
Math 539—Group Work #3
Thursday, January 30, 2020

Group work criteria: Start from the top and understand one problem fully before moving on to
the next one; quality is more important than quantity (although these group work problems are
designed so that ideally you will be able to finish them all). I will be going from group to group
during the hour, paying attention to the following aspects.

1. Effective communication—including both listening and speaking, with respect for other
people and their ideas

2. Engagement with, and curiosity about, the material (for instance, how far might something
generalize?)

3. Boldness—suggesting ideas, and trying plans even when they’re incomplete
4. Obtaining valid solutions (which are understood by everyone in the group) to the given

problems

1. Recall our standard prime-counting functions (where p always denotes a prime):

π(x) = #{p ≤ x} =
∑
p≤x

1, θ(x) =
∑
p≤x

log p, ψ(x) =
∑
n≤x

Λ(n) =
∑
pr≤x

log p

(a) Without using Dirichlet series, prove that Λ = µ ∗ log.
(b) Prove that lcm[1, 2, . . . , n] = eψ(n) (exactly!).

(a) By Möbius inversion, it suffices to prove that log = Λ ∗ 1. But if n = pr11 · · · p
rk
k is the

factorization of n into the product of powers of distinct primes (so that k = ω(n)), then

(Λ ∗ 1)(n) =
∑
d|n

Λ(d) =
∑
pr|n

log p =
k∑
i=1

ri∑
j=1

log pi =
k∑
i=1

ri log pi = log
k∏
i=1

prii = log n.

(b) It’s equivalent to prove that ψ(n) = log lcm[1, 2, . . . , n]. For each prime p, the power
of p dividing lcm[1, 2, . . . , n] is exactly the largest power of p not exceeding n, which is
pb(logn)/ log pc. Therefore

log lcm[1, 2, . . . , n] = log
∏
p

pb(logn)/ log pc =
∑
p

⌊
log n

log p

⌋
log p

=
∑
p

log p
∑

r≤(logn)/ log p

1 =
∑
pr≤n

log p = ψ(n).

(One can also argue that ψ(x) and log lcm[{n ≤ x}] are piecewise constant functions, both
with value 0 at x = 1, and both with jump discontinuities exactly at x = pr, for prime
powers pr, of size log p.)

(continued on next page)



2.

(a) Prove that θ(x) = ψ(x) +O(
√
x), and deduce that θ(x) � x.

(b) Prove that π(x) =
θ(x)

log x
+O

(
x

log2 x

)
, and deduce that π(x) � x

log x
.

(c) Conclude that ψ(x) = π(x) log x+O

(
x

log x

)
, and that the three statements

π(x) ∼ x

log x
, θ(x) ∼ x, ψ(x) ∼ x

are all equivalent.

(a) Note the convenient identity

ψ(x) =
∑
pr≤x

log p =
∑
r

∑
p≤x1/r

log p =
∑
r

θ(x1/r) = θ(x) + θ(x1/2) + θ(x1/3) + · · · .

Since θ(y) = 0 for all y < 2, the rth summand vanishes for r > (log x)/ log 2, and thus

ψ(x) = θ(x) +O

(
θ(x1/2) +

b(log x)/ log 2c∑
r=3

θ(x1/r)

)
.

Trivially θ(y) ≤ ψ(y), and Chebyshev’s theorem gives in particular ψ(y)� y; therefore

ψ(x) = θ(x) +O

(
x1/2 +

b(log x)/ log 2c∑
r=3

x1/r
)

= θ(x) +O(x1/2 + x1/3 log x) = θ(x) +O(x1/2).

Finally, Chebyshev’s theorem ψ(x) � x implies that θ(x) � x+O(
√
x), which is the same

as θ(x) � x.
(b) Using partial summation,

π(x) =
∑
p≤x

log p · 1

log p

=

∫ x

2−

1

log u
dθ(u) =

θ(u)

log u

∣∣∣∣x
2−
−
∫ x

2−
θ(u) d

1

log u
=
θ(x)

log x
− 0 +

∫ x

2

θ(u)

u log2 u
du.

Since θ(u)� u by Chebyshev’s theorem as above, we may thus write

π(x) =
θ(x)

log x
+O

(∫ x

2

1

log2 u
du

)
.

