
Math 539—Group Work #4
Tuesday, February 4, 2020

1. The goal of this problem is to find the average value of n/φ(n). (Note that there’s no reason the
answer should be the reciprocal of the average value of φ(n)/n.)

(a) Find an explicit formula for the arithmetic function h that has the property that∑
d|n

h(d) =
n

φ(n)

for all positive integers n.
(b) For the function h from part (a), prove that∑

d≤x

h(d)

d
=
∏
p

(
1 +

1

p(p− 1)

)
+Oε(x

−1+ε)

for every ε > 0. (You may use the following fact: φ(n)�ε n
1−ε for every ε > 0.)

(c) Prove that the average value of n/φ(n) is ζ(2)ζ(3)/ζ(6).

(a) The function n/φ(n) is multiplicative (being the quotient of two multiplicative functions),
and so we know that the function h will also be multiplicative (since, by Möbius inversion,
h(n) = µ(n)∗ n

φ(n)
is the convolution of two multiplicative functions). Therefore it suffices

to calculate h(pr) for prime powers pr. From the Möbius inversion formula,

h(pr) =
∑
d|pr

µ(d)
pr/d

φ(pr/d)

= µ(1)
pr

φ(pr)
+ µ(p)

pr−1

φ(pr−1)
+ µ(p2)

pr−2

φ(pr−2)
+ · · ·+ µ(pr)

1

φ(1)

=
pr

φ(pr)
− pr−1

φ(pr−1)
+ 0 + · · ·+ 0 =

{
1/(p− 1), if r = 1,

0, if r ≥ 2.

In other words,

h(n) =

{∏
p|n

1
p−1 , if n is squarefree,

0, otherwise

}
=
µ2(n)

φ(n)
.

(b) Suspecting that the left-hand side actually converges as x → ∞, we look at the tail of the
series: for any 0 < ε < 1,

0 ≤
∑
d>x

h(d)

d
=
∑
d>x

µ2(d)/φ(d)

d
<
∑
d>x

1

dφ(d)
�ε

∑
d>x

1

d2−ε
�ε

1

x1−ε
.

In particular, the tail tends to 0 as x → ∞, and therefore the infinite series
∑∞

d=1
h(d)
d

converges; since all its terms are nonnegative, it converges absolutely, and therefore (since
h(d)
d

is multiplicative) we can write it as its Euler product
∞∑
d=1

h(d)

d
=
∏
p

(
1 +

h(p)

p
+
h(p2)

p2
+ · · ·

)
=
∏
p

(
1 +

1

p(p− 1)
+ 0 + · · ·

)
.



Putting the pieces together, we see that indeed∑
d≤x

h(d)

d
=
∞∑
d=1

h(d)

d
+O

(∑
d>x

h(d)

d

)
=
∏
p

(
1 +

1

p(p− 1)

)
+Oε(x

−1+ε).

(c) By our convolution method,
1

x

∑
n≤x

n

φ(n)
=

1

x

∑
n≤x

∑
d|n

h(d) =
1

x

∑
d≤x

h(d)

⌊
x

d

⌋
=
∑
d≤x

h(d)

d
+O

(
1

x

∑
d≤x

h(d)

)
.

This error term is
1

x

∑
d≤x

h(d) =
1

x

∑
d≤x

µ2(d)

φ(d)
�ε

1

x

∑
d≤x

1

x1−ε
�ε

1

x
xε = o(1),

while the main term, by part (b), is∑
d≤x

h(d)

d
=
∏
p

(
1 +

1

p(p− 1)

)
+ o(1);

therefore the average value of n/φ(n) is the infinite product above. Finally, the factor in
that product can be rewritten as

p2 − p+ 1

p(p− 1)
=

(p2 − p+ 1)(p+ 1)

p(p− 1)(p+ 1)
=

p3 + 1

p(p2 − 1)
=

(p3 + 1)(p3 − 1)

p(p2 − 1)(p3 − 1)
=

p6 − 1

p(p2 − 1)(p3 − 1)
,

and so the average value in question is∏
p

(
1 +

1

p(p− 1)

)
=
∏
p

p6 − 1

p(p2 − 1)(p3 − 1)

=
∏
p

1− p−6

(1− p−2)(1− p−3)

=

(∏
p

(1− p−6)−1
)−1∏

p

(1− p−2)−1
∏
p

(1− p−3)−1 = ζ(2)ζ(3)

ζ(6)
.

(For the record, the average value of φ(n)/n is 6/π2 ≈ 0.607927, while ζ(2)ζ(3)/ζ(6) ≈
1.94360 is greater than π2/6 ≈ 1.64493.)

Side comment: we saw in class that ζ(2) = π2/6, and it turns out that ζ(6) = π6/945.
(Later this semester you’ll learn how to prove these identities.) But the number ζ(3) is more
mysterious. It wasn’t until 1978 that Apéry proved that ζ(3) is irrational (and thus ζ(3) is
sometimes called Apéry’s constant); and while we don’t expect ζ(3)/π3 to be rational, I
think that’s still an open problem.

(continued on next page)



2.

