Math 539—"Group" Work \#9

Thursday, March 26, 2020

1. Throughout this problem, p is an odd prime and χ is a nonprincipal Dirichlet character $(\bmod p)$, and $S_{\chi}(b)$ is defined by

$$
S_{\chi}(b)=\sum_{n=0}^{p-1} \chi(n) \overline{\chi(n+b)}
$$

(a) If $p \nmid b b^{\prime}$, show that $S_{\chi}(b)=S_{\chi}\left(b^{\prime}\right)$. (Hint: change variables $n \mapsto b n$.)

Since $p \nmid b$, the product $b n$ runs through a complete residue system $(\bmod p)$ as n does.
Therefore, using total multiplicativity,

$$
\begin{aligned}
S_{\chi}(b)=\sum_{n=0}^{p-1} \chi(n) \overline{\chi(n+b)} & =\sum_{n=0}^{p-1} \chi(b n) \overline{\chi(b n+b)} \\
& =\sum_{n=0}^{p-1} \chi(b) \chi(n) \cdot \overline{\chi(b) \chi(n+1)}=\sum_{n=0}^{p-1} \chi(n) \overline{\chi(n+1)}=S_{\chi}(1)
\end{aligned}
$$

since $\chi(b) \overline{\chi(b)}=|\chi(b)|^{2}=1$ for $p \nmid b$. In particular, since p divides neither b nor b^{\prime}, we conclude that $S_{\chi}(b)=S_{\chi}(1)=S_{\chi}\left(b^{\prime}\right)$.
(b) By evaluating the double sum

$$
\sum_{b=0}^{p-1} \sum_{n=0}^{p-1} \chi(n) \overline{\chi(n+b)}
$$

in two different ways, show that $S_{\chi}(b)=-1$ for all $b \not \equiv 0(\bmod p)$.
On one hand, note that

$$
S_{\chi}(0)=\sum_{n=0}^{p-1} \chi(n) \overline{\chi(n+0)}=0+\sum_{n=1}^{p-1}|\chi(n)|^{2}=p-1
$$

Thus, from part (a),

$$
\sum_{b=0}^{p-1} \sum_{n=0}^{p-1} \chi(n) \overline{\chi(n+b)}=\sum_{n=0}^{p-1} S_{\chi}(b)=p-1+\sum_{n=1}^{p-1} S_{\chi}(1)=(p-1)\left(1+S_{\chi}(1)\right)
$$

On the other hand, exchanging the order of summation yields

$$
\sum_{b=0}^{p-1} \sum_{n=0}^{p-1} \chi(n) \overline{\chi(n+b)}=\sum_{n=0}^{p-1} \chi(n) \overline{\sum_{b=0}^{p-1} \chi(n+b)}=\sum_{n=0}^{p-1} \chi(n) \overline{0}=0
$$

by orthogonality, since for each fixed n, the sum $n+b$ runs through a complete residue system $(\bmod p)$ as b does. We conclude that $(p-1)\left(1+S_{\chi}(1)\right)=0$, which shows that $S_{\chi}(1)=-1$ and therefore $S_{\chi}(b)=-1$ whenever $p \nmid b$ by part (a).
2. Throughout this problem, p is an odd prime, and $\left(\frac{n}{p}\right)$ is the Legendre symbol (which is a quadratic Dirichlet character $(\bmod p)$ when considered a function of $n)$.
(a) For any arithmetic function $f(n)$ that is periodic with period p, convince yourself that

$$
\sum_{x=0}^{p-1} f\left(x^{2}\right)=\sum_{y=0}^{p-1}\left(1+\left(\frac{y}{p}\right)\right) f(y)
$$

(Hint: group the summands according to the value of $x^{2}(\bmod p)$.)
More generally, suppose that $q \in \mathbb{N}$ and that f and g are any two functions with period q defined on the integers, and suppose further that the values of g are also integers. Then

$$
\sum_{x(\bmod q)} f(g(x))=\sum_{y(\bmod q)} f(y) \#\{x(\bmod q): g(x) \equiv y(\bmod q)\}
$$

is a valid change-of-variables formula, justified by "grouping the terms according to the value of $g(x)(\bmod q)$ ". Analogously, if $r_{2}(y)$ is the number of ways to write y as the sum of squares of two integers, then $\left(\sum_{m \in \mathbb{Z}} e^{-m^{2}}\right)^{2}=\sum_{m, n \in \mathbb{Z}} e^{-\left(m^{2}+n^{2}\right)}=\sum_{y \in \mathbb{Z}} r_{2}(y) e^{-y^{2}}$ (and that identity quickly generalizes to sums of k squares for $k>2$).

When $g(x)=x^{2}$ and the modulus is a prime p, it is merely a convenient coincidence that $\#\left\{x(\bmod p): x^{2} \equiv y(\bmod p)\right\}=1+\left(\frac{y}{p}\right)$.
(b) If $p \nmid d$, show that

$$
\sum_{x=0}^{p-1}\left(\frac{x^{2}-d}{p}\right)=-1
$$

If χ is the (nonprincipal) Dirichlet character $\chi(n)=\left(\frac{n}{p}\right)$, then using part (a),
$\sum_{x=0}^{p-1}\left(\frac{x^{2}-d}{p}\right)=\sum_{y=0}^{p-1}\left(1+\left(\frac{y}{p}\right)\right)\left(\frac{y-d}{p}\right)=\sum_{y=0}^{p-1}\left(\frac{y-d}{p}\right)+S_{\chi}(-d)=0+(-1)$
by orthogonality (since $y-d$ runs over a complete set of residues $(\bmod p)$ as y does) and problem \#1(b).

