Math 539—Group Work \#5

Thursday, February 13, 2020
In all these problems, $\varepsilon, \sigma_{0}, T, U, x$, and y are positive real numbers with $\varepsilon<T$ and $U>\sigma_{0}$, and $\alpha(s)=\sum_{n=1}^{\infty} a_{n} n^{-s}$ is a Dirichlet series with finite abscissa of convergence.

1. Suppose $y \geq 2$. By considering the contour integral $\frac{1}{2 \pi i} \oint_{R-} \frac{y^{s}}{s} d s$, where $R-i$ the rectangle with corners at $\sigma_{0}-i T, \sigma_{0}+i T,-U+i T$, and $-U-i T$ (oriented counterclockwise), show that

$$
\begin{equation*}
1=\frac{1}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} \frac{y^{s}}{s} d s+O\left(\frac{y^{\sigma_{0}}}{T \log y}+\frac{T}{U} y^{-U}\right) \tag{1}
\end{equation*}
$$

Conclude that uniformly for $y \geq 2$,

$$
\frac{1}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} \frac{y^{s}}{s} d s=1+O\left(\frac{y^{\sigma_{0}}}{T}\right)
$$

The only pole of the integrand is at $s=0$, at which the residue is $y^{0}=1$; since this pole lies inside the closed path of integration, the contour integral equals 1 by the residue theorem; therefore

$$
1=\frac{1}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} \frac{y^{s}}{s} d s+O\left(\left|\frac{1}{2 \pi i} \int_{\sigma_{0}+i T}^{-U+i T} \frac{y^{s}}{s} d s\right|+\left|\frac{1}{2 \pi i} \int_{-U+i T}^{-U-i T} \frac{y^{s}}{s} d s\right|+\left|\frac{1}{2 \pi i} \int_{-U-i T}^{\sigma_{0}-i T} \frac{y^{s}}{s} d s\right|\right)
$$

On the other hand, the contribution to the contour integral from the top edge of $R-$ is at most

$$
\left|-\frac{1}{2 \pi i} \int_{-U+i T}^{\sigma_{0}+i T} \frac{y^{s}}{s} d s\right| \leq \int_{-U}^{\sigma_{0}} \frac{y^{\sigma}}{T} d \sigma<\int_{-\infty}^{\sigma_{0}} \frac{y^{\sigma}}{T} d \sigma=\frac{y^{\sigma_{0}}}{T \log y}
$$

where the lower boundary term vanishes since $y>1$. The same bound holds for the contribution from the bottom edge of $R-$. Finally, the contribution from the left edge of R - is at most

$$
\left|-\frac{1}{2 \pi i} \int_{-U-i T}^{-U+i T} \frac{y^{s}}{s} d s\right| \leq \int_{-T}^{T} \frac{y^{-U}}{U} d t=\frac{2 T}{U} y^{-U}
$$

which completes the proof of equation (1). Since that equation is uniform in U, we may take the limit as $U \rightarrow \infty$ to obtain

$$
\frac{1}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} \frac{y^{s}}{s} d s=1+O\left(\frac{y^{\sigma_{0}}}{T \log y}\right)=1+O\left(\frac{y^{\sigma_{0}}}{T}\right)
$$

where we have used $y \geq 2$ in the last step.
(Some people would phrase this argument directly as an integral over the infinite contour from $-\infty-i T$ to $\sigma_{0}-i T$ to $\sigma_{0}+i T$ to $-\infty+i T$. However, the legitimacy of the residue theorem over noncompact regions such as this half-infinite strip requires some decay condition on the integrand, which is basically equivalent to the argument above.)
2. Suppose $0<y \leq \frac{1}{2}$. By considering the contour integral $\frac{1}{2 \pi i} \oint_{R+} \frac{y^{s}}{s} d s$, where $R+i$ is the rectangle with corners at $\sigma_{0}-i T, \sigma_{0}+i T, U+i T$, and $U-i T$, show that

$$
\begin{equation*}
0=\frac{1}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} \frac{y^{s}}{s} d s+O\left(\frac{y^{\sigma_{0}}}{T|\log y|}+\frac{T}{U} y^{U}\right) . \tag{2}
\end{equation*}
$$

