Math 539—Group Work \#2

Tuesday, January 21, 2020
Group work criteria: Start from the top and understand one problem fully before moving on to the next one; quality is more important than quantity (although these group work problems are designed so that ideally you will be able to finish them all). I will be going from group to group during the hour, paying attention to the following aspects.

1. Effective communication-including both listening and speaking, with respect for other people and their ideas
2. Engagement with, and curiosity about, the material (for instance, how far might something generalize?)
3. Boldness-suggesting ideas, and trying plans even when they're incomplete
4. Obtaining valid solutions (which are understood by everyone in the group) to the given problems
Definition: For any positive integer k, the generalized divisor function $d_{k}(n)$ is the number of ordered k-tuples $\left(m_{1}, \ldots, m_{k}\right)$ of positive integers such that $m_{1} \times \cdots \times m_{k}=n$. For example, $d_{1}(n)=1$ for all $n \geq 1$, while $d_{2}(n)=d(n)$.
5. Prove that $d_{j} * d_{k}=d_{j+k}$ for all positive integers j and k.

Given positive integers n and ℓ, define the set

$$
T_{\ell}(n)=\left\{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{N}^{\ell}: m_{1} \times \cdots \times m_{\ell}=n\right\}
$$

(so that $\# T_{\ell}(n)=d_{\ell}(n)$), and define a union of Cartesian products of sets

$$
U_{j, k}(n)=\bigcup_{a \mid n}\left(T_{j}(a) \times T_{k}\left(\frac{n}{a}\right)\right)
$$

Then it suffices to show that

$$
\# T_{j+k}(n)=d_{j+k}(n)=\left(d_{j} * d_{k}\right)(n)=\sum_{a \mid n} d_{j}(a) d_{k}\left(\frac{n}{a}\right)=\# U_{j, k}(n)
$$

But there is an obvious function from $U_{j, k}(n)$ to $T_{j+k}(n)$: for any $a \mid n$, send the element $\left(\left(m_{1}, \ldots, m_{j}\right),\left(q_{1}, \ldots, q_{k}\right)\right)$ of $T_{j}(a) \times T_{k}\left(\frac{n}{a}\right)$ to $\left(m_{1}, \ldots, m_{j}, q_{1}, \ldots, q_{k}\right)$. One can check that this function is well-defined and invertible: its inverse sends the element $\left(m_{1}, \ldots, m_{j+k}\right)$ of $T_{j+k}(n)$ to $\left(\left(m_{1}, \ldots, m_{j}\right),\left(m_{j+1}, \ldots, m_{j+k}\right)\right)$, which is an element of $T_{j}(a) \times T_{k}\left(\frac{n}{a}\right)$ with $a=m_{1} \times \cdots \times m_{j}$. This bijection proves that $\# T_{j+k}(n)=\# U_{j, k}(n)$ as desired.
One could also prove the identity $d_{j} * 1=d_{j} * d_{1}=d_{j+1}$ for all positive integers j (by a similar but perhaps simpler counting argument) and then deduce, using the associativity of Dirichlet convolution and induction, that $d_{j} * d_{k}=\underbrace{1 * \cdots * 1}_{j+k}=d_{j+k}$.
Note that this induction method also makes it easy to see that d_{k} is multiplicative for all integers $k \geq 1$, since the Dirichlet convolution of two multiplicative functions is automatically multiplicative, and $d_{1}=1$ is certainly multiplicative.

2. Given the identity proved in question \#1:

(a) What do you think a sensible way to define $d_{1 / 2}$ would be?
(b) Calculate $d_{1 / 2}(539)$ and $d_{1 / 2}(16)$, given your "sensible" definition above.
(a) We definitely want $d_{1 / 2}$ to satisfy $d_{1 / 2} * d_{1 / 2}=d_{1}=1$, that is,

$$
\begin{equation*}
\sum_{a \mid n} d_{1 / 2}(a) d_{1 / 2}\left(\frac{n}{a}\right)=1 \tag{1}
\end{equation*}
$$

