu_{2}(m)} \| m$. Also define $M(x)=\sum_{n \leq x} \nu_{2}(\phi(n))$.
(a) Show that

$$
M(x)=\sum_{n \leq x}\left(\max \left\{0, \nu_{2}(n)-1\right\}+\sum_{p \mid n} \nu_{2}(p-1)\right) .
$$

(b) Show that

$$
M(x)=x \sum_{k=1}^{\infty} k\left(\sum_{\substack{p \leq x \\ p \equiv 2^{k}+1\left(\bmod 2^{k+1}\right)}} \frac{1}{p}\right)+O(x) .
$$

(c) Prove that $M(x)=2 x \log \log x+O\left(x(\log \log \log x)^{2}\right)$, where the implicit O-constant is effective. Hint: split the sum over k in part (b) at a suitable point, and use problem VI above for the small values of k and problem I on Homework \#3 for the large values of k.
VIII. Assume the Generalized Riemann Hypothesis for this problem.
(a) Let $(r, q)=1$. Prove that

$$
\psi(x ; q, r)=\theta(x ; q, r)+\frac{c_{r}(q) x^{1 / 2}}{\phi(q)}+O_{q}\left(x^{1 / 3}\right)
$$

where $c_{r}(q)$ is the number of solutions to $x^{2} \equiv r(\bmod q)$.
(b) Let $(a b, q)=1$, and suppose that the congruence $m^{2} \equiv a(\bmod q)$ has no solution but that the congruence $m^{2} \equiv b(\bmod q)$ has a solution. Prove that
$\theta(x ; q, a)-\theta(x ; q, b)=\frac{c(q) x^{1 / 2}}{\phi(q)}-\frac{1}{\phi(q)} \sum_{\chi(\bmod q)}(\bar{\chi}(a)-\bar{\chi}(b)) \sum_{\rho} \frac{x^{\rho}}{\rho}+O_{q}\left(x^{1 / 3}\right)$,
where $c(q)$ is the number of solutions to $x^{2} \equiv 1(\bmod q)$; here the inner sum is over all nontrivial zeros ρ of $L(s, \chi)$. Hint: use Corollary 12.11.
IX. Let $S_{\chi}(x)=\sum_{n \leq x} \chi(n)$, where $\chi(\bmod q)$ is primitive and $q>1$. Justify the identity

$$
\tau(\chi)=\int_{0}^{q} e\left(\frac{t}{q}\right) d S_{\chi}(t)
$$

and use it to prove that there exists a real number x such that $\left|S_{\chi}(x)\right| \geq \frac{1}{2 \pi} \sqrt{q}$.
X. Let $\chi(\bmod q)$ be a nonprincipal character, where q is a prime.
(a) Suppose that x and y are real numbers, with $y \leq x<y^{2}$, such that $\chi(n)=1$ for all $1 \leq n \leq y$. Justify the identity

$$
\sum_{n \leq x} \chi(n)=\psi(x, y)+\sum_{y<p \leq x} \chi(p)\left\lfloor\frac{x}{p}\right\rfloor,
$$

where $\psi(x, y)$ is defined at the beginning of Section 7.1 of Montgomery and Vaughan.
(b) Adapt the proof of Corollary 9.19, incorporating the upper bound of Theorem 9.27, to show that there exists a positive integer $m \ll \varepsilon q^{1 /(4 \sqrt{e})+\varepsilon}$ such that $\chi(m) \neq 1$.