Conclude that uniformly for $0<y \leq \frac{1}{2}$,

$$
\frac{1}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} \frac{y^{s}}{s} d s=O\left(\frac{y^{\sigma_{0}}}{T}\right) .
$$

The only pole of the integrand is again at $s=0$, but now that pole is outside the closed path of integration; therefore the contour integral equals 0 by the residue theorem, and so

$$
0=\frac{1}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} \frac{y^{s}}{s} d s+O\left(\left|\frac{1}{2 \pi i} \int_{\sigma_{0}+i T}^{U+i T} \frac{y^{s}}{s} d s\right|+\left|\frac{1}{2 \pi i} \int_{U+i T}^{U-i T} \frac{y^{s}}{s} d s\right|+\left|\frac{1}{2 \pi i} \int_{U-i T}^{\sigma_{0}-i T} \frac{y^{s}}{s} d s\right|\right)
$$

(As written, we are traversing the contour clockwise, but that's insignificant since $-0=0$.) The contribution from the top edge of $R+$ is at most

$$
\left|\frac{1}{2 \pi i} \int_{\sigma_{0}+i T}^{U+i T} \frac{y^{s}}{s} d s\right| \leq \int_{\sigma_{0}}^{U} \frac{y^{\sigma}}{T} d \sigma<\int_{\sigma_{0}}^{\infty} \frac{y^{\sigma}}{T} d \sigma=-\frac{y^{\sigma_{0}}}{T \log y}=\frac{y^{\sigma_{0}}}{T|\log y|}
$$

where the lower boundary term vanishes since $0<y<1$. The same bound holds for the contribution from the bottom edge of $R+$. Finally, the contribution from the right edge of $R+$ is at most

$$
\left|\frac{1}{2 \pi i} \int_{U-i T}^{\sigma_{0}-i T} \frac{y^{s}}{s} d s\right| \leq \int_{-T}^{T} \frac{y^{U}}{U} d t=\frac{2 T}{U} y^{U}
$$

which completes the proof of equation (2). Since that equation is uniform in U, we may take the limit as $U \rightarrow \infty$ to obtain

$$
\frac{1}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} \frac{y^{s}}{s} d s=1+O\left(\frac{y^{\sigma_{0}}}{T|\log y|}\right)=1+O\left(\frac{y^{\sigma_{0}}}{T}\right)
$$

where we have used $0<y \leq \frac{1}{2}$ in the last step.
Define the "sine integral" $\operatorname{si}(x)=-\int_{x}^{\infty} \frac{\sin u}{u} d u$. You may use (without proof) the facts that $\operatorname{si}(x)$ is bounded and $\mathrm{si}(x)+\operatorname{si}(-x)=\lim _{x \rightarrow-\infty} \operatorname{si}(x)=-\pi$.

We note for later use that $\operatorname{si}(0)=-\pi / 2$, since $\operatorname{si}(0)+\operatorname{si}(-0)=-\pi$.
3. Show that for all $\sigma_{0}>\max \left\{0, \sigma_{a}\right\}$,

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} \alpha(s) \frac{x^{s}}{s} d s=\sum_{n \leq x}^{\prime} a_{n}+\sum_{x / 2<n<x} \frac{a_{n}}{\pi} \operatorname{si}\left(T \log \frac{x}{n}\right)- & \sum_{x<n<2 x} \frac{a_{n}}{\pi} \operatorname{si}\left(T \log \frac{n}{x}\right) \\
& +O\left(\frac{(4 x)^{\sigma_{0}}}{T} \sum_{n=1}^{\infty} \frac{\left|a_{n}\right|}{n^{\sigma_{0}}}\right)
\end{aligned}
$$

You may use the result in equation (5) below to solve \#3.
[Remark: this statement is Theorem 5.2 in Montgomery and Vaughan's book.] Since the Dirichlet series $\alpha(s)$ converges absolutely on the path of integration by assumption, we may exchange the integral and the infinite sum (by Fubini's theorem), obtaining

$$
\frac{1}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} \alpha(s) \frac{x^{s}}{s} d s=\frac{1}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} \sum_{n=1}^{\infty} a_{n} n^{-s} \frac{x^{s}}{s} d s=\sum_{n=1}^{\infty} a_{n} \frac{1}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} \frac{(x / n)^{s}}{s} d s
$$