for all $n \in \mathbb{N}$. After thinking about part (b) for a bit, we realize that it's also sensible to ask that $d_{1 / 2}(n)>0$ for all n. (Indeed, in the best possible world, we would like $d_{1 / 2}$ to be a multiplicative function, in harmony with the fact that d_{k} is multiplicative for all $k \in \mathbb{N}$ as remarked in \#1 above; but we will not need to assume that $d_{1 / 2}$ has this property.)
(b) First, the desired identity (1) for $n=1$ becomes simply $d_{1 / 2}(1)^{2}=1$, so that $d_{1 / 2}(1)= \pm 1$. (Indeed, if $d_{1 / 2}$ is a function satisfying the identity (1), then so is the function $-d_{1 / 2}$; so it makes sense that we would have a sign choice like this at some point.) Being sensible people, we choose $d_{1 / 2}=1$ and proceed. For prime powers p^{r} for small values of r, the identity (1) becomes

$$
\begin{aligned}
1= & d_{1 / 2}(1) d_{1 / 2}(p)+d_{1 / 2}(p) d_{1 / 2}(1) \\
1= & d_{1 / 2}(1) d_{1 / 2}\left(p^{2}\right)+d_{1 / 2}(p) d_{1 / 2}(p)+d_{1 / 2}\left(p^{2}\right) d_{1 / 2}(1) \\
1= & d_{1 / 2}(1) d_{1 / 2}\left(p^{3}\right)+d_{1 / 2}(p) d_{1 / 2}\left(p^{2}\right)+d_{1 / 2}\left(p^{2}\right) d_{1 / 2}(p)+d_{1 / 2}\left(p^{3}\right) d_{1 / 2}(1) \\
1= & d_{1 / 2}(1) d_{1 / 2}\left(p^{4}\right)+d_{1 / 2}(p) d_{1 / 2}\left(p^{3}\right) \\
& \quad+d_{1 / 2}\left(p^{2}\right) d_{1 / 2}\left(p^{2}\right)+d_{1 / 2}\left(p^{3}\right) d_{1 / 2}(p)+d_{1 / 2}\left(p^{4}\right) d_{1 / 2}(1),
\end{aligned}
$$

which we can solve recursively, obtaining $d_{1 / 2}(p)=\frac{1}{2}, d_{1 / 2}\left(p^{2}\right)=\frac{3}{8}, d_{1 / 2}\left(p^{3}\right)=\frac{5}{16}$, and $d_{1 / 2}\left(p^{4}\right)=\frac{35}{128}$; in particular, $d_{1 / 2}(16)=\frac{35}{128}$.

A similar computation when $n=p q$ and $n=p^{2} q$ for distinct primes p and q yields

$$
\begin{aligned}
1= & d_{1 / 2}(1) d_{1 / 2}(p q)+d_{1 / 2}(p) d_{1 / 2}(q)+d_{1 / 2}(q) d_{1 / 2}(p)+d_{1 / 2}(p q) d_{1 / 2}(1) \\
1= & d_{1 / 2}(1) d_{1 / 2}\left(p^{2} q\right)+d_{1 / 2}(p) d_{1 / 2}(p q)+d_{1 / 2}\left(p^{2}\right) d_{1 / 2}(q) \\
& +d_{1 / 2}(q) d_{1 / 2}\left(p^{2}\right)+d_{1 / 2}(p q) d_{1 / 2}(p)+d_{1 / 2}\left(p^{2} q\right) d_{1 / 2}(1),
\end{aligned}
$$

which we can solve recursively to obtain $d_{1 / 2}(p q)=\frac{1}{4}$ and $d_{1 / 2}\left(p^{2} q\right)=\frac{3}{16}$; in particular, $d_{1 / 2}(539)=\frac{3}{16}$. Note that the values we have computed do satisfy $d_{1 / 2}(p q)=\frac{1}{4}=\frac{1}{2} \cdot \frac{1}{2}=$ $d_{1 / 2}(p) d_{1 / 2}(q)$ and $d_{1 / 2}\left(p^{2} q\right)=\frac{3}{16}=\frac{3}{8} \cdot \frac{1}{2}=d_{1 / 2}\left(p^{2}\right) d_{1 / 2}(q)$, giving evidence that perhaps $d_{1 / 2}$ is a multiplicative function (a fact which we will more fully justify in \#5 below).
[We remark that it is possible to prove the following general statement: if $f * f=g$ where g is multiplicative and $f(1)=1$, then f is multiplicative. The proof essentially proceeds by showing that given g, there is only one such function f, and then showing that the multiplicative function generated by the values of f on prime powers satisfies the correct identity. Indeed, a similar approach works for $f * f * \cdots * f=g$. For a different approach when all functions are real-valued, see D. Rearick, Operators on algebras of arithmetic functions, Duke Math. J. 35 (1968), 761-766.]
3.
(a) For all positive integers k, prove that $\sum_{n=1}^{\infty} d_{k}(n) n^{-s}$ converges, in a suitable half-plane, to $\zeta(s)^{k}$.
(b) For which real numbers α is it true that $\sum_{n \leq x} d_{k}(n) \ll_{\alpha} x^{\alpha}$?
(a) We proceed by induction on k, the case $k=1$ being obvious (in the half-plane $\sigma>1$) since $d_{1}=1$ identically. Assuming that $\sum_{n=1}^{\infty} d_{k}(n) n^{-s}=\zeta(s)^{k}$ for $\sigma>1$: note that in particular $\sum_{n=1}^{\infty}\left|d_{k}(n) n^{-s}\right|=\sum_{n=1}^{\infty} d_{k}(n) n^{-\sigma}<\infty$, so that the series converges absolutely for $\sigma>1$, as does the series defining $\zeta(s)$ itself. (In general, any Dirichlet series with nonnegative coefficients satisfies $\sigma_{a}=\sigma_{c}$.) Then by Theorem 1.8, the series $\sum_{n=1}^{\infty} d_{k+1}(n) n^{-s}=\sum_{n=1}^{\infty}\left(d_{k} * d_{1}\right)(n) n^{-s}$ (where we have used problem \#1) also converges absolutely for $\sigma>1$, to

