
Math 539—“Group” Work #8
Tuesday, March 17, 2020

For all of these questions, we define the Bernoulli polynomials Bk(x) as coefficients in the power
series expansion
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We also define the Bernoulli numbers Bk = Bk(0), a few of which have been listed below.
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Finally, recall our notation for the fractional part {x} = x− bxc.
On this group work, you may differentiate or integrate infinite series term by term with impunity
(that is, don’t worry about convergence issues on this group work).

1. Preliminaries:

(a) Show that
∫ 1

0

f(z, x) dx = 1. Conclude that
∫ 1

0

Bk(x) dx = 0 for all k ≥ 1.

(b) Verify the identity
∂f(z, x)

∂x
= zf(z, x), and conclude that B′k(x) = kBk−1(x) for all

k ≥ 1.
(c) Show that f(z, 0) + z/2 is an even function of z. Conclude that B1 = −1/2 and that

B2j+1 = 0 for all j ≥ 1.
(d) Prove that Bk(1) = Bk for all k ≥ 2, and conclude that Bk

(
{x}
)

is a continuous periodic
function with period 1 for all k ≥ 2. (Hint: part (b) has something to say about the
difference Bk(1)−Bk(0).)

(e) Why do parts (a), (b), and (d) imply that Bk+1({x})/(k + 1) is an antiderivative for
Bk

(
{x}
)

on the entire real line, for every k ≥ 1?

(a) Integrating both sides of equation (1) with respect to x yields∫ 1

0
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∣∣∣∣1
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z

ez − 1

ez − 1

z
= 1

for z 6= 0, and the claim is trivial for z = 0 since f(0, x) = 1 identically. Furthermore,
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∞∑
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0
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By uniqueness of power series expansions, the coefficient 1
k!

∫ 1

0
Bk(x) dx of xk on the

right-hand side equals the coefficient 0 of zk on the left-hand side for all k ≥ 1, which
gives the desired evaluation. (Integrating term by term is valid because, as one can check,
the series converges uniformly for 0 ≤ x ≤ 1 for any fixed z inside the disc of convergence
{|z| < 2π} of the series.)



(b) The verification is simple:

∂f(z, x)

∂x
=

z

ez − 1

∂exz

∂x
=

z

ez − 1
zezx = zf(z, x).

Writing this identity in terms of the series gives

∂
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=
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zk
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Again by uniqueness of power series expansions, we conclude that B′k(x)

k!
= Bk−1(x)

(k−1)! for all
k ≥ 1, which gives the desired identity.

(c) We have

f(z, 0) +
z

2
=

z

ez − 1
+
z

2
=

2z + z(ez − 1)

2(ez − 1)
=
z(ez + 1)

ez − 1
=
z(ez/2 + e−z/2)

ez/2 − e−z/2
,

which we check is invariant under changing z to −z. Therefore all of the odd power series
coefficients of f(z, 0) + z

2
= −1

2
z +

∑∞
k=0Bk

zk

k!
equal 0, which gives the required values.

(d) By the fundamental theorem of calculus and part (b),

Bk(1)−Bk(0) =

∫ 1

0

B′k(x) dx =

∫ 1

0

kBk−1(x) dx,

which equals 0 for k− 1 ≥ 1 by part (a). Since {x} is a periodic function with period 1, so
is Bk

(
{x}
)
; and whenever x is not an integer, Bk

(
{x}
)

is a composition of two continuous
functions and hence is itself continuous. On the other hand, when x is an integer, then (by
continuity of Bk) we have limw→x−Bk

(
{x}
)
= Bk

(
limw→x−{x}

)
= Bk(1−) = Bk(1)

and limw→x+Bk

(
{x}
)
= Bk

(
limw→x+{x}

)
= Bk(0+), both of which equal Bk

(
{x}
)
=

Bk(0). Therefore Bk

(
{x}
)

is continuous for all real numbers x.
(e) Certainly part (b) implies that Bk+1({x})/(k + 1) is an antiderivative for Bk

(
{x}
)

for
0 < x < 1, since {x} = x there. On the other hand, part (a) implies that

∫ x
0
Bk

(
{u}
)
du =∫ x

bxcBk

(
{u}
)
du =

∫ {x}
0

Bk(u) du, so that this antiderivative must be periodic with pe-
riod 1. Part (d) then implies that Bk+1({x})/(k + 1) is the appropriate antiderivative for
all x ∈ R.

Remark: Although not relevant to this group work, it is a wonderful fact that the Bernoulli poly-
nomials also provide the formulas for the sum of the first N powers of integers, generalizing the
well-known formulas for the sum of the first N integers, squares, or cubes:∑

0≤n<N

nk =
Bk+1(N)−Bk+1

k + 1
=

∫ N

0

Bk(x) dx.