The easiest possible bound for this integral—maximum value of the integrand times length
of the interval of integration—only gives O(x), which is true but unhelpful. However,
cutting the integral into two pieces and using this easy bound on both pieces works: for
any 2 ≤ y ≤ x,∫ x

2

1

log2 u
du =

∫ y

2

1

log2 u
du+

∫ x

y

1

log2 u
du ≤ (y − 2)

1

log2 2
+ (x− y)

1

log2 y
� y +

x

log2 y
,

and lots of choices of y (for example, y =
√
x or y = x/ log2 x) result in the estimate∫ x

2

1

log2 u
du� x

log2 x
that we need to finish the proof. Finally, the result θ(x) � x from



part (a) yields

π(x) � x

log x
+O

(
x

log2 x

)
, or equivalently π(x) � x

log x
.

(c) Solving for θ(x) in the formula from part (b) gives

θ(x) = π(x) log x+O

(
x

log x

)
,

and therefore part (a) gives

ψ(x) = θ(x) +O(
√
x) = π(x) log x+O

(
x

log x
+
√
x

)
= π(x) log x+O

(
x

log x

)
.

The equivalence of the three given asymptotic formulas is now easy from all the relations
we have. For example, if we assume that θ(x) ∼ x, then using part (b) gives

lim
x→∞

π(x)

x/ log x
= lim

x→∞

θ(x)/ log x+O(x/ log2 x)

x/ log x
= lim

x→∞

(
θ(x)

x
+O

(
1

log x

))
= 1 + 0,

which means that π(x) ∼ x/ log x.

3. In this problem, “the prime number theorem” refers to the statement that π(x) ∼ x/ log x.

(a) Assuming the prime number theorem, prove that
∑

p≤x
1
p
∼ log log x.

(b) Mertens’s formula (Montgomery & Vaughan, Theorem 2.7(d)) states that∑
p≤x

1

p
= log log x+ b+O

(
1

log x

)
, (1)

where b is a particular constant. Starting from this formula, use partial summation to see
what can be deduced about π(x). Can you prove in this way that π(x) � x/ log x? that
π(x)� x/ log x? Can you prove the prime number theorem?

(a) By partial summation,∑
p≤x

1

p
=

∫ x

2−

1

u
dπ(u) =

π(u)

u

∣∣∣∣x
2−
−
∫ x

2−
π(u) d

1

u
=
π(x)

x
− 0 +

∫ x

2−

π(u)

u2
du.

Given ε > 0, choose a real number c = c(ε) such that π(x) < (1 + ε)x/ log x for all x > c;
then when x > c,∑
p≤x

1

p
<

(1 + ε)x/ log x

x
+

∫ c

2

π(u)

u2
du+

∫ x

c

(1 + ε)u/ log u

u2
du

= Oε

(
1

log x

)
+Oε(1) + (1 + ε)

∫ x

c

du

u log u
= (1 + ε) log log x+Oε(1).

By a similar argument using π(x) > (1− ε)x/ log x for sufficiently large x, we find that∑
p≤x

1

p
> (1− ε) log log x+Oε(1).

Since the above inequalities are true for all ε > 0, they are enough to show that
∑

p≤x
1
p
∼

log log x.



(b) Define M(x) =
∑

p≤x
1
p

and R(x) = M(x)− (log log x + b), so that R(x)� 1/ log x by
assumption. Using partial summation, we try expressing π(x) as

π(x) =
∑
p≤x

1

p
· p =

∫ x

2−
u dM(u) =

∫ x

2−
u d
(

log log u+ b+R(u)
)

=

∫ x

2−
u d
(

log log u+ b) +

∫ x

2−
u dR(u)

=

∫ x

2

du

log u
+ xR(x)−

∫ x

2

R(u) du.

Using R(x)� 1/ log x, we obtain

π(x) =

∫ x

2

du

log u
+O

(
x

log x
+

∫ x

2

du

log u

)
� x

log x
+

∫ x

2

du

log u

(the “main term” has disappeared into the error term). The trick used in #2(b) above (split-
ting into two pieces and using trivial bounds on each piece) shows that

∫ x
2
du/ log u �

x/ log x, and so we have deduced that π(x)� x/ log x.
However, ifR(x) were about−100/ log x, say, then the above argument gives a negative

lower bound (since we can’t predict the sign of
∫ x
2
R(u) du from the sign of R(x) alone);

hence we cannot prove π(x) � x/ log x, much less the prime number theorem from the
given information on M(x).

Remark: we will see later in the semester (and you could actually derive for yourself)
that

∫ x
2
du/ log u ∼ x/ log x. If we actually assumed the stronger statement∑

p≤x

1

p
= log log x+ b+ o

(
1

log x

)
, (2)

then the above partial summation argument actually would show that

π(x) =

∫ x

2

du

log u
+ o

(
x

log x

)
∼ x

log x
.

Indeed, it is known that the seemingly tiny strengthening (2) of Mertens’s theorem (1) is
actually equivalent to the prime number theorem.