We split this sum into four subsums, writing the right-hand side as

$$
\begin{align*}
\sum_{n \leq x / 2} \frac{a_{n}}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} \frac{(x / n)^{s}}{s} d s & +\sum_{x / 2<n \leq x} \frac{a_{n}}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} \frac{(x / n)^{s}}{s} d s \\
& +\sum_{x<n<2 x} \frac{a_{n}}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} \frac{(x / n)^{s}}{s} d s+\sum_{n \geq 2 x} \frac{a_{n}}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} \frac{(x / n)^{s}}{s} d s \tag{3}
\end{align*}
$$

In the first subsum, $x / n \geq 2$, and so problem $\# 1$ gives

$$
\sum_{n \leq x / 2} \frac{a_{n}}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} \frac{(x / n)^{s}}{s} d s=\sum_{n \leq x / 2} a_{n}\left(1+O\left(\frac{(x / n)^{\sigma_{0}}}{T}\right)\right) ;
$$

similarly, in the last subsum, $0<x / n \leq 1 / 2$, and so problem \#2 gives

$$
\sum_{n \geq 2 x} \frac{a_{n}}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} \frac{(x / n)^{s}}{s} d s=\sum_{n \leq x / 2} a_{n} O\left(\frac{(x / n)^{\sigma_{0}}}{T}\right)
$$

For the second subsum in equation (3), $1 \leq x / n<2$, and so equation (5) below gives

$$
\begin{aligned}
\sum_{x / 2<n \leq x} \frac{a_{n}}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} \frac{(x / n)^{s}}{s} d s & =\sum_{x / 2<n \leq x} a_{n}\left(1+\frac{1}{\pi} \operatorname{si}\left(T \log \frac{x}{n}\right)+O\left(\frac{2^{\sigma_{0}}}{T}\right)\right) \\
& =\sum_{x / 2<n \leq x} a_{n}\left(1+\frac{1}{\pi} \operatorname{si}\left(T \log \frac{x}{n}\right)+O\left(\frac{2^{\sigma_{0}}(x / n)^{\sigma_{0}}}{T}\right)\right)
\end{aligned}
$$

(since $x / n \geq 1$); similarly, for the third subsum we have

$$
\begin{aligned}
\sum_{x<n<2 x} \frac{a_{n}}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} \frac{(x / n)^{s}}{s} d s & =\sum_{x<n<2 x} a_{n}\left(-\frac{1}{\pi} \operatorname{si}\left(T \log \frac{n}{x}\right)+O\left(\frac{2^{\sigma_{0}}}{T}\right)\right) \\
& =\sum_{x / 2<n \leq x} a_{n}\left(1+\frac{1}{\pi} \mathrm{si}\left(T \log \frac{x}{n}\right)+O\left(\frac{2^{\sigma_{0}}(2 x / n)^{\sigma_{0}}}{T}\right)\right)
\end{aligned}
$$

(since $2 x / n>1$). Combining all of these calculations is enough to complete the problem, once we note that if x is an integer then the summand $n=x$ becomes $a_{n}(1+\operatorname{si}(0) / \pi)=a_{n} / 2$, as needed for the \sum^{\prime} notation.
4. Let S be the closed contour (oriented counterclockwise) consisting of the line segments joining the points $-i \varepsilon,-i T, \sigma_{0}-i T, \sigma_{0}+i T, i T$, and is together with the right half-circle with diameter running from ic to $-i \varepsilon$.

