Math 539—Group Work \#3

Thursday, January 30, 2020
Group work criteria: Start from the top and understand one problem fully before moving on to the next one; quality is more important than quantity (although these group work problems are designed so that ideally you will be able to finish them all). I will be going from group to group during the hour, paying attention to the following aspects.

1. Effective communication-including both listening and speaking, with respect for other people and their ideas
2. Engagement with, and curiosity about, the material (for instance, how far might something generalize?)
3. Boldness-suggesting ideas, and trying plans even when they're incomplete
4. Obtaining valid solutions (which are understood by everyone in the group) to the given problems

1. Recall our standard prime-counting functions (where palways denotes a prime):

$$
\pi(x)=\#\{p \leq x\}=\sum_{p \leq x} 1, \quad \theta(x)=\sum_{p \leq x} \log p, \quad \psi(x)=\sum_{n \leq x} \Lambda(n)=\sum_{p^{r} \leq x} \log p
$$

(a) Without using Dirichlet series, prove that $\Lambda=\mu * \log$.
(b) Prove that $\mathrm{lcm}[1,2, \ldots, n]=e^{\psi(n)}$ (exactly!).
(a) By Möbius inversion, it suffices to prove that $\log =\Lambda * 1$. But if $n=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}$ is the factorization of n into the product of powers of distinct primes (so that $k=\omega(n)$), then

$$
(\Lambda * 1)(n)=\sum_{d \mid n} \Lambda(d)=\sum_{p^{r} \mid n} \log p=\sum_{i=1}^{k} \sum_{j=1}^{r_{i}} \log p_{i}=\sum_{i=1}^{k} r_{i} \log p_{i}=\log \prod_{i=1}^{k} p_{i}^{r_{i}}=\log n
$$

(b) It's equivalent to prove that $\psi(n)=\log \operatorname{lcm}[1,2, \ldots, n]$. For each prime p, the power of p dividing $\operatorname{lcm}[1,2, \ldots, n]$ is exactly the largest power of p not exceeding n, which is $p^{\lfloor(\log n) / \log p\rfloor}$. Therefore

$$
\begin{aligned}
\log \operatorname{lcm}[1,2, \ldots, n]=\log \prod_{p} p^{\lfloor(\log n) / \log p\rfloor} & =\sum_{p}\left\lfloor\frac{\log n}{\log p}\right\rfloor \log p \\
& =\sum_{p} \log p \sum_{r \leq(\log n) / \log p} 1=\sum_{p^{r} \leq n} \log p=\psi(n) .
\end{aligned}
$$

(One can also argue that $\psi(x)$ and $\log \operatorname{lcm}[\{n \leq x\}]$ are piecewise constant functions, both with value 0 at $x=1$, and both with jump discontinuities exactly at $x=p^{r}$, for prime powers p^{r}, of size $\log p$.)
2.
(a) Prove that $\theta(x)=\psi(x)+O(\sqrt{x})$, and deduce that $\theta(x) \asymp x$.
(b) Prove that $\pi(x)=\frac{\theta(x)}{\log x}+O\left(\frac{x}{\log ^{2} x}\right)$, and deduce that $\pi(x) \asymp \frac{x}{\log x}$.
(c) Conclude that $\psi(x)=\pi(x) \log x+O\left(\frac{x}{\log x}\right)$, and that the three statements

$$
\pi(x) \sim \frac{x}{\log x}, \quad \theta(x) \sim x, \quad \psi(x) \sim x
$$

are all equivalent.
(a) Note the convenient identity

$$
\psi(x)=\sum_{p^{r} \leq x} \log p=\sum_{r} \sum_{p \leq x^{1 / r}} \log p=\sum_{r} \theta\left(x^{1 / r}\right)=\theta(x)+\theta\left(x^{1 / 2}\right)+\theta\left(x^{1 / 3}\right)+\cdots
$$

Since $\theta(y)=0$ for all $y<2$, the r th summand vanishes for $r>(\log x) / \log 2$, and thus

$$
\psi(x)=\theta(x)+O\left(\theta\left(x^{1 / 2}\right)+\sum_{r=3}^{\lfloor(\log x) / \log 2\rfloor} \theta\left(x^{1 / r}\right)\right)
$$

