# Math 539—Group Work \#4 

Tuesday, February 4, 2020

1. The goal of this problem is to find the average value of $n / \phi(n)$. (Note that there's no reason the answer should be the reciprocal of the average value of $\phi(n) / n$.)
(a) Find an explicit formula for the arithmetic function $h$ that has the property that

$$
\sum_{d \mid n} h(d)=\frac{n}{\phi(n)}
$$

for all positive integers $n$.
(b) For the function $h$ from part (a), prove that

$$
\sum_{d \leq x} \frac{h(d)}{d}=\prod_{p}\left(1+\frac{1}{p(p-1)}\right)+O_{\varepsilon}\left(x^{-1+\varepsilon}\right)
$$

for every $\varepsilon>0$. (You may use the following fact: $\phi(n) \gg_{\varepsilon} n^{1-\varepsilon}$ for every $\varepsilon>0$.)
(c) Prove that the average value of $n / \phi(n)$ is $\zeta(2) \zeta(3) / \zeta(6)$.
(a) The function $n / \phi(n)$ is multiplicative (being the quotient of two multiplicative functions), and so we know that the function $h$ will also be multiplicative (since, by Möbius inversion, $h(n)=\mu(n) * \frac{n}{\phi(n)}$ is the convolution of two multiplicative functions). Therefore it suffices to calculate $h\left(p^{r}\right)$ for prime powers $p^{r}$. From the Möbius inversion formula,

$$
\begin{aligned}
h\left(p^{r}\right) & =\sum_{d \mid p^{r}} \mu(d) \frac{p^{r} / d}{\phi\left(p^{r} / d\right)} \\
& =\mu(1) \frac{p^{r}}{\phi\left(p^{r}\right)}+\mu(p) \frac{p^{r-1}}{\phi\left(p^{r-1}\right)}+\mu\left(p^{2}\right) \frac{p^{r-2}}{\phi\left(p^{r-2}\right)}+\cdots+\mu\left(p^{r}\right) \frac{1}{\phi(1)} \\
& =\frac{p^{r}}{\phi\left(p^{r}\right)}-\frac{p^{r-1}}{\phi\left(p^{r-1}\right)}+0+\cdots+0= \begin{cases}1 /(p-1), & \text { if } r=1, \\
0, & \text { if } r \geq 2 .\end{cases}
\end{aligned}
$$

In other words,

$$
h(n)=\left\{\begin{array}{ll}
\prod_{p \mid n} \frac{1}{p-1}, & \text { if } n \text { is squarefree }, \\
0, & \text { otherwise }
\end{array}\right\}=\frac{\mu^{2}(n)}{\phi(n)}
$$

(b) Suspecting that the left-hand side actually converges as $x \rightarrow \infty$, we look at the tail of the series: for any $0<\varepsilon<1$,

$$
0 \leq \sum_{d>x} \frac{h(d)}{d}=\sum_{d>x} \frac{\mu^{2}(d) / \phi(d)}{d}<\sum_{d>x} \frac{1}{d \phi(d)}<_{\varepsilon} \sum_{d>x} \frac{1}{d^{2-\varepsilon}}<_{\varepsilon} \frac{1}{x^{1-\varepsilon}}
$$

In particular, the tail tends to 0 as $x \rightarrow \infty$, and therefore the infinite series $\sum_{d=1}^{\infty} \frac{h(d)}{d}$ converges; since all its terms are nonnegative, it converges absolutely, and therefore (since $\frac{h(d)}{d}$ is multiplicative) we can write it as its Euler product

$$
\sum_{d=1}^{\infty} \frac{h(d)}{d}=\prod_{p}\left(1+\frac{h(p)}{p}+\frac{h\left(p^{2}\right)}{p^{2}}+\cdots\right)=\prod_{p}\left(1+\frac{1}{p(p-1)}+0+\cdots\right)
$$

Putting the pieces together, we see that indeed

$$
\sum_{d \leq x} \frac{h(d)}{d}=\sum_{d=1}^{\infty} \frac{h(d)}{d}+O\left(\sum_{d>x} \frac{h(d)}{d}\right)=\prod_{p}\left(1+\frac{1}{p(p-1)}\right)+O_{\varepsilon}\left(x^{-1+\varepsilon}\right)
$$

(c) By our convolution method,
$\frac{1}{x} \sum_{n \leq x} \frac{n}{\phi(n)}=\frac{1}{x} \sum_{n \leq x} \sum_{d \mid n} h(d)=\frac{1}{x} \sum_{d \leq x} h(d)\left\lfloor\frac{x}{d}\right\rfloor=\sum_{d \leq x} \frac{h(d)}{d}+O\left(\frac{1}{x} \sum_{d \leq x} h(d)\right)$.
This error term is

$$
\frac{1}{x} \sum_{d \leq x} h(d)=\frac{1}{x} \sum_{d \leq x} \frac{\mu^{2}(d)}{\phi(d)} \ll \varepsilon \frac{1}{x} \sum_{d \leq x} \frac{1}{x^{1-\varepsilon}} \ll \varepsilon \frac{1}{x} x^{\varepsilon}=o(1),
$$

