Math 539—"Group" Work \#8

Tuesday, March 17, 2020
For all of these questions, we define the Bernoulli polynomials $B_{k}(x)$ as coefficients in the power series expansion

$$
\begin{equation*}
f(z, x)=\frac{z e^{x z}}{e^{z}-1}=\sum_{k=0}^{\infty} B_{k}(x) \frac{z^{k}}{k!}=1+\left(x-\frac{1}{2}\right) z+\left(x^{2}-x+\frac{1}{6}\right) \frac{z^{2}}{2}+\cdots . \tag{1}
\end{equation*}
$$

We also define the Bernoulli numbers $B_{k}=B_{k}(0)$, a few of which have been listed below.

k	1	2	3	4	5	6	7	8	9	10	11	12
B_{k}	$-\frac{1}{2}$	$\frac{1}{6}$	0	$-\frac{1}{30}$	0	$\frac{1}{42}$	0	$-\frac{1}{30}$	0	$\frac{5}{66}$	0	$-\frac{691}{2730}$

Finally, recall our notation for the fractional part $\{x\}=x-\lfloor x\rfloor$.
On this group work, you may differentiate or integrate infinite series term by term with impunity (that is, don't worry about convergence issues on this group work).

1. Preliminaries:

(a) Show that $\int_{0}^{1} f(z, x) d x=1$. Conclude that $\int_{0}^{1} B_{k}(x) d x=0$ for all $k \geq 1$.
(b) Verify the identity $\frac{\partial f(z, x)}{\partial x}=z f(z, x)$, and conclude that $B_{k}^{\prime}(x)=k B_{k-1}(x)$ for all $k \geq 1$.
(c) Show that $f(z, 0)+z / 2$ is an even function of z. Conclude that $B_{1}=-1 / 2$ and that $B_{2 j+1}=0$ for all $j \geq 1$.
(d) Prove that $B_{k}(1)=B_{k}$ for all $k \geq 2$, and conclude that $B_{k}(\{x\})$ is a continuous periodic function with period 1 for all $k \geq 2$. (Hint: part (b) has something to say about the difference $B_{k}(1)-B_{k}(0)$.)
(e) Why do parts (a), (b), and (d) imply that $B_{k+1}(\{x\}) /(k+1)$ is an antiderivative for $B_{k}(\{x\})$ on the entire real line, for every $k \geq 1$?
(a) Integrating both sides of equation (1) with respect to x yields

$$
\int_{0}^{1} f(z, x) d x=\int_{0}^{1} \frac{z e^{x z}}{e^{z}-1} d x=\left.\frac{z}{e^{z}-1} \frac{e^{x z}}{z}\right|_{0} ^{1}=\sum_{k=0}^{\infty} \frac{z^{k}}{k!} \int_{0}^{1} B_{k}(x) d x=\frac{z}{e^{z}-1} \frac{e^{z}-1}{z}=1
$$

for $z \neq 0$, and the claim is trivial for $z=0$ since $f(0, x)=1$ identically. Furthermore,

$$
1=\int_{0}^{1} f(z, x) d x=\int_{0}^{1} \sum_{k=0}^{\infty} B_{k}(x) \frac{z^{k}}{k!} d x=\sum_{k=0}^{\infty} \frac{z^{k}}{k!} \int_{0}^{1} B_{k}(x) d x=\sum_{k=0}^{\infty} z^{k}\left(\frac{1}{k!} \int_{0}^{1} B_{k}(x) d x\right) .
$$

By uniqueness of power series expansions, the coefficient $\frac{1}{k!} \int_{0}^{1} B_{k}(x) d x$ of x^{k} on the right-hand side equals the coefficient 0 of z^{k} on the left-hand side for all $k \geq 1$, which gives the desired evaluation. (Integrating term by term is valid because, as one can check, the series converges uniformly for $0 \leq x \leq 1$ for any fixed z inside the disc of convergence $\{|z|<2 \pi\}$ of the series.)
(b) The verification is simple:

$$
\frac{\partial f(z, x)}{\partial x}=\frac{z}{e^{z}-1} \frac{\partial e^{x z}}{\partial x}=\frac{z}{e^{z}-1} z e^{z x}=z f(z, x)
$$

