Math 539—Group Work #2

Tuesday, January 21, 2020

Group work criteria: Start from the top and understand one problem fully before moving on to the next one; quality is more important than quantity (although these group work problems are designed so that ideally you will be able to finish them all). I will be going from group to group during the hour, paying attention to the following aspects.

- 1. Effective communication—including both listening and speaking, with respect for other people and their ideas
- 2. Engagement with, and curiosity about, the material (for instance, how far might something generalize?)
- 3. Boldness-suggesting ideas, and trying plans even when they're incomplete
- 4. Obtaining valid solutions (which are understood by everyone in the group) to the given problems

Definition: For any positive integer k, the generalized divisor function $d_k(n)$ is the number of ordered k-tuples (m_1, \ldots, m_k) of positive integers such that $m_1 \times \cdots \times m_k = n$. For example, $d_1(n) = 1$ for all $n \ge 1$, while $d_2(n) = d(n)$.

1. Prove that $d_j * d_k = d_{j+k}$ *for all positive integers* j *and* k*.*

Given positive integers n and ℓ , define the set

$$T_{\ell}(n) = \left\{ (m_1, \dots, m_{\ell}) \in \mathbb{N}^{\ell} \colon m_1 \times \dots \times m_{\ell} = n \right\}$$

(so that $\#T_{\ell}(n) = d_{\ell}(n)$), and define a union of Cartesian products of sets

$$U_{j,k}(n) = \bigcup_{a|n} \left(T_j(a) \times T_k(\frac{n}{a}) \right).$$

Then it suffices to show that

$$\#T_{j+k}(n) = d_{j+k}(n) = (d_j * d_k)(n) = \sum_{a|n} d_j(a) d_k(\frac{n}{a}) = \#U_{j,k}(n).$$

But there is an obvious function from $U_{j,k}(n)$ to $T_{j+k}(n)$: for any $a \mid n$, send the element $((m_1, \ldots, m_j), (q_1, \ldots, q_k))$ of $T_j(a) \times T_k(\frac{n}{a})$ to $(m_1, \ldots, m_j, q_1, \ldots, q_k)$. One can check that this function is well-defined and invertible: its inverse sends the element (m_1, \ldots, m_{j+k}) of $T_{j+k}(n)$ to $((m_1, \ldots, m_j), (m_{j+1}, \ldots, m_{j+k}))$, which is an element of $T_j(a) \times T_k(\frac{n}{a})$ with $a = m_1 \times \cdots \times m_j$. This bijection proves that $\#T_{j+k}(n) = \#U_{j,k}(n)$ as desired.

One could also prove the identity $d_j * 1 = d_j * d_1 = d_{j+1}$ for all positive integers j (by a similar but perhaps simpler counting argument) and then deduce, using the associativity of Dirichlet convolution and induction, that $d_j * d_k = \underbrace{1 * \cdots * 1}_{j+k} = d_{j+k}$.

Note that this induction method also makes it easy to see that d_k is multiplicative for all integers $k \ge 1$, since the Dirichlet convolution of two multiplicative functions is automatically multiplicative, and $d_1 = 1$ is certainly multiplicative.

(continued on next page)

- 2. Given the identity proved in question #1:
 - (a) What do you think a sensible way to define $d_{1/2}$ would be?
 - (b) Calculate $d_{1/2}(539)$ and $d_{1/2}(16)$, given your "sensible" definition above.
 - (a) We definitely want $d_{1/2}$ to satisfy $d_{1/2} * d_{1/2} = d_1 = 1$, that is,

$$\sum_{a|n} d_{1/2}(a) d_{1/2}(\frac{n}{a}) = 1 \tag{1}$$

for all $n \in \mathbb{N}$. After thinking about part (b) for a bit, we realize that it's also sensible to ask that $d_{1/2}(n) > 0$ for all n. (Indeed, in the best possible world, we would like $d_{1/2}$ to be a multiplicative function, in harmony with the fact that d_k is multiplicative for all $k \in \mathbb{N}$ as remarked in #1 above; but we will not need to assume that $d_{1/2}$ has this property.)