Trivially $\theta(y) \leq \psi(y)$, and Chebyshev's theorem gives in particular $\psi(y) \ll y$; therefore

$$
\psi(x)=\theta(x)+O\left(x^{1 / 2}+\sum_{r=3}^{\lfloor(\log x) / \log 2\rfloor} x^{1 / r}\right)=\theta(x)+O\left(x^{1 / 2}+x^{1 / 3} \log x\right)=\theta(x)+O\left(x^{1 / 2}\right)
$$

Finally, Chebyshev's theorem $\psi(x) \asymp x$ implies that $\theta(x) \asymp x+O(\sqrt{x})$, which is the same as $\theta(x) \asymp x$.
(b) Using partial summation,

$$
\begin{aligned}
\pi(x) & =\sum_{p \leq x} \log p \cdot \frac{1}{\log p} \\
& =\int_{2-}^{x} \frac{1}{\log u} d \theta(u)=\left.\frac{\theta(u)}{\log u}\right|_{2-} ^{x}-\int_{2-}^{x} \theta(u) d \frac{1}{\log u}=\frac{\theta(x)}{\log x}-0+\int_{2}^{x} \frac{\theta(u)}{u \log ^{2} u} d u .
\end{aligned}
$$

Since $\theta(u) \ll u$ by Chebyshev's theorem as above, we may thus write

$$
\pi(x)=\frac{\theta(x)}{\log x}+O\left(\int_{2}^{x} \frac{1}{\log ^{2} u} d u\right)
$$

The easiest possible bound for this integral-maximum value of the integrand times length of the interval of integration-only gives $O(x)$, which is true but unhelpful. However, cutting the integral into two pieces and using this easy bound on both pieces works: for any $2 \leq y \leq x$,

$$
\int_{2}^{x} \frac{1}{\log ^{2} u} d u=\int_{2}^{y} \frac{1}{\log ^{2} u} d u+\int_{y}^{x} \frac{1}{\log ^{2} u} d u \leq(y-2) \frac{1}{\log ^{2} 2}+(x-y) \frac{1}{\log ^{2} y} \ll y+\frac{x}{\log ^{2} y}
$$

and lots of choices of y (for example, $y=\sqrt{x}$ or $y=x / \log ^{2} x$) result in the estimate $\int_{2}^{x} \frac{1}{\log ^{2} u} d u \ll \frac{x}{\log ^{2} x}$ that we need to finish the proof. Finally, the result $\theta(x) \asymp x$ from
part (a) yields

$$
\pi(x) \asymp \frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right), \quad \text { or equivalently } \pi(x) \asymp \frac{x}{\log x} .
$$

(c) Solving for $\theta(x)$ in the formula from part (b) gives

$$
\theta(x)=\pi(x) \log x+O\left(\frac{x}{\log x}\right)
$$

and therefore part (a) gives

$$
\psi(x)=\theta(x)+O(\sqrt{x})=\pi(x) \log x+O\left(\frac{x}{\log x}+\sqrt{x}\right)=\pi(x) \log x+O\left(\frac{x}{\log x}\right) .
$$

The equivalence of the three given asymptotic formulas is now easy from all the relations we have. For example, if we assume that $\theta(x) \sim x$, then using part (b) gives

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \log x}=\lim _{x \rightarrow \infty} \frac{\theta(x) / \log x+O\left(x / \log ^{2} x\right)}{x / \log x}=\lim _{x \rightarrow \infty}\left(\frac{\theta(x)}{x}+O\left(\frac{1}{\log x}\right)\right)=1+0
$$

which means that $\pi(x) \sim x / \log x$.
3. In this problem, "the prime number theorem" refers to the statement that $\pi(x) \sim x / \log x$.
(a) Assuming the prime number theorem, prove that $\sum_{p \leq x} \frac{1}{p} \sim \log \log x$.
(b) Mertens's formula (Montgomery \& Vaughan, Theorem 2.7(d)) states that

$$
\begin{equation*}
\sum_{p \leq x} \frac{1}{p}=\log \log x+b+O\left(\frac{1}{\log x}\right) \tag{1}
\end{equation*}
$$

where b is a particular constant. Starting from this formula, use partial summation to see what can be deduced about $\pi(x)$. Can you prove in this way that $\pi(x) \ll x / \log x$? that $\pi(x) \gg x / \log x$? Can you prove the prime number theorem?
(a) By partial summation,

$$
\sum_{p \leq x} \frac{1}{p}=\int_{2-}^{x} \frac{1}{u} d \pi(u)=\left.\frac{\pi(u)}{u}\right|_{2-} ^{x}-\int_{2-}^{x} \pi(u) d \frac{1}{u}=\frac{\pi(x)}{x}-0+\int_{2-}^{x} \frac{\pi(u)}{u^{2}} d u
$$