Suppose $\frac{1}{2}<y<2$. By considering the contour integral $\frac{1}{2 \pi i} \oint_{S} \frac{y^{s}}{s} d s$ and letting $\varepsilon \rightarrow 0+$, show that

$$
\begin{equation*}
0=\frac{1}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} \frac{y^{s}}{s} d s-\left(\frac{1}{2}+\frac{1}{\pi} \operatorname{si}(T \log y)\right)-\frac{1}{2}+O\left(\frac{2^{\sigma_{0}}}{T}\right) \tag{4}
\end{equation*}
$$

Conclude that uniformly for $\frac{1}{2}<y<2$,

$$
\frac{1}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} \frac{y^{s}}{s} d s= \begin{cases}1+\frac{1}{\pi} \operatorname{si}(T \log y)+O\left(2^{\sigma_{0}} / T\right), & \text { if } 1 \leq y \leq 2 \tag{5}\\ -\frac{1}{\pi} \operatorname{si}\left(T \log y^{-1}\right)+O\left(2^{\sigma_{0}} / T\right), & \text { if } \frac{1}{2} \leq y \leq 1\end{cases}
$$

As above, there are no poles of the integrand inside the closed contour of integration, and therefore the contour integral equals 0 . The integral in equation (4) is the contribution of the right edge of S to the contour integral. The contribution of the semicircle, using the parametrization $z=\varepsilon e^{i \theta}$, is

$$
\frac{1}{2 \pi i} \int_{\pi / 2}^{-\pi / 2} \frac{y^{\varepsilon e^{i \theta}}}{\varepsilon e^{i \theta}} d\left(\varepsilon e^{i \theta}\right)=-\frac{1}{2 \pi} \int_{-\pi / 2}^{\pi / 2} y^{\varepsilon e^{i \theta}} d \theta ;
$$

as ε tends to 0 , the integrand tends to 1 uniformly in θ, and therefore this contribution tends to $(-1 / 2 \pi)(\pi / 2-(-\pi / 2))=-1 / 2$. (This little technical trick is the way to deal with a contour integral that wants to run through a pole of the integrand; heuristically, we see that such a pole is counted as "half inside" the contour in terms of its contribution to the residue theorem.)
The contribution from the left edge of S, using the parametrization $z=i t$ (and then, in the second integral, the change of variables $t \mapsto-t$), is

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{T}^{\varepsilon} \frac{y^{i t}}{i t} d(i t)+\frac{1}{2 \pi i} \int_{-\varepsilon}^{-T} \frac{y^{i t}}{i t} d(i t) & =-\frac{1}{2 \pi i} \int_{\varepsilon}^{T} \frac{y^{i t}}{t} d t+\frac{1}{2 \pi i} \int_{\varepsilon}^{T} \frac{y^{-i t}}{t} d t \\
& =-\frac{1}{\pi} \int_{\varepsilon}^{T} \frac{e^{i t \log y}-e^{-i t \log y}}{2 i t} d t \\
& =-\frac{1}{\pi} \int_{\varepsilon}^{T} \frac{\sin (i t \log y)}{t} d t=\frac{1}{\pi}(\operatorname{si}(\varepsilon \log y)-\operatorname{si}(T \log y))
\end{aligned}
$$

which tends to $-1 / 2-\operatorname{si}(T \log y) / \pi$ as ε tends to 0 , since $\operatorname{si}(0)=-\pi / 2$.
Finally, since $y<2$, the contribution of the bottom edge of S to the contour integral is at most

$$
\left|\frac{1}{2 \pi i} \int_{-i T}^{\sigma_{0}-i T} \frac{y^{s}}{s} d s\right| \leq \int_{0}^{\sigma_{0}} \frac{y^{\sigma}}{T} d \sigma<\int_{0}^{\sigma_{0}} \frac{2^{\sigma}}{T} d \sigma<\int_{-\infty}^{\sigma_{0}} \frac{2^{\sigma}}{T} d \sigma=\frac{2^{\sigma_{0}}}{T \log 2}
$$

and similarly for the contribution of the top edge of S to the contour integral. (This method was motivated by the desire to avoid dividing by $\log y$ when y is close to 1.) Together, these calculations establish equation (4). Deriving equation (5) from equation (4) is just a matter of rearranging terms and noting that

$$
1+\frac{1}{\pi} \operatorname{si}(T \log y)=-\frac{1}{\pi}(-\pi-\operatorname{si}(T \log y))=-\frac{1}{\pi} \operatorname{si}(-T \log y)=-\frac{1}{\pi} \operatorname{si}\left(T \log y^{-1}\right)
$$

