Math 539—“Group” Work #8
Tuesday, March 17, 2020

For all of these questions, we define the Bernoulli polynomials By(x) as coefficients in the power
series expansion
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We also define the Bernoulli numbers By, = By.(0), a few of which have been listed below.
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Finally, recall our notation for the fractional part {x} = x — |x|.

On this group work, you may differentiate or integrate infinite series term by term with impunity
(that is, don’t worry about convergence issues on this group work).

1. Preliminaries:
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(a) Show that | f(z,z)dx = 1. Conclude that/ By(z)dx = 0 forall k > 1.
0 0

0
(b) Verify the identity % = 2f(z,z), and conclude that B)(x) = kBy_1(x) for all
k> 1
(c) Show that f(z,0) + z/2 is an even function of z. Conclude that B, = —1/2 and that

Byj1 = 0forall j > 1.

(d) Prove that By(1) = By, for all k > 2, and conclude that B, ({x}) is a continuous periodic
function with period 1 for all k > 2. (Hint: part (b) has something to say about the
difference By (1) — Bi(0).)

(e) Why do parts (a), (b), and (d) imply that By.1({z})/(k + 1) is an antiderivative for
By ({z}) on the entire real line, for every k > 1?

(a) Integrating both sides of equation (1) with respect to = yields
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for z # 0, and the claim is trivial for z = 0 since f(0,z) = 1 1dentlcally. Furthermore,

lz/olf(z,x)dm:/ ZBk —dx—zk'/ Bi(z) dz = k(;'/ By(z )dx).

By uniqueness of power series expansions, the coefficient o fo By(z) dx of z* on the
right-hand side equals the coefficient 0 of 2* on the left-hand side for all k& > 1, which
gives the desired evaluation. (Integrating term by term is valid because, as one can check,
the series converges uniformly for 0 < x < 1 for any fixed z inside the disc of convergence
{|z| < 27} of the series.)
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(b) The verification is simple:
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Writing this identity in terms of the series gives
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Again by uniqueness of power series expansions, we conclude that B’l;c(!x) = 37:1()3? ) for all
k > 1, which gives the desired identity.
(c) We have
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which we check is invariant under changing z to —z. Therefore all of the odd power series
coefficients of f(z,0) + 5 = —%z +> 0, Bk% equal 0, which gives the required values.
(d) By the fundamental theorem of calculus and part (b),

Bk(l)—Bk(O):/O B,;(:p)dxz/o kBy_1(x)dx,

which equals 0 for £k — 1 > 1 by part (a). Since {x} is a periodic function with period 1, so
is By ({z}); and whenever x is not an integer, By ({z}) is a composition of two continuous
functions and hence is itself continuous. On the other hand, when x is an integer, then (by
continuity of Bj) we have lim,,_,,_ Bk({x}) = Bk(limw%x—{x}) = Br(1-) = Bx(1)
and lim,,_,, Bk({x}) = Bk(limwﬁﬂ{x}) = By(0+), both of which equal Bk({x}) =
By, (0). Therefore By ({z}) is continuous for all real numbers z.

(e) Certainly part (b) implies that Byy1({z})/(k + 1) is an antiderivative for By, ({xz}) for
0 < x < 1, since {z} = z there. On the other hand, part (a) implies that [" By ({u}) du =
/i L‘Z | B ({u}) du = O{x} By (u) du, so that this antiderivative must be periodic with pe-
riod 1. Part (d) then implies that By ({z})/(k + 1) is the appropriate antiderivative for
all z € R.

Remark: Although not relevant to this group work, it is a wonderful fact that the Bernoulli poly-
nomials also provide the formulas for the sum of the first /N powers of integers, generalizing the
well-known formulas for the sum of the first N integers, squares, or cubes:

Z nk — Bii1(N) = Bra _ /N Bu(z) da.
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Thus the Bernoulli polynomial By, 1(x) also functions as a “discrete antiderivative” of the simple

power function x*.



For the next problem, you may use the known Fourier expansion of the sawtooth function

_- Z ~ sin(2mmz) {{I} 3, if xis not an integer, 2

if x is an integer.

2. A formula for the values of ((s) at positive even integers:
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(a) When x ¢ Z, show that By;({z}) = for all j > 1.
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(b) Deduce that for all j > 1,
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Conclude that in particular, ((2j) equals a rational number times % for all j > 1.

€(25) = 3)

(a) We prove, by induction on k£ > 1, that when z is not an integer,

({x}) (— )k:/2 1k'z {2sin(27rmx)/(27rm)k, if k is odd, @

2 cos(2mrmx)/(2em)*, if k is even;

the assertion follows upon taking £ = 2j. Since both expressions are periodic functions
with period 1, we may assume 0 < z < 1. Note that By(z) = = — 3, as we see in
equation (1), and therefore the case k = 1 of equation (4) is exactly the known identity (2).