(b) First, the desired identity (1) for n = 1 becomes simply $d_{1/2}(1)^2 = 1$, so that $d_{1/2}(1) = \pm 1$. (Indeed, if $d_{1/2}$ is a function satisfying the identity (1), then so is the function $-d_{1/2}$; so it makes sense that we would have a sign choice like this at some point.) Being sensible people, we choose $d_{1/2} = 1$ and proceed. For prime powers p^r for small values of r, the identity (1) becomes

$$\begin{split} &1 = d_{1/2}(1)d_{1/2}(p) + d_{1/2}(p)d_{1/2}(1) \\ &1 = d_{1/2}(1)d_{1/2}(p^2) + d_{1/2}(p)d_{1/2}(p) + d_{1/2}(p^2)d_{1/2}(1) \\ &1 = d_{1/2}(1)d_{1/2}(p^3) + d_{1/2}(p)d_{1/2}(p^2) + d_{1/2}(p^2)d_{1/2}(p) + d_{1/2}(p^3)d_{1/2}(1) \\ &1 = d_{1/2}(1)d_{1/2}(p^4) + d_{1/2}(p)d_{1/2}(p^3) \\ &+ d_{1/2}(p^2)d_{1/2}(p^2) + d_{1/2}(p^3)d_{1/2}(p) + d_{1/2}(p^4)d_{1/2}(1), \end{split}$$

which we can solve recursively, obtaining $d_{1/2}(p) = \frac{1}{2}$, $d_{1/2}(p^2) = \frac{3}{8}$, $d_{1/2}(p^3) = \frac{5}{16}$, and $d_{1/2}(p^4) = \frac{35}{128}$; in particular, $d_{1/2}(16) = \frac{35}{128}$.

A similar computation when n = pq and $n = p^2q$ for distinct primes p and q yields

$$1 = d_{1/2}(1)d_{1/2}(pq) + d_{1/2}(p)d_{1/2}(q) + d_{1/2}(q)d_{1/2}(p) + d_{1/2}(pq)d_{1/2}(1)$$

$$1 = d_{1/2}(1)d_{1/2}(p^2q) + d_{1/2}(p)d_{1/2}(pq) + d_{1/2}(p^2)d_{1/2}(q) + d_{1/2}(q)d_{1/2}(p^2) + d_{1/2}(pq)d_{1/2}(p) + d_{1/2}(p^2q)d_{1/2}(1),$$

which we can solve recursively to obtain $d_{1/2}(pq) = \frac{1}{4}$ and $d_{1/2}(p^2q) = \frac{3}{16}$; in particular, $d_{1/2}(539) = \frac{3}{16}$. Note that the values we have computed do satisfy $d_{1/2}(pq) = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = d_{1/2}(p)d_{1/2}(q)$ and $d_{1/2}(p^2q) = \frac{3}{16} = \frac{3}{8} \cdot \frac{1}{2} = d_{1/2}(p^2)d_{1/2}(q)$, giving evidence that perhaps $d_{1/2}$ is a multiplicative function (a fact which we will more fully justify in #5 below).

[We remark that it is possible to prove the following general statement: if f * f = g where g is multiplicative and f(1) = 1, then f is multiplicative. The proof essentially proceeds by showing that given g, there is only one such function f, and then showing that the multiplicative function generated by the values of f on prime powers satisfies the correct identity. Indeed, a similar approach works for $f * f * \cdots * f = g$. For a different approach when all functions are real-valued, see D. Rearick, *Operators on algebras of arithmetic functions*, Duke Math. J. **35** (1968), 761–766.]

