
Math 539—Group Work #7
Tuesday, March 10, 2020

Throughout this group work, x ≥ T > 4 and σ0 > 1 and 0 < δ < 1 and ε > 0 are real numbers;
and R denotes the rectangle (oriented counterclockwise) with corners at σ0− iT , σ0 + iT , δ+ iT ,
and δ − iT .

We also include some facts for your convenience:

• Let α(s) =
∑∞

n=1 ann
−s have abscissa of absolute convergence σa. As long as σ0 > σa,∑

n≤x

an =
1

2πi

∫ σ0+iT

σ0−iT
α(s)

xs

s
ds+O

(
x log x

T
max

{
|an| :

x

2
< n < 2x

}
+
xσ0

T

∞∑
n=1

|an|
nσ0

)
.

(This is a consequence of Perron’s formula, as in Corollary 5.3.)
• ζ(s)�δ,ε τ

1−σ log τ uniformly on
{
s ∈ C : δ ≤ σ ≤ 1 + 1/ log τ and |s− 1| ≥ ε

}
.

(This is a consequence of Theorem 1.11.)
• If a meromorphic function f(z) has a pole of order k at z = 1, then f(z) ∼ c(z − 1)−k

near z = 1 for some constant c depending on f . More explicitly, if f has no other poles in
{z ∈ C : |z− 1| ≤ R}, then |f(z)| � |z− 1|−k on {z ∈ C : |z− 1| ≤ r} (here 0 < r < R
are constants, and the �-constant may depend on f , r, and R). (This follows from the
general theory of Laurent expansions.)

• log d(n) <
log n

log log n

(
log 2 +O

(
1

log log n

))
for n ≥ 3. (This is Theorem 2.11.)

0. Preliminaries:

(a) Argue that d(n)�ε n
ε.

(b) Argue that
1

2πi

∮
R

ζ(s)2
xs

s
ds = x log x+ (2C0 − 1)x. (1)

(a) The maximal order result above shows that log d(n) = oε(ε log n) for any ε > 0. We then
know (Group Work #1) that we can exponentiate both sides to obtain d(n) = oε(n

ε), which
in particular implies d(n)�ε n

ε.
(b) The function xs is entire, while s = 0 is not inside the rectangle R. Therefore the only pole

of the integrand is the double pole of ζ(s) at s = 1. We saw in class that the residue of this
pole is x log x+ (2C0 − 1)x, and so the identity (1) follows from the residue theorem.

1.

(a) Show that the contribution to the integral (1) from the right edge of R is∑
n≤x

d(n) +Oε

(
x1+ε

T
+
xσ0

T
ζ(σ0)

2

)
.

Conclude that if σ0 = 1 + 1/ log x, then this contribution is
∑
n≤x

d(n) +Oε

(
x1+ε

T

)
.



(b) Suppose that T ≤ 1
2

√
x. Show that the contribution to the integral (1) from the top and

bottom edges of R is�δ (x/T
2)σ0T log2 T . Conclude that if σ0 = 1 + 1/ log x, then this

contribution is�δ,ε x
1+ε/T .

(c) Show that the contribution to the integral (1) from the left edge of R is�δ x
δT 2−2δ log2 T .

(d) Conclude from the above calculations that∑
n≤x

d(n) = x log x+ (2C0 − 1)x+Oδ,ε

(
x(2−δ)/(3−2δ)+ε

)
.

(Hint: ignore the xε and log2 T when deciding what value to choose for T .) In particular,
show that ∑

n≤x

d(n) = x log x+ (2C0 − 1)x+Oη

(
x2/3+η

)
.

(a) Using Perron’s formula as given above with α(s) = ζ(s)2, so that an = d(n), we see that
the contribution to the integral (1) from the right edge of R is

1

2πi

∫ σ0+iT

σ0−iT
ζ(s)2

xs

s
ds =

∑
n≤x

d(n) +O

(
x log x

T
max

{
d(n) :

x

2
< n < 2x

}
+
xσ0

T

∞∑
n=1

d(n)

nσ0

)
.

The sum in the error term is exactly ζ(σ0)2; on the other hand, by problem 0(a) above,
max

{
d(n) : x/2 < n < 2x

}
�ε (2x)

ε �ε x
ε. Since log x �ε x

ε as well, we obtain the
first assertion. (Note that a function that isOε(x

1+2ε/T ) for every ε > 0 is alsoOε(x
1+ε/T )

for every ε > 0, by replacing ε with ε/2.)
If we take σ0 = 1 + 1/ log x, then xσ0 = ex � x, while (because of its double pole at

s = 1) we have ζ(σ0) � (σ0 − 1)−2 = log2 x �ε x
ε. These observations establish the

second assertion.
(b) The contribution to the integral (1) from the top edge of R is

− 1

2πi

∫ σ0+iT

δ+iT

ζ(s)2
xs

s
ds = − 1

2πi

∫ σ0

δ

ζ(σ + iT )2
xσ+iT

σ + iT
dσ

�
∫ σ0

δ

|ζ(σ + iT )|2 |x
σ+iT |

|σ + iT |
dσ =

∫ σ0

δ

|ζ(σ + iT )|2 xσ

|σ + iT |
dσ.

