Math 539—Group Work \#6

Tuesday, March 3, 2020
Define the "logarithmic integral" function $\operatorname{li}(x)=\int_{2}^{x} \frac{d u}{\log u}$.

1. In this problem, we will explore various ways to write the error term in the prime number theorem for $\pi(x)$.
(a) Using integration by parts, or otherwise, show that $\operatorname{li}(x)=\frac{x}{\log x}+\int_{2}^{x} \frac{d u}{\log ^{2} u}-\frac{2}{\log 2}$.
(b) Show that $\operatorname{li}(x)=\frac{x}{\log x}+\frac{x}{\log ^{2} x}+\frac{2 x}{\log ^{3} x}+O\left(\frac{x}{\log ^{4} x}\right)$.
(c) For any positive integer K, prove that $\pi(x)=\sum_{k=1}^{K} \frac{(k-1)!x}{\log ^{k} x}+O_{K}\left(\frac{x}{(\log x)^{K+1}}\right)$. You may assume equation (1) below to accomplish this task.
(d) For any fixed $\alpha>2$, deduce that it is not the case that $\pi(x)=\frac{x}{\log x}+O\left(\frac{x}{\log ^{\alpha} x}\right)$.
(a) Integration by parts (integrating 1 and differentiating $1 / \log u$) yields

$$
\operatorname{li}(x)=\left.\frac{u}{\log u}\right|_{2} ^{x}-\int_{2}^{x} u\left(-\frac{1}{u \log ^{2} u}\right) d u=\frac{x}{\log x}-\frac{2}{\log 2}+\int_{2}^{x} \frac{d u}{\log ^{2} u}
$$

(b) We continue integrating by parts:

$$
\begin{aligned}
\operatorname{li}(x) & =\frac{x}{\log x}+\int_{2}^{x} \frac{d u}{\log ^{2} u}+O(1) \\
& =\frac{x}{\log x}+\left.\frac{u}{\log ^{2} u}\right|_{2} ^{x}-\int_{2}^{x} u\left(-\frac{2}{u \log ^{3} u}\right) d u+O(1) \\
& =\frac{x}{\log x}+\frac{x}{\log ^{2} x}+\int_{2}^{x} \frac{2}{\log ^{3} u} d u+O(1) \\
& =\frac{x}{\log x}+\frac{x}{\log ^{2} x}+\left.\frac{2 u}{\log ^{3} u}\right|_{2} ^{x}-\int_{2}^{x} u\left(-\frac{6}{u \log ^{4} u}\right) d u+O(1) \\
& =\frac{x}{\log x}+\frac{x}{\log ^{2} x}+\frac{2 x}{\log ^{3} x}+\int_{2}^{x} \frac{6}{\log ^{4} u} d u+O(1) .
\end{aligned}
$$

As for the remaining integral, again we split at some $2 \leq y \leq x$ and estimate each integral trivially:

$$
\int_{2}^{x} \frac{6}{\log ^{4} u} d u=\int_{2}^{y} \frac{6}{\log ^{4} u} d u+\int_{y}^{x} \frac{6}{\log ^{4} u} d u \ll y+x \cdot \frac{1}{\log ^{4} y},
$$

and many choices of y make the right-hand side $\ll x / \log ^{4} x$ (for example, $y=\sqrt{x}$).
Another way of estimating this last integral: noting that

$$
\frac{d}{d x}\left(\frac{x}{\log ^{4} x}\right)=\frac{1}{\log ^{4} x}-\frac{4}{\log ^{5} x} \geq \frac{1 / 2}{\log ^{4} x} \quad \text { for } \log x \geq 8
$$

we may write (when $x \geq e^{8}$)
$\int_{2}^{x} \frac{6}{\log ^{4} u} d u=\int_{2}^{e^{8}} \frac{6}{\log ^{4} u} d u+\int_{e^{8}}^{x} \frac{6}{\log ^{4} u} d u \leq \int_{2}^{e^{8}} \frac{6}{\log ^{4} u} d u+12 \int_{e^{8}}^{x}\left(\frac{1}{\log ^{4} u}-\frac{4}{\log ^{5} u}\right) d u$, and therefore

$$
\int_{2}^{x} \frac{6}{\log ^{4} u} d u \ll 1+\int_{e^{8}}^{x}\left(\frac{1}{\log ^{4} u}-\frac{4}{\log ^{5} u}\right) d u=1+\left.\frac{u}{\log ^{4} u}\right|_{e^{8}} ^{x} \ll \frac{x}{\log ^{4} x}
$$