Writing this identity in terms of the series gives

$$
\begin{aligned}
\frac{\partial}{\partial x} \sum_{k=0}^{\infty} B_{k}(x) \frac{z^{k}}{k!} & =z \sum_{k=0}^{\infty} B_{k}(x) \frac{z^{k}}{k!} \\
\sum_{k=0}^{\infty} B_{k}^{\prime}(x) \frac{z^{k}}{k!} & =\sum_{k=0}^{\infty} B_{k}(x) \frac{z^{k+1}}{k!}=\sum_{k=1}^{\infty} B_{k-1}(x) \frac{z^{k}}{(k-1)!}
\end{aligned}
$$

Again by uniqueness of power series expansions, we conclude that $\frac{B_{k}^{\prime}(x)}{k!}=\frac{B_{k-1}(x)}{(k-1)!}$ for all $k \geq 1$, which gives the desired identity.
(c) We have

$$
f(z, 0)+\frac{z}{2}=\frac{z}{e^{z}-1}+\frac{z}{2}=\frac{2 z+z\left(e^{z}-1\right)}{2\left(e^{z}-1\right)}=\frac{z\left(e^{z}+1\right)}{e^{z}-1}=\frac{z\left(e^{z / 2}+e^{-z / 2}\right)}{e^{z / 2}-e^{-z / 2}}
$$

which we check is invariant under changing z to $-z$. Therefore all of the odd power series coefficients of $f(z, 0)+\frac{z}{2}=-\frac{1}{2} z+\sum_{k=0}^{\infty} B_{k} \frac{z^{k}}{k!}$ equal 0 , which gives the required values.
(d) By the fundamental theorem of calculus and part (b),

$$
B_{k}(1)-B_{k}(0)=\int_{0}^{1} B_{k}^{\prime}(x) d x=\int_{0}^{1} k B_{k-1}(x) d x
$$

which equals 0 for $k-1 \geq 1$ by part (a). Since $\{x\}$ is a periodic function with period 1 , so is $B_{k}(\{x\})$; and whenever x is not an integer, $B_{k}(\{x\})$ is a composition of two continuous functions and hence is itself continuous. On the other hand, when x is an integer, then (by continuity of B_{k}) we have $\lim _{w \rightarrow x-} B_{k}(\{x\})=B_{k}\left(\lim _{w \rightarrow x-}\{x\}\right)=B_{k}(1-)=B_{k}(1)$ and $\lim _{w \rightarrow x+} B_{k}(\{x\})=B_{k}\left(\lim _{w \rightarrow x+}\{x\}\right)=B_{k}(0+)$, both of which equal $B_{k}(\{x\})=$ $B_{k}(0)$. Therefore $B_{k}(\{x\})$ is continuous for all real numbers x.
(e) Certainly part (b) implies that $B_{k+1}(\{x\}) /(k+1)$ is an antiderivative for $B_{k}(\{x\})$ for $0<x<1$, since $\{x\}=x$ there. On the other hand, part (a) implies that $\int_{0}^{x} B_{k}(\{u\}) d u=$ $\int_{\lfloor x\rfloor}^{x} B_{k}(\{u\}) d u=\int_{0}^{\{x\}} B_{k}(u) d u$, so that this antiderivative must be periodic with period 1. Part (d) then implies that $B_{k+1}(\{x\}) /(k+1)$ is the appropriate antiderivative for all $x \in \mathbb{R}$.

Remark: Although not relevant to this group work, it is a wonderful fact that the Bernoulli polynomials also provide the formulas for the sum of the first N powers of integers, generalizing the well-known formulas for the sum of the first N integers, squares, or cubes:

$$
\sum_{0 \leq n<N} n^{k}=\frac{B_{k+1}(N)-B_{k+1}}{k+1}=\int_{0}^{N} B_{k}(x) d x
$$

Thus the Bernoulli polynomial $B_{k+1}(x)$ also functions as a "discrete antiderivative" of the simple power function x^{k}.