$$
\left(\sum_{n=1}^{\infty} d_{k}(n) n^{-s}\right)\left(\sum_{n=1}^{\infty} d_{1}(n) n^{-s}\right)=\zeta(s)^{k} \zeta(s)=\zeta(s)^{k+1} .
$$

(b) Applying Theorem 1.3 with $a_{n}=d_{k}(n)$ yields

$$
\limsup _{x \rightarrow \infty} \frac{\log \left(\sum_{n \leq x} d_{k}(n)\right)}{\log x}=\sigma_{c}=1
$$

In other words, for every $\varepsilon>0$, we know that $\log \left(\sum_{n \leq x} d_{k}(n)\right) / \log x<1+\varepsilon$ for all sufficiently large x, but that $\log \left(\sum_{n \leq x} d_{k}(n)\right) / \log x>1-\varepsilon$ for a sequence of values of x tending to infinity. We conclude that $\sum_{n \leq x} d_{k}(n)<x^{1+\varepsilon}$ for x sufficiently large in terms of ε, which implies that $\sum_{n \leq x} d_{k}(n)<_{\alpha} x^{1+\alpha}$ for all $\alpha>1$; and we also conclude that $\sum_{n \leq x} d_{k}(n) \nless x^{\alpha}$ for $\alpha<1$ (why? there's a slightly nontrivial step). Of course we could also argue that $\sum_{n \leq x} d_{k}(n) \nless x^{\alpha}$ for $\alpha<1$ simply by noting that $d_{k}(n) \geq 1$ for all $n \in \mathbb{N}$.

As it turns out, we don't yet have enough information to decide the case of $\alpha=1$, namely whether $\sum_{n \leq x} d_{k}(n) \ll x$ (although we will in the next couple of weeks). If $d_{k}(n)$ were bounded then the answer would be yes, or even if $d_{k}(n)$ were occasionally large but "usually" bounded; if $d_{k}(n)>\log n$ (say) for all n then the answer would be no. It turns out that none of these assertions hold for $d_{k}(n)$. Note that we are asking how large $d_{k}(n)$ is "on average", which will turn out to be an easier problem; nevertheless, we will eventually learn pointwise bounds for $d_{k}(n)$ as well.

4. Given the identity proved in question \#3(a):

(a) What do you think a sensible way to define d_{z} would be for any complex number z ?
(b) Calculate $d_{i}(539)$ and $d_{i}(16)$, given your "sensible" definition above. (Here, $i=\sqrt{-1}$.)
(a) It seems that we would love for $\zeta(s)^{z}$ to be a Dirichlet series, so we can define $d_{z}(n)$ to be the coefficient of n^{-s} in the Dirichlet series for $\zeta(s)^{z}$. And indeed, the fact that $\zeta(s)$ has an Euler product gives us great hope, since then

$$
\begin{equation*}
\zeta(s)^{z}=\prod_{p}\left(1-p^{-s}\right)^{-z} \tag{2}
\end{equation*}
$$

seems like a sensible enough function.
(b) One way to calculate the coefficients of the Dirichlet series hidden in the right-hand side of equation (2) is to write

$$
\zeta(s)^{z}=\prod_{p} \exp \left(z \log \left(1-p^{-s}\right)^{-1}\right)=\prod_{p} \exp \left(z\left(p^{-s}+\frac{1}{2} p^{-2 s}+\frac{1}{3} p^{-3 s}+\cdots\right)\right) .
$$