(continued on next page)

- (a) For all positive integers k, prove that $\sum_{n=1}^{\infty} d_k(n) n^{-s}$ converges, in a suitable half-plane, to $\zeta(s)^k$.
- (b) For which real numbers α is it true that $\sum_{n < x} d_k(n) \ll_{\alpha} x^{\alpha}$?
- (a) We proceed by induction on k, the case k = 1 being obvious (in the half-plane $\sigma > 1$) since $d_1 = 1$ identically. Assuming that $\sum_{n=1}^{\infty} d_k(n)n^{-s} = \zeta(s)^k$ for $\sigma > 1$: note that in particular $\sum_{n=1}^{\infty} |d_k(n)n^{-s}| = \sum_{n=1}^{\infty} d_k(n)n^{-\sigma} < \infty$, so that the series converges absolutely for $\sigma > 1$, as does the series defining $\zeta(s)$ itself. (In general, any Dirichlet series with nonnegative coefficients satisfies $\sigma_a = \sigma_c$.) Then by Theorem 1.8, the series $\sum_{n=1}^{\infty} d_{k+1}(n)n^{-s} = \sum_{n=1}^{\infty} (d_k * d_1)(n)n^{-s}$ (where we have used problem #1) also converges absolutely for $\sigma > 1$, to

$$\left(\sum_{n=1}^{\infty} d_k(n)n^{-s}\right)\left(\sum_{n=1}^{\infty} d_1(n)n^{-s}\right) = \zeta(s)^k \zeta(s) = \zeta(s)^{k+1}.$$

(b) Applying Theorem 1.3 with $a_n = d_k(n)$ yields

$$\limsup_{x \to \infty} \frac{\log\left(\sum_{n \le x} d_k(n)\right)}{\log x} = \sigma_c = 1.$$

In other words, for every $\varepsilon > 0$, we know that $\log \left(\sum_{n \le x} d_k(n) \right) / \log x < 1 + \varepsilon$ for all sufficiently large x, but that $\log \left(\sum_{n \le x} d_k(n) \right) / \log x > 1 - \varepsilon$ for a sequence of values of x tending to infinity. We conclude that $\sum_{n \le x} d_k(n) < x^{1+\varepsilon}$ for x sufficiently large in terms of ε , which implies that $\sum_{n \le x} d_k(n) \ll x^{1+\alpha}$ for all $\alpha > 1$; and we also conclude that $\sum_{n \le x} d_k(n) \ll x^{1+\alpha}$ for all $\alpha > 1$; and we also conclude that $\sum_{n \le x} d_k(n) \ll x^{\alpha}$ for $\alpha < 1$ (why? there's a slightly nontrivial step). Of course we could also argue that $\sum_{n \le x} d_k(n) \ll x^{\alpha}$ for $\alpha < 1$ simply by noting that $d_k(n) \ge 1$ for all $n \in \mathbb{N}$.

As it turns out, we don't yet have enough information to decide the case of $\alpha = 1$, namely whether $\sum_{n \leq x} d_k(n) \ll x$ (although we will in the next couple of weeks). If $d_k(n)$ were bounded then the answer would be yes, or even if $d_k(n)$ were occasionally large but "usually" bounded; if $d_k(n) > \log n$ (say) for all n then the answer would be no. It turns out that none of these assertions hold for $d_k(n)$. Note that we are asking how large $d_k(n)$ is "on average", which will turn out to be an easier problem; nevertheless, we will eventually learn pointwise bounds for $d_k(n)$ as well.

4. Given the identity proved in question #3(a):

- (a) What do you think a sensible way to define d_z would be for any complex number z?
- (b) Calculate $d_i(539)$ and $d_i(16)$, given your "sensible" definition above. (Here, $i = \sqrt{-1}$.)
- (a) It seems that we would love for $\zeta(s)^z$ to be a Dirichlet series, so we can define $d_z(n)$ to be the coefficient of n^{-s} in the Dirichlet series for $\zeta(s)^z$. And indeed, the fact that $\zeta(s)$ has an Euler product gives us great hope, since then

$$\zeta(s)^{z} = \prod_{p} \left(1 - p^{-s} \right)^{-z}$$
(2)

seems like a sensible enough function.