For the next problem, you may use the known Fourier expansion of the sawtooth function

$$
-\frac{1}{\pi} \sum_{m=1}^{\infty} \frac{1}{m} \sin (2 \pi m x)= \begin{cases}\{x\}-\frac{1}{2}, & \text { if } x \text { is not an integer }, \tag{2}\\ 0, & \text { if } x \text { is an integer } .\end{cases}
$$

2. A formula for the values of $\zeta(s)$ at positive even integers:
(a) When $x \notin \mathbb{Z}$, show that $B_{2 j}(\{x\})=(-1)^{j-1}(2 j)!\sum_{m=1}^{\infty} \frac{2 \cos (2 \pi m x)}{(2 \pi m)^{2 j}}$ for all $j \geq 1$.
(b) Deduce that for all $j \geq 1$,

$$
\begin{equation*}
\zeta(2 j)=\frac{(-1)^{j-1} 2^{2 j-1} \pi^{2 j} B_{2 j}}{(2 j)!} \tag{3}
\end{equation*}
$$

Conclude that in particular, $\zeta(2 j)$ equals a rational number times $\pi^{2 j}$ for all $j \geq 1$.
(a) We prove, by induction on $k \geq 1$, that when x is not an integer,

$$
B_{k}(\{x\})=(-1)^{\lfloor k / 2\rfloor-1} k!\sum_{m=1}^{\infty} \begin{cases}2 \sin (2 \pi m x) /(2 \pi m)^{k}, & \text { if } k \text { is odd } \tag{4}\\ 2 \cos (2 \pi m x) /(2 \pi m)^{k}, & \text { if } k \text { is even }\end{cases}
$$

the assertion follows upon taking $k=2 j$. Since both expressions are periodic functions with period 1 , we may assume $0<x<1$. Note that $B_{1}(x)=x-\frac{1}{2}$, as we see in equation (1), and therefore the case $k=1$ of equation (4) is exactly the known identity (2).

Suppose equation (4) holds for some positive integer k. Integrating both sides of the equation and using problem \#1(b), we see that

$$
\begin{aligned}
B_{k+1}(x) & =\int(k+1) B_{k}(x) d x \\
& =\int(k+1)\left((-1)^{\lfloor k / 2\rfloor-1} k!\sum_{m=1}^{\infty}\left\{\begin{array}{ll}
2 \sin (2 \pi m x) /(2 \pi m)^{k}, & \text { if } k \text { is odd, } \\
2 \cos (2 \pi m x) /(2 \pi m)^{k}, & \text { if } k \text { is even }
\end{array}\right) d x\right. \\
& =C+\left((-1)^{\lfloor k / 2\rfloor-1}(k+1)!\sum_{m=1}^{\infty}\left\{\begin{array}{ll}
-2 \cos (2 \pi m x) /(2 \pi m)^{k+1}, & \text { if } k \text { is odd, } \\
2 \sin (2 \pi m x) /(2 \pi m)^{k+1}, & \text { if } k \text { is even }
\end{array}\right) d x,\right.
\end{aligned}
$$

which we can see is exactly the desired formula (4) in the case $k+1$, except possibly for the constant of integration C. On the other hand, integrating both sides of equation (4) from 0 to 1 results in 0 on both sides (where we have used problem \#1(a) for the left-hand side), and therefore the constant of integration must be $C=0$.

Remark: The term-by-term integration can be justified by the uniform convergence of the series (4), which is easy to establish when $k \geq 2$ but not so obvious when $k=1$. However, general theorems from the subject of Fourier series exist that justify the term-byterm integration for nice enough functions, including $B_{1}(\{x\})$.
(b) Taking the limit as $x \rightarrow 0+$ of both sides of the identity proved in part (a) yields

$$
B_{2 j}=B_{2 j}(0)=(-1)^{j-1}(2 j)!\sum_{m=1}^{\infty} \frac{2}{(2 \pi m)^{2 j}}=(-1)^{j-1}(2 j)!\frac{2}{(2 \pi)^{2 j}} \zeta(2 j)
$$

for all $j \geq 1$, which is the desired identity.