Given $\varepsilon>0$, choose a real number $c=c(\varepsilon)$ such that $\pi(x)<(1+\varepsilon) x / \log x$ for all $x>c$; then when $x>c$,

$$
\begin{aligned}
\sum_{p \leq x} \frac{1}{p} & <\frac{(1+\varepsilon) x / \log x}{x}+\int_{2}^{c} \frac{\pi(u)}{u^{2}} d u+\int_{c}^{x} \frac{(1+\varepsilon) u / \log u}{u^{2}} d u \\
& =O_{\varepsilon}\left(\frac{1}{\log x}\right)+O_{\varepsilon}(1)+(1+\varepsilon) \int_{c}^{x} \frac{d u}{u \log u}=(1+\varepsilon) \log \log x+O_{\varepsilon}(1) .
\end{aligned}
$$

By a similar argument using $\pi(x)>(1-\varepsilon) x / \log x$ for sufficiently large x, we find that

$$
\sum_{p \leq x} \frac{1}{p}>(1-\varepsilon) \log \log x+O_{\varepsilon}(1)
$$

Since the above inequalities are true for all $\varepsilon>0$, they are enough to show that $\sum_{p \leq x} \frac{1}{p} \sim$ $\log \log x$.
(b) Define $M(x)=\sum_{p \leq x} \frac{1}{p}$ and $R(x)=M(x)-(\log \log x+b)$, so that $R(x) \ll 1 / \log x$ by assumption. Using partial summation, we try expressing $\pi(x)$ as

$$
\begin{aligned}
\pi(x)=\sum_{p \leq x} \frac{1}{p} \cdot p=\int_{2-}^{x} u d M(u) & =\int_{2-}^{x} u d(\log \log u+b+R(u)) \\
& =\int_{2-}^{x} u d(\log \log u+b)+\int_{2-}^{x} u d R(u) \\
& =\int_{2}^{x} \frac{d u}{\log u}+x R(x)-\int_{2}^{x} R(u) d u
\end{aligned}
$$

Using $R(x) \ll 1 / \log x$, we obtain

$$
\pi(x)=\int_{2}^{x} \frac{d u}{\log u}+O\left(\frac{x}{\log x}+\int_{2}^{x} \frac{d u}{\log u}\right) \ll \frac{x}{\log x}+\int_{2}^{x} \frac{d u}{\log u}
$$

(the "main term" has disappeared into the error term). The trick used in \#2(b) above (splitting into two pieces and using trivial bounds on each piece) shows that $\int_{2}^{x} d u / \log u \ll$ $x / \log x$, and so we have deduced that $\pi(x) \ll x / \log x$.

However, if $R(x)$ were about $-100 / \log x$, say, then the above argument gives a negative lower bound (since we can't predict the sign of $\int_{2}^{x} R(u) d u$ from the sign of $R(x)$ alone); hence we cannot prove $\pi(x) \gg x / \log x$, much less the prime number theorem from the given information on $M(x)$.

Remark: we will see later in the semester (and you could actually derive for yourself) that $\int_{2}^{x} d u / \log u \sim x / \log x$. If we actually assumed the stronger statement

$$
\begin{equation*}
\sum_{p \leq x} \frac{1}{p}=\log \log x+b+o\left(\frac{1}{\log x}\right) \tag{2}
\end{equation*}
$$

then the above partial summation argument actually would show that

$$
\pi(x)=\int_{2}^{x} \frac{d u}{\log u}+o\left(\frac{x}{\log x}\right) \sim \frac{x}{\log x}
$$

Indeed, it is known that the seemingly tiny strengthening (2) of Mertens's theorem (1) is actually equivalent to the prime number theorem.