For example,

$$
\begin{aligned}
\zeta(s)^{i}= & \prod_{p} \exp \left(i\left(p^{-s}+\frac{1}{2} p^{-2 s}+\frac{1}{3} p^{-3 s}+\frac{1}{4} p^{-4 s}+\cdots\right)\right) \\
= & \prod_{p} \sum_{k=0}^{\infty} \frac{1}{k!} i^{k}\left(p^{-s}+\frac{1}{2} p^{-2 s}+\frac{1}{3} p^{-3 s}+\frac{1}{4} p^{-4 s}+\cdots\right)^{k} \\
= & \prod_{p}\left(1+i\left(p^{-s}+\frac{1}{2} p^{-2 s}+\frac{1}{3} p^{-3 s}+\frac{1}{4} p^{-4 s}+\cdots\right)-\frac{1}{2}\left(p^{-s}+\frac{1}{2} p^{-2 s}+\frac{1}{3} p^{-3 s}+\cdots\right)^{2}\right. \\
& \left.\quad-\frac{i}{6}\left(p^{-s}+\frac{1}{2} p^{-2 s}+\cdots\right)^{3}+\frac{1}{24}\left(p^{-s}+\cdots\right)^{4}+\cdots\right)
\end{aligned}
$$

where all of the terms required to compute the coefficients up to $p^{-4 s}$ have been included explicitly. Simplifying,

$$
\zeta(s)^{i}=\prod_{p}\left(1+i p^{-s}+\left(-\frac{1}{2}+\frac{i}{2}\right) p^{-2 s}+\left(-\frac{1}{2}+\frac{i}{6}\right) p^{-3 s}-\frac{5}{12} p^{-4 s}+\cdots\right)
$$

Therefore, if we write $\zeta(s)^{i}=\sum_{n=1}^{\infty} d_{i}(n) n^{-s}$, then $d_{i}(n)$ is multiplicative (given the Euler product above) and, on prime powers, takes the values $d_{i}(p)=i, d_{i}\left(p^{2}\right)=-\frac{1}{2}+\frac{i}{2}$, $d_{i}\left(p^{3}\right)=-\frac{1}{2}+\frac{i}{6}, d_{i}\left(p^{4}\right)=-\frac{5}{12}, \ldots$. In particular, $d_{i}(539)=d_{i}\left(7^{2}\right) d_{i}(11)=\left(-\frac{1}{2}+\frac{i}{2}\right) i=$ $-\frac{1}{2}-\frac{i}{2}$ and $d_{i}(16)=d_{i}\left(2^{4}\right)=-\frac{5}{12}$.
5. Can you write down a formula for $d_{1 / 2}\left(p^{r}\right)$ as a function of r ?

We could find the key to this problem either through experimentation as above, or through having seen before the Maclaurin series representation for arbitrary powers of $1+x$, namely $(1+x)^{w}=$ $\sum_{k=0}^{\infty}\binom{w}{k} x^{k}$ where

$$
\binom{w}{k}=\frac{w(w-1)(w-2) \cdots(w-k+1)}{k!}
$$

is the generalized binomial coefficient (defined for nonnegative integers k but for all complex numbers w). Either way, we are led to observe that equation (2) can be written as

$$
\zeta(s)^{z}=\prod_{p}\left(1-p^{-s}\right)^{-z}=\prod_{p} \sum_{k=0}^{\infty}\binom{-z}{k}\left(-p^{-s}\right)^{k},
$$

and so the function $d_{z}(n)$ can be defined as the multiplicative function whose value on prime powers p^{r} equals $(-1)^{r}\binom{-z}{r}$. (Check that this is the familiar answer when $z=2$!) In particular, $d_{1 / 2}(n)$ is the multiplicative function whose value on prime powers p^{r} equals

$$
(-1)^{r}\binom{-1 / 2}{r}=(-1)^{r} \frac{-\frac{1}{2}\left(-\frac{1}{2}-1\right)\left(-\frac{1}{2}-2\right) \cdots\left(-\frac{1}{2}-r+1\right)}{r!}=\frac{(2 r)!}{4^{r}(r!)^{2}}
$$

after some simplification.