If we can prove that B_{k} is a rational number for every $k \geq 0$, then the given formula for $\zeta(2 j)$ is indeed a rational number times $\pi^{2 j}$. Perhaps the easiest way to prove this is via the following logic: if $g(z, y)$ is a rational function of z and y with integer coefficients, then every derivative of g is also a rational function of z and y with integer coefficients. Therefore every derivative of $g\left(z, e^{z}\right)$ is a rational function of z and e^{z} with integer coefficients (since the chain rule only produces additional factors of e^{z}); in particular, every derivative of $g\left(z, e^{z}\right)$ evaluated at $z=0$ is a rational function of 0 and 1 with integer coefficients, that is, a rational number.

Remark: If we try to find the value of $\zeta(2 j+1)$ in this way, the corresponding series in part (a) is a sine series instead of a cosine series, and when we take the limit as $x \rightarrow 0+$ we simply reprove $B_{2 j+1}=0$ for $j \geq 1$ without gaining any knowledge about $\zeta(2 j+1)$.

For the final problem, we will need the notation

$$
\binom{z}{k}=\frac{z(z-1) \cdots(z-(k-1))}{k!}
$$

for all $z \in \mathbb{C}$ and $k \in \mathbb{Z}_{\geq 0}$. (This is exactly the usual binomial coefficient $\binom{z}{k}=\frac{z!}{k!(z-k)!}$ when $z \geq k$ is an integer; the given formula shows that we can think of $\binom{z}{k}$ as a polynomial of degree k in the complex variable z.) We also recall from equation (1.24) the formula, valid for $\sigma>0$:

$$
\begin{equation*}
\zeta(s)=1+\frac{1}{s-1}-s \int_{1}^{\infty}\{x\} x^{-s-1} d x \tag{5}
\end{equation*}
$$

3. An alternate way to meromorphically continue $\zeta(s)$ to the entire complex plane:
(a) Show that for all integers $K \geq 1$ and all $\sigma>0$,

$$
\int_{1}^{\infty} B_{K}(\{x\}) x^{-s-K} d x=-\frac{B_{K+1}}{K+1}-\frac{-s-K}{K+1} \int_{1}^{\infty} B_{K+1}(\{x\}) x^{-s-(K+1)} d x
$$

(b) By induction on K (or otherwise), show that for all integers $K \geq 1$ and all $\sigma>0$,

$$
\begin{equation*}
\zeta(s)=1+\frac{1}{s-1}-\sum_{k=1}^{K}(-1)^{k}\binom{-s}{k-1} \frac{B_{k}}{k}-(-1)^{K}\binom{-s}{K} \int_{1}^{\infty} B_{K}(\{x\}) x^{-s-K} d x . \tag{6}
\end{equation*}
$$

(c) Show that the integral on the right-hand side of the above equation converges for $\sigma>$ $1-K$. Conclude that $\zeta(s)$ can be analytically continued to the entire complex plane except for a simple pole at $s=1$.
(d) Prove that $\zeta(-n) \in \mathbb{Q}$ for all $n \in \mathbb{Z}_{\geq 0}$.
(a) From problem \#1(e), we know that $B_{K+1}(\{x\}) /(K+1)$ is an antiderivative for $B_{K}(\{x\})$. Therefore integration by parts gives

$$
\begin{aligned}
\int_{1}^{\infty} B_{K}(\{x\}) x^{-s-K} d x & =\left.\frac{B_{K+1}(\{x\})}{K+1} x^{-s-K}\right|_{1} ^{\infty}-\int_{1}^{\infty} \frac{B_{K+1}(\{x\})}{K+1}(-s-K) x^{-s-K-1} d x \\
& =0-\frac{B_{K+1}}{K+1}-\frac{-s-K}{K+1} \int_{1}^{\infty} B_{K+1}(\{x\}) x^{-s-(K+1)} d x
\end{aligned}
$$