From the reference facts, we see that ζ(s) �δ T
1−σ log T (we can take ε = 4 to verify

|σ + iT − 1| ≥ T > 4, and the difference between τ and T is neglible in this error term
since T > 4 implies τ ≤ 2T ), and of course |σ + iT | ≥ T ; and we can extend the lower
endpoint to −∞ by the positivity of the integrand. Therefore the contribution from the top
edge is

�δ

∫ σ0

−∞
(T 1−σ log T )2

xσ

T
dσ = T log2 T

∫ σ0

−∞

(
x

T 2

)σ
dσ

= T log2 T
(x/T 2)σ0 − 0

log(x/T 2)
� (x/T 2)σ0T log2 T,

since log(x/T 2) ≥ log 4 by assumption. (Note that the vanishing of the lower boundary
term is due to the fact that x/T 2 > 1, which holds by the same assumption. In this case, it
would work just as well to simply take the maximum value of the modulus of the integrand
multiplied by the length of the path of integration, the latter of which is� 1 in our context.)



Since the contribution from the bottom edge is exactly the complex conjugate of the
contribution from the top edge (up to a minus sign from traversing the edge in the other di-
rection), the same estimate holds for the bottom edge, and the first assertion is established.

If we take σ0 = 1 + 1/ log x, then again xσ0 = ex � x, while (1/T 2)σ0 < (1/T 2)−1,
since log T < log x�ε x

ε, we quickly obtain the second assertion as well.
(c) The contribution to the integral (1) from the left edge of R is

− 1

2πi

∫ δ+iT

δ−iT
ζ(s)2

xs

s
ds = − 1

2πi

∫ T

−T
ζ(δ + it)2

xδ+it

δ + it
dt

�
∫ T

−T
|ζ(δ + it)|2 |x

δ+it|
|δ + it|

dt = xδ
∫ T

−T

|ζ(δ + it)|2

|δ + it|
dt.

From the reference facts, we see that ζ(s) �δ τ
1−δ log τ (we can take ε = 1 − δ to verify

|δ + iT − 1| ≥ 1− δ, and�δ,ε becomes just�δ once we choose ε to be a function of δ),
while |δ+it| ≥ max{δ, |t|} �δ τ (you can confirm this by considering separately the cases
|t| ≤ δ and |t| ≥ δ). Therefore the contribution from the left edge is (since τ = |t|+ 4)

�δ x
δ

∫ T

−T

(τ 1−δ log τ)2

τ
dt = 2xδ

∫ T+4

4

t1−2δ log2 t dt

≤ 2xδ log2(T + 4)

∫ T+4

0

t1−2δ dt

= 2xδ log2(T + 4)
(T + 4)2−2δ

2− 2δ
dt�δ x

δT 2−2δ log2 T.

(d) Putting the results of parts (a)–(c) into the identity (1), we see that we have shown∑
n≤x

d(n) = x log x+ (2C0 − 1)x+Oδ,ε

(
x1+ε

T
+ xδT 2−2δ log2 T

)
= x log x+ (2C0 − 1)x+Oδ,ε

(
xε
(
x

T
+ xδT 2−2δ

))
for T ≤ 1

2

√
x (since log T ≤ log x �ε x

ε). We choose T to make x/T = xδT 2−2δ;
that choice is T = x(1−δ)/(3−2δ) (which we verify is at most x1/3, which is ≤ 1

2

√
x when

x ≥ 64). With this choice, the above estimate becomes∑
n≤x

d(n) = x log x+ (2C0 − 1)x+Oδ,ε

(
x(2−δ)/(3−2δ)+ε

)
.

In particular, the exponent (2−δ)/(3−2δ)+ε is decreasing in both δ and ε and approaches
2
3

as δ, ε → 0+; so for any η > 0, there are choices of δ and ε in terms of η such that
(2− δ)/(3− 2δ) + ε < 2

3
+ η. We conclude that∑

n≤x

d(n) = x log x+ (2C0 − 1)x+Oη

(
x2/3+η

)
.

[Note that this asymptotic formula has the same main terms, but a weaker (larger) error term, as
the formula we obtained from Dirichlet’s hyperbola method in Chapter 2. Although we haven’t
seen it in class, it is not too hard to improve the reference bound on the zeta function from ζ(s)�
τ 1−σ log τ to ζ(s) � τ (1−σ)/2 log τ ; this would result in an asymptotic formula with an error term



of Oη(x
1/2+η), almost but still not quite as good as the elementary method. It is a strange feature

of this subject that for arithmetic functions for which the elementary methods work at all, they
sometimes tend to give better error bounds than this contour-integration method. Of course, as you
might imagine, the contour-integration method is much more versatile.]

2. Let k ≥ 2 be an integer, and let dk(n) be the generalized divisor function, namely the number
of ordered k-tuples of positive integers whose product equals n (so that d2(n) = d(n)).