(c) Using repeated integration by parts as in part (b), it is easy to prove by induction on K that

$$
\operatorname{li}(x)=\sum_{k=1}^{K} \frac{(k-1)!x}{\log ^{k} x}+\int_{2}^{x} \frac{K!}{(\log u)^{K+1}}+O_{K}(1)
$$

(Notice a slight subtlety of the notation: adding K quantities that are each $O(1)$ yields a quantity that is $O_{K}(1)$, but not necessarily $O(1)$ uniformly in K.) As in part (b), splitting the remaining integral at $y=\sqrt{x}$, say, shows that the integral is $<_{K} x /(\log x)^{K+1}$. Therefore by problem \#1(b), there exists an absolute constant $c>0$ such that

$$
\begin{aligned}
\pi(x) & =\operatorname{li}(x)+O(x \exp (-c \sqrt{\log x})) \\
& =\sum_{k=1}^{K} \frac{(k-1)!x}{\log ^{k} x}+O_{K}\left(\frac{x}{(\log x)^{K+1}}+x \exp (-c \sqrt{\log x})\right) \\
& =\sum_{k=1}^{K} \frac{(k-1)!x}{\log ^{k} x}+O_{K}\left(\frac{x}{(\log x)^{K+1}}\right),
\end{aligned}
$$

since $(\log x)^{K+1}<_{K} \exp (c \sqrt{\log x})$ for any K. (No dependence on c is necessary since it is an absolute constant.)
[Note that it is tempting to extend this finite series to an infinite series, writing something like $\operatorname{li}(x)=\sum_{k=1}^{\infty} \frac{(k-1)!x}{\log ^{k} x}$. However, the ratio test reveals that this series does not converge for any value of x ! This is an example of a divergent series, where any specific truncation provides a good approximation asymptotically even though the infinite series itself isn't useful.]
(d) Suppose that the estimate did hold; then from part (c) with $K=2$,

$$
\frac{x}{\log x}+O\left(\frac{x}{\log ^{\alpha} x}\right)=\pi(x)=\frac{x}{\log x}+\frac{x}{\log ^{2} x}+O\left(\frac{x}{\log ^{3} x}\right)
$$

after rearranging this becomes

$$
\frac{x}{\log ^{2} x}=O\left(\frac{x}{\log ^{\alpha} x}+\frac{x}{\log ^{3} x}\right)
$$

which is certainly false when $\alpha>2$.
2. In this problem, we will give an asymptotic formula for $\pi(x)$ with a better error term than what we saw in class.
(a) Show that

$$
\pi(x)-\operatorname{li}(x)=\frac{\theta(x)-x}{\log x}+\frac{2}{\log 2}+\int_{2}^{x} \frac{\theta(u)-u}{u \log ^{2} u} d u .
$$

(b) Suppose that $c>0$ is a constant such that $\theta(x)=x+O(x \exp (-c \sqrt{\log x}))$. Prove that

$$
\begin{equation*}
\pi(x)=\operatorname{li}(x)+O(x \exp (-c \sqrt{\log x})) \tag{1}
\end{equation*}
$$

(a) We can write $\pi(x)=\sum_{p \leq x} 1$ in terms of $\theta(x)=\sum_{p \leq x} \log p$ using Riemann-Stieltjes integrals:

$$
\begin{aligned}
\pi(x)=\int_{2-}^{x} \frac{1}{\log u} d \theta(u) & =\int_{2-}^{x} \frac{1}{\log u} d(\theta(u)-u)+\int_{2-}^{x} \frac{1}{\log u} d u \\
& =\int_{2-}^{x} \frac{1}{\log u} d(\theta(u)-u)+\operatorname{li}(x)-\operatorname{li}(2-)
\end{aligned}
$$