while the main term, by part (b), is

$$
\sum_{d \leq x} \frac{h(d)}{d}=\prod_{p}\left(1+\frac{1}{p(p-1)}\right)+o(1)
$$

therefore the average value of $n / \phi(n)$ is the infinite product above. Finally, the factor in that product can be rewritten as

$$
\frac{p^{2}-p+1}{p(p-1)}=\frac{\left(p^{2}-p+1\right)(p+1)}{p(p-1)(p+1)}=\frac{p^{3}+1}{p\left(p^{2}-1\right)}=\frac{\left(p^{3}+1\right)\left(p^{3}-1\right)}{p\left(p^{2}-1\right)\left(p^{3}-1\right)}=\frac{p^{6}-1}{p\left(p^{2}-1\right)\left(p^{3}-1\right)},
$$

and so the average value in question is

$$
\begin{aligned}
\prod_{p}\left(1+\frac{1}{p(p-1)}\right) & =\prod_{p} \frac{p^{6}-1}{p\left(p^{2}-1\right)\left(p^{3}-1\right)} \\
& =\prod_{p} \frac{1-p^{-6}}{\left(1-p^{-2}\right)\left(1-p^{-3}\right)} \\
& =\left(\prod_{p}\left(1-p^{-6}\right)^{-1}\right)^{-1} \prod_{p}\left(1-p^{-2}\right)^{-1} \prod_{p}\left(1-p^{-3}\right)^{-1}=\frac{\zeta(2) \zeta(3)}{\zeta(6)}
\end{aligned}
$$

(For the record, the average value of $\phi(n) / n$ is $6 / \pi^{2} \approx 0.607927$, while $\zeta(2) \zeta(3) / \zeta(6) \approx$ 1.94360 is greater than $\pi^{2} / 6 \approx 1.64493$.)

Side comment: we saw in class that $\zeta(2)=\pi^{2} / 6$, and it turns out that $\zeta(6)=\pi^{6} / 945$. (Later this semester you'll learn how to prove these identities.) But the number $\zeta(3)$ is more mysterious. It wasn't until 1978 that Apéry proved that $\zeta(3)$ is irrational (and thus $\zeta(3)$ is sometimes called Apéry's constant); and while we don't expect $\zeta(3) / \pi^{3}$ to be rational, I think that's still an open problem.
2.
(a) Prove that $\sum_{m \leq x} \sum_{\substack{n \leq x \\(m, n)=1}} 1=\sum_{d \leq x} \mu(d)\left\lfloor\frac{x}{d}\right\rfloor^{2}$. Hint: what does $\sum_{d \mid(m, n)} \mu(d)$ equal?
(b) Write down the rigorous definition of what a number theorist refers to as "the probability that two randomly chosen positive integers are relatively prime to each other", and calculate it.
(c) A lattice point (in the plane) is a point $(x, y)$ such that both $x$ and $y$ are integers. A lattice point is visible from the origin if the line segment between it and the origin contains no other lattice points besides the endpoints. What is "the probability that a randomly chosen lattice point in the plane is visible from the origin"? (Note: in the plane, not in the first quadrant.)
(d) Generalize part (c) to lattice points in three-dimensional space; in $k$-dimensional space.
(a) Following the hint, we can write

$$
\sum_{m \leq x} \sum_{\substack{n \leq x \\(m, n)=1}} 1=\sum_{m \leq x} \sum_{n \leq x} \sum_{d \mid(m, n)} \mu(d)=\sum_{d \leq x} \mu(d) \sum_{\substack{m \leq x \\ d \mid m}} \sum_{n \leq x} 1=\sum_{d \leq x} \mu(d)\left\lfloor\frac{x}{d}\right\rfloor\left\lfloor\frac{x}{d}\right\rfloor
$$

as desired.
(b) Presumably we should sample two positive integers $m$ and $n$ independently and uniformly from the integers up to $x$, calculate the probability that they are coprime as a function of $x$, and take the limit as $x$ goes to $\infty$. That finite probability is exactly

$$
\begin{aligned}
\frac{1}{\lfloor x\rfloor^{2}} \sum_{m \leq x} \sum_{\substack{n \leq x \\
(m, n)=1}} 1 & =\frac{1}{\lfloor x\rfloor^{2}} \sum_{d \leq x} \mu(d)\left\lfloor\frac{x}{d}\right\rfloor^{2} \\
& =\frac{1}{\lfloor x\rfloor^{2}} \sum_{d \leq x} \mu(d)\left(\frac{x}{d}+O(1)\right)^{2} \\
& =\frac{1}{\lfloor x\rfloor^{2}}\left(x^{2} \sum_{d \leq x} \frac{\mu(d)}{d^{2}}+O\left(x \sum_{d \leq x} \frac{|\mu(d)|}{d}+\sum_{d \leq x}|\mu(d)|\right)\right) \\
& \left.=\frac{x^{2}}{\lfloor x\rfloor^{2}}\left(\sum_{d=1}^{\infty} \frac{\mu(d)}{d^{2}}+O\left(\sum_{d>x} \frac{\mu(d)}{d^{2}}\right)\right)+O\left(\frac{x}{\lfloor x\rfloor^{2}} \sum_{d \leq x} \frac{|\mu(d)|}{d}+\frac{1}{\lfloor x\rfloor^{2}} \sum_{d \leq x}|\mu(d)|\right)\right) .
\end{aligned}
$$

