Math 539—Group Work #4
Tuesday, February 4, 2020

1. The goal of this problem is to find the average value of n/¢(n). (Note that there’s no reason the
answer should be the reciprocal of the average value of ¢(n)/n.)

(a) Find an explicit formula for the arithmetic function h that has the property that
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for all positive integers n.
(b) For the function h from part (a), prove that
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for every & > 0. (You may use the following fact: ¢(n) >. n'~¢ for every e > 0.)
(c) Prove that the average value of n/¢(n) is (2)((3)/¢(6).

(a) The function n/¢(n) is multiplicative (being the quotient of two multiplicative functions),
and so we know that the function h will also be multiplicative (since, by Mobius inversion,
h(n) = pu(n)* ¢( ) 1s the convolution of two multiplicative functions). Therefore it suffices

to calculate h(p") for prime powers p”. From the Mébius inversion formula,
- S
opr/d)

B pr prfl ) pr72 - . L

" p’r—l
- - +0+---4+0=
o(pr)  B(pr)
In other words,
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(b) Suspecting that the left-hand side actually converges as x — oo, we look at the tail of the
series: for any 0<e<l,
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In particular, the tail tends to 0 as + — oo, and therefore the infinite series ), h(d)
converges; since all its terms are nonnegative, it converges absolutely, and therefore (smce
h (d) is multiplicative) we can write it as its Euler product
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Putting the pieces together, we see that indeed
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(c) By our convolution method,
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This error term is
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while the main term, by part (b), is
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therefore the average value of n/¢(n) is the infinite product above. Finally, the factor in
that product can be rewritten as
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and so the average value in question is
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(For the record, the average value of ¢(n)/n is 6/7% ~ 0.607927, while ((2)¢(3)/((6) ~
1.94360 is greater than 72 /6 ~ 1.64493.)

Side comment: we saw in class that ((2) = 72 /6, and it turns out that ((6) = 7°®/945.
(Later this semester you’ll learn how to prove these identities.) But the number ¢(3) is more
mysterious. It wasn’t until 1978 that Apéry proved that ((3) is irrational (and thus ((3) is
sometimes called Apéry’s constant); and while we don’t expect ((3) /7 to be rational, I
think that’s still an open problem.

(continued on next page)
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(a) Prove that Z Z 1= Z p(d) {EJ . Hint: what does }_ ;,,, .y 1(d) equal?

m<z n<cz d<z
(m,n)=1

(b) Write down the rigorous definition of what a number theorist refers to as “the probabil-
ity that two randomly chosen positive integers are relatively prime to each other”, and
calculate it.

(c) A lattice point (in the plane) is a point (x,y) such that both x and y are integers. A lattice
point is visible from the origin if the line segment between it and the origin contains no
other lattice points besides the endpoints. What is “the probability that a randomly chosen
lattice point in the plane is visible from the origin”? (Note: in the plane, not in the first
quadrant.)

(d) Generalize part (c) to lattice points in three-dimensional space; in k-dimensional space.

(a) Following the hint, we can write
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m<z n<lz m<x n<z d|(m,n) d<z m<z n<z d<z
(m,n)=1 dim dn
as desired.

(b) Presumably we should sample two positive integers m and n independently and uniformly
from the integers up to x, calculate the probability that they are coprime as a function of =z,
and take the limit as x goes to oo. That finite probability is exactly
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Using u(d) < 1,and |z| > xforz > 1 (conﬁrm!) this probability becomes
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The limit of this expression as z — oo is 6/,
(Along the way we saw that the difference between | x| and x was insignificant in this

calculation, since x — o00; therefore in practice we usually start such calculations with 1/x
or 1/x? instead of 1/|z| or 1/]z]%.)
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(c) We will use the fact that the lattice point (m,n) is visible from the origin if and only if
ged(m,n) = 1 (confirm!). After some reflection, we choose to sample lattice points uni-
formly from the square with vertices (4, =), which contains (2|x| + 1)? lattice points.
We therefore want to calculate

m > o= 2x+1(z > 1+4),
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|m|,|n|<=z ged(m,n)=1
ged(m,n)=1

since the counts for the four quadrants are identical (greatest common divisors ignore signs)
and there are precisely 4 lattice points on the two axies that are visible from the origin.
Using part (b) it is easy to check that the limit of this expression as x — oo equals 6 /72
(The regions from which these lattice points are sampled can be thought of as a fixed
shape, namely the square with vertices (41, £1), which is then dilated by a factor of x.
One can start with other fixed shapes instead and dilate them in the same way; under some
conditions—certainly using a convex neighborhood of the origin is sufficient, although that
can be loosened quite a bit—the proportion of lattice points that are visible from the origin
will still tend to 6/7%. Research has been done on the quality of the error term in these
asymptotic formulas; you can see a paper some colleagues and I wrote for some results in
this vein, along with a few pointers to the more fundamental results.)
(d) The method of part (a) generalizes quickly to

)SENEED SED SENTUESD SITD SEED SEES Tt K1 B

ni,...,nE<T n1,..,ng < d|(n1,...,nk) d<z n1<z ng<x d<z
(N1, mp)=1 dlna dlny,

The method of part (b) then gives
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(the error term valid when k > 3). Therefore the “probability” that a random lattice point
in Z* is visible from the origin turns out to be 1/ (k).


http://www.math.ubc.ca/~gerg/index.shtml?abstract=PPRP