Rearranging terms, replacing $\operatorname{li}(2-)$ by $\operatorname{li}(2)=0$ (due to the implicit limit in that lower endpoint that will soon be taken), and integrating by parts, we obtain

$$
\begin{aligned}
\pi(x)-\operatorname{li}(x) & =\left.\frac{\theta(u)-u}{\log u}\right|_{2-} ^{x}-\int_{2-}^{x}(\theta(u)-u) d \frac{1}{\log u} \\
& =\frac{\theta(x)-x}{\log x}-\frac{0-2}{\log 2}+\int_{2}^{x}(\theta(u)-u) \frac{1}{u \log ^{2} u} d u .
\end{aligned}
$$

(b) From part (a),

$$
\begin{align*}
\pi(x)-\operatorname{li}(x) & \ll \frac{x \exp (-c \sqrt{\log x})}{\log x}+1+\int_{2}^{x} \frac{u \exp (-c \sqrt{\log u})}{u \log ^{2} u} d u \tag{2}\\
& \ll x \exp (-c \sqrt{\log x})+\int_{2}^{y} \frac{\exp (-c \sqrt{\log u})}{\log ^{2} u} d u+\int_{y}^{x} \frac{\exp (-c \sqrt{\log u})}{\log ^{2} u} d u
\end{align*}
$$

for any $2 \leq y \leq x$. Since the integrand is positive and decreasing for $u \geq 2$, it is also bounded, and so

$$
\begin{aligned}
\pi(x)-\operatorname{li}(x) & \ll x \exp (-c \sqrt{\log x})+y+(x-y) \frac{\exp (-c \sqrt{\log y})}{\log ^{2} y} \\
& \ll x \exp (-c \sqrt{\log x})+y+x \exp (-c \sqrt{\log y})
\end{aligned}
$$

A reasonable choice for y seems to be $y=x \exp (-c \sqrt{\log x})$. With this choice,

$$
\log y=\log x-c \sqrt{\log y}=(\log x)\left(1+O\left(\frac{\sqrt{\log y}}{\log x}\right)\right)
$$

since $\sqrt{1+O(\varepsilon)}=1+O(\varepsilon)$ by the tangent line for $\sqrt{1+t}$ at $t=0$,

$$
\sqrt{\log y}=\sqrt{\log x}\left(1+O\left(\frac{\sqrt{\log y}}{\log x}\right)\right)=\sqrt{\log x}+O(1)
$$

We conclude that

$$
\pi(x)-\operatorname{li}(x) \ll x \exp (-c \sqrt{\log x})+x \exp (-c(\sqrt{\log x}+O(1))) \ll x \exp (-c \sqrt{\log x})
$$

since $\exp (O(1)) \ll 1$.
Alternatively, we can use the "wishful thinking derivative" method we saw in \#1(b): since

$$
\frac{d}{d x}(x \exp (-c \sqrt{\log x}))=\exp (-c \sqrt{\log x})-\frac{c}{2} \frac{\exp (-c \sqrt{\log x})}{\sqrt{\log x}} \gg x \exp (-c \sqrt{\log x}),
$$

we have

$$
\begin{aligned}
\int_{2}^{x} \frac{\exp (-c \sqrt{\log u})}{\log ^{2} u} d u & \ll \int_{2}^{x} \exp (-c \sqrt{\log u}) d u \\
& \ll \int_{2}^{x} \frac{d}{d u}(u \exp (-c \sqrt{\log u})) d u \\
& =x \exp (-c \sqrt{\log x})-2 \exp (-c \sqrt{\log 2}) \ll x \exp (-c \sqrt{\log x})
\end{aligned}
$$

with which the required estimate follows from equation (2).