(a) Prove that
∑
m≤x

∑
n≤x

(m,n)=1

1 =
∑
d≤x

µ(d)

⌊
x

d

⌋2
. Hint: what does

∑
d|(m,n) µ(d) equal?

(b) Write down the rigorous definition of what a number theorist refers to as “the probabil-
ity that two randomly chosen positive integers are relatively prime to each other”, and
calculate it.

(c) A lattice point (in the plane) is a point (x, y) such that both x and y are integers. A lattice
point is visible from the origin if the line segment between it and the origin contains no
other lattice points besides the endpoints. What is “the probability that a randomly chosen
lattice point in the plane is visible from the origin”? (Note: in the plane, not in the first
quadrant.)

(d) Generalize part (c) to lattice points in three-dimensional space; in k-dimensional space.

(a) Following the hint, we can write∑
m≤x

∑
n≤x

(m,n)=1

1 =
∑
m≤x

∑
n≤x

∑
d|(m,n)

µ(d) =
∑
d≤x

µ(d)
∑
m≤x
d|m

∑
n≤x
d|n

1 =
∑
d≤x

µ(d)

⌊
x

d

⌋⌊
x

d

⌋

as desired.
(b) Presumably we should sample two positive integers m and n independently and uniformly

from the integers up to x, calculate the probability that they are coprime as a function of x,
and take the limit as x goes to∞. That finite probability is exactly

1

bxc2
∑
m≤x

∑
n≤x

(m,n)=1

1 =
1

bxc2
∑
d≤x

µ(d)

⌊
x

d

⌋2

=
1

bxc2
∑
d≤x

µ(d)

(
x

d
+O(1)

)2

=
1

bxc2

(
x2
∑
d≤x

µ(d)

d2
+O

(
x
∑
d≤x

|µ(d)|
d

+
∑
d≤x

|µ(d)|
))

=
x2

bxc2

( ∞∑
d=1

µ(d)

d2
+O

(∑
d>x

µ(d)

d2

))
+O

(
x

bxc2
∑
d≤x

|µ(d)|
d

+
1

bxc2
∑
d≤x

|µ(d)|
))

.

Using µ(d)� 1, and bxc � x for x ≥ 1 (confirm!), this probability becomes

x2

bxc2
∞∑
d=1

µ(d)

d2
+O

(∑
d>x

1

d2
+

1

x

∑
d≤x

1

d
+

1

x2

∑
d≤x

1

)
=

x2

bxc2
1

ζ(2)
+O

(
1

x
+

1

x
log x+

1

x2
x

)
=

x2

bxc2
6

π2
+O

(
log x

x

)
.

The limit of this expression as x→∞ is 6/π2.
(Along the way we saw that the difference between bxc and x was insignificant in this

calculation, since x→∞; therefore in practice we usually start such calculations with 1/x
or 1/x2 instead of 1/bxc or 1/bxc2.)



(c) We will use the fact that the lattice point (m,n) is visible from the origin if and only if
gcd(m,n) = 1 (confirm!). After some reflection, we choose to sample lattice points uni-
formly from the square with vertices (±x,±x), which contains (2bxc + 1)2 lattice points.
We therefore want to calculate

1

(2x+ 1)2

∑
(m,n)∈Z2

|m|,|n|≤x
gcd(m,n)=1

1 =
1

(2x+ 1)2

(
4
∑

1≤m≤x

∑
1≤n≤x

gcd(m,n)=1

1 + 4

)
,

since the counts for the four quadrants are identical (greatest common divisors ignore signs)
and there are precisely 4 lattice points on the two axies that are visible from the origin.
Using part (b) it is easy to check that the limit of this expression as x→∞ equals 6/π2.

(The regions from which these lattice points are sampled can be thought of as a fixed
shape, namely the square with vertices (±1,±1), which is then dilated by a factor of x.
One can start with other fixed shapes instead and dilate them in the same way; under some
conditions—certainly using a convex neighborhood of the origin is sufficient, although that
can be loosened quite a bit—the proportion of lattice points that are visible from the origin
will still tend to 6/π2. Research has been done on the quality of the error term in these
asymptotic formulas; you can see a paper some colleagues and I wrote for some results in
this vein, along with a few pointers to the more fundamental results.)

(d) The method of part (a) generalizes quickly to∑
n1,...,nk≤x
(n1,...,nk)=1

1 =
∑

n1,...,nk≤x

∑
d|(n1,...,nk)

µ(d) =
∑
d≤x

µ(d)
∑
n1≤x
d|n1

· · ·
∑
nk≤x
d|nk

1 =
∑
d≤x

µ(d)

⌊
x

d

⌋k
.

The method of part (b) then gives

1

xk

∑
d≤x

µ(d)

⌊
x

d

⌋k
=
∑
d≤x

µ(d)

dk
+O

(
1

x

∑
d≤x

|µ(d)|
dk−1

)
=

1

ζ(k)
+O

(
1

x

)
(the error term valid when k ≥ 3). Therefore the “probability” that a random lattice point
in Zk is visible from the origin turns out to be 1/ζ(k).

http://www.math.ubc.ca/~gerg/index.shtml?abstract=PPRP