(a) Show that the residue of the function ζ(s)kxs/s at s = 1 is equal to xPk(log x), where
Pk(T ) ∈ R[T ] is a polynomial of degree k − 1 with leading coefficient 1/(k − 1)!.

(b) Show that dk(n)�k,ε n
ε for every ε > 0. (Hint: show first that dk(n) ≤ d(n)k.)

(c) Prove that for every η > 0,∑
n≤x

dk(n) = xPk(log x) +Oη,k

(
xk/(k+1)+ε

)
.

Conclude that in particular,∑
n≤x

dk(n) =
x(log x)k

(k − 1)!
+Ok

(
x(log x)k−1

)
.

(a) Raising the Laurent expansion at s = 1,

ζ(s) =
1

s− 1
+ C0 + C1(s− 1) + C2(s− 2) + · · · ,

to the kth power yields

ζ(s)k =
1

(s− 1)k
+

D1−k

(s− 1)k−1
+ · · ·+ D−1

s− 1
+D0 +D1(s− 1) + · · · .

(Here, the Cj and Dj are some constants whose precise values won’t concern us here,
although C0 really is Euler’s constant; for consistency we write D−k = 1.) As we have
seen before, known Taylor series for exponential functions and geometric series give

xs

s
= xe(s−1) log x

1

1− (−(s− 1))
=

( ∞∑
j=0

x
(s− 1)j(log x)j

j!

)( ∞∑
`=0

(−1)`(s− 1)`
)

=
∞∑
m=0

(s− 1)m
( m∑

j=0

x(log x)j

j!
(−1)m−j

)
,

which begins xs/s = x+ (x log x− x)(s− 1) + (1
2
x log2 x− x log x+ x)(s− 1)2 + · · · .

Note that we may write this series as

xs

s
=

∞∑
m=0

(s− 1)mxQm(log x),

where Qm(T ) is a polynomial of degree m with leading coefficient 1/m!. It follows that
the coefficient of 1/(s− 1) in the Laurent expansion of ζ(s)kxs/s equals

k−1∑
n=0

xQn(log x)D−1−n = x

(
Qk−1(log x) +

k−2∑
n=0

Qn(log x)D−1−n

)
,



and the problem follows upon taking Pk(x) = Qk−1(T ) +
∑k−2

n=0Qn(T )D−1−n and noting
that this sum is a polynomial of degree k − 2.

(b) The suggested inequality dk(n) ≤ d(n)k follows from the definition of dk(n) as the number
of ordered k-tuples of positive integers whose product equals n, since each element of every
such k-tuples is a divisor of n. Therefore for every η > 0, we have dk(n) ≤ d(n)k �η,k

(nη)k (note that this constant does depend on k, since it is the kth power of the constant
implicit in d(n)�η n

η); choosing η = ε/k, we conclude that dk(n)�ε,k n
ε.

(c) We follow the same outline as in problem 1, starting with the contour integral evaluation
1

2πi

∮
R

ζ(s)k
xs

s
ds = xPk(log x) (2)

in the notation of part (a). We recognize that ζ(s)k =
∑∞

n=1 dk(n)n
−s. Using Perron’s

formula as in problem 1(a), we find that the contribution from the right edge of R is∑
n≤x

dk(n) +Oε,k

(
x1+ε

T
+
xσ0

T
ζ(σ0)

k

)
,

where we have used part (b) to bound dk(n) in the first error term. Choosing σ0 = 1 +
1/ log x results in ζ(σ0)k � logk x �ε,k x

ε, and so the second error term gets absorbed
into the first as before.

If we assume that T ≤ 1
2

k
√
x, then the same calculation as in problem 1(b) shows that

the contribution to the integral (2) from the top and bottom edges of R is

�δ,k

∫ σ0

−∞
(T 1−σ log T )k

xσ

T
dσ � (x/T k)σ0T k−1 logk T,

which again is �δ,ε,k x
1+ε/T when we choose σ0 = 1 + 1/ log x. Similarly, the same

calculation as in problem 1(c) shows that the contribution to the integral (2) from the left
edge of R is

�δ,k x
δ

∫ T

−T

(τ 1−δ log τ)k

τ
dt�δ,k x

δT k−kδ logk T.

Combining these estimates (still assuming T ≤ 1
2

k
√
x and thus using logk T �ε,k x

ε)
yields the asymptotic formula∑

n≤x

dk(n) = xPk(log x) +Oδ,ε,k

(
xε
(
x

T
+ xδT k−kδ

))
.

The optimal choice (which makes the two error terms equal) is T = x(1−δ)/(k+1−kδ), which
gives ∑

n≤x

dk(n) = xPk(log x) +Oδ,ε,k

(
x(k−(k−1)δ)/(k+1−kδ)+ε);

and since the exponent is an increasing function of both δ and ε, choosing them sufficiently
small in terms of η and k converts this into∑

n≤x

dk(n) = xPk(log x) +Oη,k

(
xk/(k+1)+ε

)
.


