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A converse to equation (13.2). We saw on Thursday that the Riemann hypothesis implies that
ψ(x) = x + O(

√
x log2 x). (And by the usual methods, equally strong error terms hold for θ(x)

and π(x); see Theorem 13.1.) We actually have the tools to prove a converse of this result:

Proposition 1. If ψ(x) = x+Oε(x
1/2+ε) for all ε > 0, then the Riemann hypothesis holds.

Proof. Consider the Dirichlet series

α(s) =
∞∑
n=1

(
Λ(n)− 1

)
n−s = −ζ

′

ζ
(s)− ζ(s).

In the notation of Section 1.2 we have A(x) =
∑

n≤x
(
Λ(n)− 1

)
= ψ(x)− x + O(1)�ε x

1/2+ε

by assumption. Theorem 1.3 then tells us that

σc = lim sup
x→∞

log |A(x)|
log x

≤ 1

2
+ ε,

and therefore the Dirichlet series α(s) converges for σ > 1
2

+ ε; since ε > 0 was arbitrary, we
conclude that α(s) converges (hence is analytic) for σ > 1

2
. But this means that − ζ′

ζ
(s) − ζ(s)

is analytic for σ > 1
2
, which implies that ζ(s) does not vanish in that half-plane, which is the

Riemann hypothesis. �

(If we look at these two implications closely, we see that ψ(x) = x+Oε(x
1/2+ε) implies RH which

in turn implies ψ(x) = x + O(
√
x log2 x). It’s rare for such a two-way street to actually improve

the original result!)

One can be more precise about how the error term depends upon the locations of the zeros of
ζ(s); see Theorem 15.3 and Corollary 15.4. (The remark after the latter is the tiny opening that
essentially leads to the entire field of “comparative prime number theory”.)

(continued on next page)



Counting nontrivial zeros of ζ(s). As we did on Tuesday, define

N(T ) = #
{
ρ = β + iγ ∈ C : 0 < σ < 1, 0 ≤ γ ≤ T

}
to be the counting function of the nontrivial zeros of ζ(s) in the upper half-plane, ordered by imagi-
nary part. (We make the usual conventions thatN(T ) counts zeros according to their multiplicities,
and that N(T ) = 1

2

(
N(T+) + N(T−)

)
at its discontinuities.) This is precisely the same as the

counting function of the zeros of ξ(s).

In complex analysis we learned the “argument principle”, that a suitable contour integral can count
the number of zeros of an analytic function (indeed it works even for meromorphic functions). In
particular, if we let C be the rectangle with corners at 2, 2 + iT , −1 + iT , and −1, then

N(T ) =
1

2πi

∮
C

−ξ
′

ξ
(s) ds.

It turns out that we can actually evaluate this contour integral, and hence N(T ), exactly, in terms
of simpler functions, thanks to the functional equation.

Please read Theorem 14.1 and its proof for the exact statement.

Note: we make the following convention for the argument (and logarithm) of values of analytic
functions connected to ζ(s). We declare that the argument of ζ(2) to be 0 (instead of a random
multiple of 2π); and then to calculate the argument of ζ(σ + it), we continuously extend the
argument of ζ(s) from s = 2 vertically to s = 2 + it and then horizontally to s = σ + it.
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