since $B_{K}(1)=B_{K}$; the upper endpoint yields 0 because the continuous, periodic function $B_{K}(\{x\})$ is bounded and $\sigma>0$ (indeed, even $\sigma>-K$ would suffice here).
(b) When we note from problem \#1 that $B_{1}(x)=x-\frac{1}{2}$ and $B_{1}=-\frac{1}{2}$, and that $\binom{-s}{1}=-s$ from its definition, we see that the base case $K=1$ to be proved is the identity

$$
\zeta(s)=1+\frac{1}{s-1}-\frac{1}{2}-s \int_{1}^{\infty}\left(\{x\}-\frac{1}{2}\right) x^{-s-1} d x
$$

which is the same as equation (5) once we observe that $s \int_{1}^{\infty} \frac{1}{2} x^{-s-1} d x=\frac{1}{2}$ since $\sigma>0$.
As for the induction step, part (a) implies that

$$
\begin{aligned}
-(-1)^{K} & \binom{-s}{K} \int_{1}^{\infty} B_{K}(\{x\}) x^{-s-K} d x \\
& =(-1)^{K}\binom{-s}{K} \frac{B_{K+1}}{K+1}+(-1)^{K}\binom{-s}{K} \frac{-s-K}{K+1} \int_{1}^{\infty} B_{K+1}(\{x\}) x^{-s-(K+1)} d x \\
& =-(-1)^{K+1}\binom{-s}{K} \frac{B_{K+1}}{K+1}-(-1)^{K+1}\binom{-s}{K+1} \int_{1}^{\infty} B_{K+1}(\{x\}) x^{-s-(K+1)} d x
\end{aligned}
$$

from the definition of $\binom{-s}{K+1}$; therefore equation (6) for the case K implies equation (6) for the case $K+1$.

Remark: This identity for $\zeta(s)$ is an example of a much more general technique called Euler-Maclaurin summation (see Appendix B), in which the Bernoulli polynomials figure prominently. For example, on can get extremely good versions of Stirling's formula (approximations to $n!$) by applying Euler-Maclaurin summation to $\log (n!)=\sum_{k=1}^{n} \log k$.
(c) Because the continuous periodic function $B_{K}(\{x\})$ is bounded (by some constant depending on K), we have the estimate

$$
\int_{1}^{\infty} B_{K}(\{x\}) x^{-s-K} d x<_{K} \int_{1}^{\infty} x^{-\sigma-K} d x=\frac{1}{\sigma+K-1}
$$

as long as $\sigma>1-K$. Therefore equation (6) provides a meromorphic continuation of $\zeta(s)$ to the half-plane $\sigma>1-K$, with the only singularity caused by the term $1 /(s-1)$ (the binomial coefficients are simply polynomials in s). Since K can be taken as large as we wish, we obtain a (necessarily unique) analytic continuation of $\zeta(s)$ to the entire complex plane other than the pole at $s=1$.

Remark: Parts (b) and (c) illustrate a general phenomenon about integrals whose integrand contains an oscillatory term, namely that one can often get better convergence by integrating the integral by parts-more specifically, integrating the oscillating function (here $B_{K}(\{x\})$) and differentiating the other part.
(d) If we choose $K=n+1$ (or larger), then the definition of $\binom{-s}{K}$ includes a factor $-s-n$ on top, which vanishes when we set $s=-n$. Therefore

$$
\zeta(-n)=1+\frac{1}{-n-1}-\sum_{k=1}^{n+1}(-1)^{k}\binom{n}{k-1} \frac{B_{k}}{k} .
$$

We observed in problem \#2(b) that the Bernoulli numbers B_{k} are all rational, and therefore this right-hand side is indeed a rational number.

Remark: With another half-hour or so, we could establish the exact formula

$$
\begin{equation*}
\zeta(-n)=(-1)^{n} \frac{B_{n+1}}{n+1} \tag{7}
\end{equation*}
$$

with similar elementary methods that use other combinatorial properties of the Bernoulli numbers and polynomials (see Appendix B for the details). On the other hand, it is a simple exercise to verify that the formula (7) follows directly from the formula (3) if we use the functional equation for $\zeta(s)$ that we saw in class (although the case $n=0$ of equation (7) is slightly harder than the other cases).