Thus the Bernoulli polynomial Bk+1(x) also functions as a “discrete antiderivative” of the simple
power function xk.



For the next problem, you may use the known Fourier expansion of the sawtooth function

− 1

π

∞∑
m=1

1

m
sin(2πmx) =

{
{x} − 1

2
, if x is not an integer,

0, if x is an integer.
(2)

2. A formula for the values of ζ(s) at positive even integers:

(a) When x /∈ Z, show that B2j

(
{x}
)
= (−1)j−1(2j)!

∞∑
m=1

2 cos(2πmx)

(2πm)2j
for all j ≥ 1.

(b) Deduce that for all j ≥ 1,

ζ(2j) =
(−1)j−122j−1π2jB2j

(2j)!
. (3)

Conclude that in particular, ζ(2j) equals a rational number times π2j for all j ≥ 1.

(a) We prove, by induction on k ≥ 1, that when x is not an integer,

Bk

(
{x}
)
= (−1)bk/2c−1k!

∞∑
m=1

{
2 sin(2πmx)/(2πm)k, if k is odd,
2 cos(2πmx)/(2πm)k, if k is even;

(4)

the assertion follows upon taking k = 2j. Since both expressions are periodic functions
with period 1, we may assume 0 < x < 1. Note that B1(x) = x − 1

2
, as we see in

equation (1), and therefore the case k = 1 of equation (4) is exactly the known identity (2).
Suppose equation (4) holds for some positive integer k. Integrating both sides of the

equation and using problem #1(b), we see that

Bk+1(x) =

∫
(k + 1)Bk(x) dx

=

∫
(k + 1)

(
(−1)bk/2c−1k!

∞∑
m=1

{
2 sin(2πmx)/(2πm)k, if k is odd,
2 cos(2πmx)/(2πm)k, if k is even

)
dx

= C +

(
(−1)bk/2c−1(k + 1)!

∞∑
m=1

{
−2 cos(2πmx)/(2πm)k+1, if k is odd,
2 sin(2πmx)/(2πm)k+1, if k is even

)
dx,

which we can see is exactly the desired formula (4) in the case k + 1, except possibly for
the constant of integration C. On the other hand, integrating both sides of equation (4)
from 0 to 1 results in 0 on both sides (where we have used problem #1(a) for the left-hand
side), and therefore the constant of integration must be C = 0.

Remark: The term-by-term integration can be justified by the uniform convergence of
the series (4), which is easy to establish when k ≥ 2 but not so obvious when k = 1.
However, general theorems from the subject of Fourier series exist that justify the term-by-
term integration for nice enough functions, including B1

(
{x}
)
.

(b) Taking the limit as x→ 0+ of both sides of the identity proved in part (a) yields

B2j = B2j(0) = (−1)j−1(2j)!
∞∑
m=1

2

(2πm)2j
= (−1)j−1(2j)! 2

(2π)2j
ζ(2j)

for all j ≥ 1, which is the desired identity.



If we can prove that Bk is a rational number for every k ≥ 0, then the given formula for
ζ(2j) is indeed a rational number times π2j . Perhaps the easiest way to prove this is via the
following logic: if g(z, y) is a rational function of z and y with integer coefficients, then
every derivative of g is also a rational function of z and y with integer coefficients. There-
fore every derivative of g(z, ez) is a rational function of z and ez with integer coefficients
(since the chain rule only produces additional factors of ez); in particular, every derivative
of g(z, ez) evaluated at z = 0 is a rational function of 0 and 1 with integer coefficients, that
is, a rational number.

Remark: If we try to find the value of ζ(2j + 1) in this way, the corresponding series in part (a) is
a sine series instead of a cosine series, and when we take the limit as x → 0+ we simply reprove
B2j+1 = 0 for j ≥ 1 without gaining any knowledge about ζ(2j + 1).

For the final problem, we will need the notation(
z

k

)
=
z(z − 1) · · · (z − (k − 1))

k!

for all z ∈ C and k ∈ Z≥0. (This is exactly the usual binomial coefficient
(
z
k

)
= z!

k!(z−k)! when
z ≥ k is an integer; the given formula shows that we can think of

(
z
k

)
as a polynomial of degree k

in the complex variable z.) We also recall from equation (1.24) the formula, valid for σ > 0:

ζ(s) = 1 +
1

s− 1
− s

∫ ∞
1

{x}x−s−1 dx. (5)

3. An alternate way to meromorphically continue ζ(s) to the entire complex plane:

(a) Show that for all integers K ≥ 1 and all σ > 0,∫ ∞
1

BK

(
{x}
)
x−s−K dx = − BK+1

K + 1
− −s−K

K + 1

∫ ∞
1

BK+1

(
{x}
)
x−s−(K+1) dx.