Suppose equation (4) holds for some positive integer k. Integrating both sides of the

equation and using problem #1(b), we see that
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2sin(2rmax)/(2em)**t,  if kis even

which we can see is exactly the desired formula (4) in the case £ + 1, except possibly for
the constant of integration C'. On the other hand, integrating both sides of equation (4)
from 0 to 1 results in 0 on both sides (where we have used problem #1(a) for the left-hand
side), and therefore the constant of integration must be C' = 0.

Remark: The term-by-term integration can be justified by the uniform convergence of
the series (4), which is easy to establish when &£ > 2 but not so obvious when k& =
However, general theorems from the subject of Fourier series exist that justify the term-by-
term integration for nice enough functions, including B ({z}).

(b) Taking the limit as = — 0+ of both sides of the identity proved in part (a) yields
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for all 5 > 1, which is the desired identity.



If we can prove that By, is a rational number for every £ > 0, then the given formula for
((27) is indeed a rational number times 7% Perhaps the easiest way to prove this is via the
following logic: if g(z,y) is a rational function of z and y with integer coefficients, then
every derivative of g is also a rational function of z and y with integer coefficients. There-
fore every derivative of ¢(z, e*) is a rational function of z and e* with integer coefficients
(since the chain rule only produces additional factors of €7); in particular, every derivative
of g(z, e*) evaluated at z = 0 is a rational function of 0 and 1 with integer coefficients, that
is, a rational number.

Remark: If we try to find the value of ((2j + 1) in this way, the corresponding series in part (a) is
a sine series instead of a cosine series, and when we take the limit as z — 0+ we simply reprove
Byjy1 = 0 for j > 1 without gaining any knowledge about (25 + 1).

For the final problem, we will need the notation
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forall z € Cand k € Z>o. (This is exactly the usual binomial coefficient (z) = Bl when

k'(
z > k is an integer; the given formula shows that we can think of (z) as a polynomial of degree k
in the complex variable z.) We also recall from equation (1.24) the formula, valid for o > 0:

C(s)=1+ LN s /Oo{w}x_s_l dx. 5)
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3. An alternate way to meromorphically continue ((s) to the entire complex plane:

(a) Show that for all integers K > 1 and all o > 0,
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(b) By induction on K ( or otherwise), show that for all integers K > 1 and all o > 0,
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(c) Show that the lntegral on the right-hand side of the above equation converges for o >
1 — K. Conclude that ((s) can be analytically continued to the entire complex plane
except for a simple pole at s = 1.

(d) Prove that ((—n) € Q for all n € Zx.

(a) From problem #1(e), we know that By 1 ({z}) /(K + 1) is an antiderivative for By ({z}).
Therefore integration by parts gives
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since Bk (1) = Bk; the upper endpoint yields 0 because the continuous, periodic function
Bk ({x}) is bounded and o > 0 (indeed, even 0 > — K would suffice here).
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(b) When we note from problem #1 that B (z) = z — § and B; = —1, and that (7°) = —s
from its definition, we see that the base case ' = 1 to be proved is the identity

C(s):1+si1 —%—S/l ({x}—%)x_s_ldx,

which is the same as equation (5) once we observe that s floo %x_s_l dr = % since o > 0.
As for the induction step, part (a) implies that
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K +1); therefore equation (6) for the case K implies equation (6) for

from the definition of (
the case K + 1.
Remark: This identity for ((s) is an example of a much more general technique called
Euler—Maclaurin summation (see Appendix B), in which the Bernoulli polynomials fig-
ure prominently. For example, on can get extremely good versions of Stirling’s formula
(approximations to n!) by applying Euler-Maclaurin summation to log(n!) = ", _, logk.
(c) Because the continuous periodic function By ({x}) is bounded (by some constant depend-
ing on K'), we have the estimate
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as long as 0 > 1— K. Therefore equation (6) provides a meromorphic continuation of ¢(s)
to the half-plane o > 1 — K, with the only singularity caused by the term 1/(s — 1) (the
binomial coefficients are simply polynomials in s). Since K can be taken as large as we
wish, we obtain a (necessarily unique) analytic continuation of ((s) to the entire complex
plane other than the pole at s = 1.

Remark: Parts (b) and (c) illustrate a general phenomenon about integrals whose in-
tegrand contains an oscillatory term, namely that one can often get better convergence
by integrating the integral by parts—more specifically, integrating the oscillating function
(here By ({«})) and differentiating the other part.

(d) If we choose K = n + 1 (or larger), then the definition of (3°) includes a factor —s —n on

top, which vanishes when we set s = —n. Therefore
1 n+1 n Bk
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We observed in problem #2(b) that the Bernoulli numbers By, are all rational, and therefore
this right-hand side is indeed a rational number.

Remark: With another half-hour or so, we could establish the exact formula

(-n) = (-1

(7



with similar elementary methods that use other combinatorial properties of the Bernoulli numbers
and polynomials (see Appendix B for the details). On the other hand, it is a simple exercise to
verify that the formula (7) follows directly from the formula (3) if we use the functional equation
for ((s) that we saw in class (although the case n = 0 of equation (7) is slightly harder than the
other cases).