(b) One way to calculate the coefficients of the Dirichlet series hidden in the right-hand side of equation (2) is to write

$$\zeta(s)^{z} = \prod_{p} \exp\left(z \log(1 - p^{-s})^{-1}\right) = \prod_{p} \exp\left(z(p^{-s} + \frac{1}{2}p^{-2s} + \frac{1}{3}p^{-3s} + \cdots)\right).$$

For example,

$$\begin{split} \zeta(s)^{i} &= \prod_{p} \exp\left(i(p^{-s} + \frac{1}{2}p^{-2s} + \frac{1}{3}p^{-3s} + \frac{1}{4}p^{-4s} + \cdots)\right) \\ &= \prod_{p} \sum_{k=0}^{\infty} \frac{1}{k!} i^{k} (p^{-s} + \frac{1}{2}p^{-2s} + \frac{1}{3}p^{-3s} + \frac{1}{4}p^{-4s} + \cdots)^{k} \\ &= \prod_{p} \left(1 + i(p^{-s} + \frac{1}{2}p^{-2s} + \frac{1}{3}p^{-3s} + \frac{1}{4}p^{-4s} + \cdots) - \frac{1}{2}(p^{-s} + \frac{1}{2}p^{-2s} + \frac{1}{3}p^{-3s} + \cdots)^{2} \\ &- \frac{i}{6}(p^{-s} + \frac{1}{2}p^{-2s} + \cdots)^{3} + \frac{1}{24}(p^{-s} + \cdots)^{4} + \cdots\right), \end{split}$$

where all of the terms required to compute the coefficients up to p^{-4s} have been included explicitly. Simplifying,

$$\zeta(s)^{i} = \prod_{p} \left(1 + ip^{-s} + \left(-\frac{1}{2} + \frac{i}{2} \right) p^{-2s} + \left(-\frac{1}{2} + \frac{i}{6} \right) p^{-3s} - \frac{5}{12} p^{-4s} + \cdots \right).$$

Therefore, if we write $\zeta(s)^i = \sum_{n=1}^{\infty} d_i(n)n^{-s}$, then $d_i(n)$ is multiplicative (given the Euler product above) and, on prime powers, takes the values $d_i(p) = i$, $d_i(p^2) = -\frac{1}{2} + \frac{i}{2}$, $d_i(p^3) = -\frac{1}{2} + \frac{i}{6}$, $d_i(p^4) = -\frac{5}{12}$, In particular, $d_i(539) = d_i(7^2)d_i(11) = (-\frac{1}{2} + \frac{i}{2})i = -\frac{1}{2} - \frac{i}{2}$ and $d_i(16) = d_i(2^4) = -\frac{5}{12}$.

5. Can you write down a formula for $d_{1/2}(p^r)$ as a function of r?

We could find the key to this problem either through experimentation as above, or through having seen before the Maclaurin series representation for arbitrary powers of 1 + x, namely $(1 + x)^w = \sum_{k=0}^{\infty} {w \choose k} x^k$ where

$$\binom{w}{k} = \frac{w(w-1)(w-2)\cdots(w-k+1)}{k!}$$

is the generalized binomial coefficient (defined for nonnegative integers k but for all complex numbers w). Either way, we are led to observe that equation (2) can be written as

$$\zeta(s)^{z} = \prod_{p} \left(1 - p^{-s}\right)^{-z} = \prod_{p} \sum_{k=0}^{\infty} \binom{-z}{k} (-p^{-s})^{k},$$

and so the function $d_z(n)$ can be defined as the multiplicative function whose value on prime powers p^r equals $(-1)^r {-z \choose r}$. (Check that this is the familiar answer when z = 2!) In particular, $d_{1/2}(n)$ is the multiplicative function whose value on prime powers p^r equals

$$(-1)^r \binom{-1/2}{r} = (-1)^r \frac{-\frac{1}{2}(-\frac{1}{2}-1)(-\frac{1}{2}-2)\cdots(-\frac{1}{2}-r+1)}{r!} = \frac{(2r)!}{4^r (r!)^2}$$

after some simplification.