(b) By induction on K (or otherwise), show that for all integers K ≥ 1 and all σ > 0,

ζ(s) = 1 +
1

s− 1
−

K∑
k=1

(−1)k
(
−s
k − 1

)
Bk

k
− (−1)K

(
−s
K

)∫ ∞
1

BK

(
{x}
)
x−s−K dx. (6)

(c) Show that the integral on the right-hand side of the above equation converges for σ >
1 − K. Conclude that ζ(s) can be analytically continued to the entire complex plane
except for a simple pole at s = 1.

(d) Prove that ζ(−n) ∈ Q for all n ∈ Z≥0.

(a) From problem #1(e), we know that BK+1

(
{x}
)
/(K+1) is an antiderivative for BK

(
{x}
)
.

Therefore integration by parts gives∫ ∞
1

BK

(
{x}
)
x−s−K dx =

BK+1({x})
K + 1

x−s−K
∣∣∣∣∞
1

−
∫ ∞
1

BK+1({x})
K + 1

(−s−K)x−s−K−1 dx

= 0− BK+1

K + 1
− −s−K

K + 1

∫ ∞
1

BK+1

(
{x}
)
x−s−(K+1) dx,

since BK(1) = BK ; the upper endpoint yields 0 because the continuous, periodic function
BK

(
{x}
)

is bounded and σ > 0 (indeed, even σ > −K would suffice here).



(b) When we note from problem #1 that B1(x) = x − 1
2

and B1 = −1
2
, and that

(−s
1

)
= −s

from its definition, we see that the base case K = 1 to be proved is the identity

ζ(s) = 1 +
1

s− 1
− 1

2
− s

∫ ∞
1

(
{x} − 1

2

)
x−s−1 dx,

which is the same as equation (5) once we observe that s
∫∞
1

1
2
x−s−1 dx = 1

2
since σ > 0.

As for the induction step, part (a) implies that

−(−1)K
(
−s
K

)∫ ∞
1

BK

(
{x}
)
x−s−K dx

= (−1)K
(
−s
K

)
BK+1

K + 1
+ (−1)K

(
−s
K

)
−s−K
K + 1

∫ ∞
1

BK+1

(
{x}
)
x−s−(K+1) dx

= −(−1)K+1

(
−s
K

)
BK+1

K + 1
− (−1)K+1

(
−s

K + 1

)∫ ∞
1

BK+1

(
{x}
)
x−s−(K+1) dx

from the definition of
( −s
K+1

)
; therefore equation (6) for the case K implies equation (6) for

the case K + 1.
Remark: This identity for ζ(s) is an example of a much more general technique called

Euler–Maclaurin summation (see Appendix B), in which the Bernoulli polynomials fig-
ure prominently. For example, on can get extremely good versions of Stirling’s formula
(approximations to n!) by applying Euler–Maclaurin summation to log(n!) =

∑n
k=1 log k.

(c) Because the continuous periodic function BK

(
{x}
)

is bounded (by some constant depend-
ing on K), we have the estimate∫ ∞

1

BK

(
{x}
)
x−s−K dx�K

∫ ∞
1

x−σ−K dx =
1

σ +K − 1

as long as σ > 1−K. Therefore equation (6) provides a meromorphic continuation of ζ(s)
to the half-plane σ > 1 −K, with the only singularity caused by the term 1/(s − 1) (the
binomial coefficients are simply polynomials in s). Since K can be taken as large as we
wish, we obtain a (necessarily unique) analytic continuation of ζ(s) to the entire complex
plane other than the pole at s = 1.

Remark: Parts (b) and (c) illustrate a general phenomenon about integrals whose in-
tegrand contains an oscillatory term, namely that one can often get better convergence
by integrating the integral by parts—more specifically, integrating the oscillating function
(here BK

(
{x}
)
) and differentiating the other part.

(d) If we choose K = n+1 (or larger), then the definition of
(−s
K

)
includes a factor −s−n on

top, which vanishes when we set s = −n. Therefore

ζ(−n) = 1 +
1

−n− 1
−

n+1∑
k=1

(−1)k
(

n

k − 1

)
Bk

k
.

We observed in problem #2(b) that the Bernoulli numbers Bk are all rational, and therefore
this right-hand side is indeed a rational number.

Remark: With another half-hour or so, we could establish the exact formula

ζ(−n) = (−1)nBn+1

n+ 1
(7)



with similar elementary methods that use other combinatorial properties of the Bernoulli numbers
and polynomials (see Appendix B for the details). On the other hand, it is a simple exercise to
verify that the formula (7) follows directly from the formula (3) if we use the functional equation
for ζ(s) that we saw in class (although the case n = 0 of equation (7) is slightly harder than the
other cases).