Using $\mu(d) \ll 1$, and $\lfloor x\rfloor \gg x$ for $x \geq 1$ (confirm!), this probability becomes

$$
\begin{aligned}
\frac{x^{2}}{\lfloor x\rfloor^{2}} \sum_{d=1}^{\infty} \frac{\mu(d)}{d^{2}}+O\left(\sum_{d>x} \frac{1}{d^{2}}+\frac{1}{x} \sum_{d \leq x} \frac{1}{d}+\frac{1}{x^{2}} \sum_{d \leq x} 1\right) & =\frac{x^{2}}{\lfloor x\rfloor^{2}} \frac{1}{\zeta(2)}+O\left(\frac{1}{x}+\frac{1}{x} \log x+\frac{1}{x^{2}} x\right) \\
& =\frac{x^{2}}{\lfloor x\rfloor^{2}} \frac{6}{\pi^{2}}+O\left(\frac{\log x}{x}\right) .
\end{aligned}
$$

The limit of this expression as $x \rightarrow \infty$ is $6 / \pi^{2}$.
(Along the way we saw that the difference between $\lfloor x\rfloor$ and $x$ was insignificant in this calculation, since $x \rightarrow \infty$; therefore in practice we usually start such calculations with $1 / x$ or $1 / x^{2}$ instead of $1 /\lfloor x\rfloor$ or $1 /\lfloor x\rfloor^{2}$.)
(c) We will use the fact that the lattice point $(m, n)$ is visible from the origin if and only if $\operatorname{gcd}(m, n)=1$ (confirm!). After some reflection, we choose to sample lattice points uniformly from the square with vertices $( \pm x, \pm x)$, which contains $(2\lfloor x\rfloor+1)^{2}$ lattice points. We therefore want to calculate

$$
\frac{1}{(2 x+1)^{2}} \sum_{\substack{(m, n) \in \mathbb{Z}^{2} \\ \text { mil }|n| \leq x \\ \operatorname{gcd}(m, n)=1}} 1=\frac{1}{(2 x+1)^{2}}\left(4 \sum_{\substack{1 \leq m \leq x \\ \operatorname{scd}(m, n)=1}} \sum_{\substack{1 \leq n \leq x \\ \operatorname{gcd}(m, n)}} 1+4\right),
$$

since the counts for the four quadrants are identical (greatest common divisors ignore signs) and there are precisely 4 lattice points on the two axies that are visible from the origin. Using part (b) it is easy to check that the limit of this expression as $x \rightarrow \infty$ equals $6 / \pi^{2}$.
(The regions from which these lattice points are sampled can be thought of as a fixed shape, namely the square with vertices $( \pm 1, \pm 1)$, which is then dilated by a factor of $x$. One can start with other fixed shapes instead and dilate them in the same way; under some conditions-certainly using a convex neighborhood of the origin is sufficient, although that can be loosened quite a bit-the proportion of lattice points that are visible from the origin will still tend to $6 / \pi^{2}$. Research has been done on the quality of the error term in these asymptotic formulas; you can see a paper some colleagues and I wrote for some results in this vein, along with a few pointers to the more fundamental results.)
(d) The method of part (a) generalizes quickly to

$$
\sum_{\substack{n_{1}, \ldots, n_{k} \leq x \\\left(n_{1}, \ldots, n_{k}\right)=1}} 1=\sum_{n_{1}, \ldots, n_{k} \leq x} \sum_{d \mid\left(n_{1}, \ldots, n_{k}\right)} \mu(d)=\sum_{d \leq x} \mu(d) \sum_{\substack{n_{1} \leq x \\ d \mid n_{1}}} \cdots \sum_{\substack{n_{k} \leq x \\ d \mid n_{k}}} 1=\sum_{d \leq x} \mu(d)\left\lfloor\left.\frac{x}{d}\right|^{k}\right.
$$

The method of part (b) then gives

$$
\frac{1}{x^{k}} \sum_{d \leq x} \mu(d)\left\lfloor\frac{x}{d}\right\rfloor^{k}=\sum_{d \leq x} \frac{\mu(d)}{d^{k}}+O\left(\frac{1}{x} \sum_{d \leq x} \frac{|\mu(d)|}{d^{k-1}}\right)=\frac{1}{\zeta(k)}+O\left(\frac{1}{x}\right)
$$

(the error term valid when $k \geq 3$ ). Therefore the "probability" that a random lattice point in $\mathbb{Z}^{k}$ is visible from the origin turns out to be $1 / \zeta(k)$.