Another solution proceeds as follows: let $T(d)=\sum_{x=0}^{p-1}\left(\frac{x^{2}-d}{p}\right)$. If d is a quadratic residue $(\bmod p)$, say $d \equiv c^{2}(\bmod p)$ with $c \not \equiv 0(\bmod p)$, then the change of variables $x \mapsto c x$ yields

$$
T(d)=\sum_{x=0}^{p-1}\left(\frac{x^{2}-d}{p}\right)=\sum_{x=0}^{p-1}\left(\frac{(c x)^{2}-d}{p}\right)=\sum_{x=0}^{p-1}\left(\frac{c^{2}}{p}\right)\left(\frac{x^{2}-1}{p}\right)=\sum_{x=0}^{p-1}\left(\frac{x^{2}-1}{p}\right)=T(1) ;
$$

in particular, $T(d)$ has the same value for all quadratic residues $d(\bmod p)$. A similar change of variables shows that $T(d)$ has the same value for all quadratic nonresidues $d(\bmod p)$; and the evaluation $T(0)=p-1$ is easy. Moreover, note that we can obtain the value of $T(d)$ on quadratic residues:

$$
T(1)=\sum_{x=0}^{p-1}\left(\frac{x^{2}-1}{p}\right)=\sum_{x=0}^{p-1}\left(\frac{x-1}{p}\right)\left(\frac{x+1}{p}\right)=\sum_{y=0}^{p-1}\left(\frac{y}{p}\right)\left(\frac{y+2}{p}\right)=S_{\chi}(2)=-1
$$

by problem \#1(b), using the change of variables $y=x-1$. Now by summing over all $d(\bmod p)$ as in part (b), we can solve for the remaining values $T(d)=-1$ for quadratic nonresidues $d(\bmod p)$.
(c) For any integers a, b, and c such that $p \nmid\left(b^{2}-4 a c\right)$, prove that

$$
\sum_{w=0}^{p-1}\left(\frac{a w^{2}+b w+c}{p}\right)=-\left(\frac{a}{p}\right)
$$

(Hint: complete the square. Note that we are not assuming $p \nmid a$.)
First, if $p \mid a$, then the assumption $p \nmid\left(b^{2}-4 a c\right)$ implies $p \nmid b$, and therefore (by periodicity and orthogonality)

$$
\sum_{w=0}^{p-1}\left(\frac{a w^{2}+b w+c}{p}\right)=\sum_{w=0}^{p-1}\left(\frac{b w+c}{p}\right)=0=-\left(\frac{a}{p}\right),
$$

since $b w+c$ runs through a complete residue system $(\bmod p)$ as w does.
On the other hand, if $p \nmid a$, then $\left(\frac{a}{p}\right)\left(\frac{4 a}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{a}{p}\right)=1$ (since p is odd), and therefore

$$
\begin{aligned}
\sum_{w=0}^{p-1}\left(\frac{a w^{2}+b w+c}{p}\right) & =\left(\frac{a}{p}\right)\left(\frac{4 a}{p}\right) \sum_{w=0}^{p-1}\left(\frac{a w^{2}+b w+c}{p}\right) \\
& =\left(\frac{a}{p}\right) \sum_{w=0}^{p-1}\left(\frac{4 a\left(a w^{2}+b w+c\right)}{p}\right) \\
& =\left(\frac{a}{p}\right) \sum_{w=0}^{p-1}\left(\frac{(2 a w+b)^{2}-\left(b^{2}-4 a c\right)}{p}\right)=\left(\frac{a}{p}\right) \sum_{x=0}^{p-1}\left(\frac{x^{2}-\left(b^{2}-4 a c\right)}{p}\right),
\end{aligned}
$$

since $p \nmid 2 a$ and therefore $x=2 a w+b$ runs through a complete residue system $(\bmod p)$ as w does. But by part (b) and the assumption $p \nmid\left(b^{2}-4 a c\right)$, the right-hand side is simply $\left(\frac{a}{p}\right)(-1)$ as desired.

One can also use the general change of variables formula from the proof of part (a) in the form

$$
\sum_{w=0}^{p-1}\left(\frac{a w^{2}+b w+c}{p}\right)=\sum_{y=0}^{p-1}\left(\frac{y}{p}\right) \#\left\{w(\bmod p): a w^{2}+b w+c \equiv y(\bmod p)\right\}
$$

and then evaluate

$$
\begin{aligned}
\#\left\{w(\bmod p): a w^{2}+b w+c \equiv y(\bmod p)\right\} & \\
& =\#\left\{v(\bmod p): v^{2} \equiv 4 a y+\left(b^{2}-4 a c\right)(\bmod p)\right\}
\end{aligned}
$$

(again by completing the square) and proceed from there.
(d) Still assuming $p \nmid\left(b^{2}-4 a c\right)$, conclude that

$$
\begin{equation*}
\#\left\{(v, w): 0 \leq v \leq p-1,0 \leq w \leq p-1, v^{2} \equiv a w^{2}+b w+c(\bmod p)\right\} \tag{1}
\end{equation*}
$$

equals either $p-1$, p, or $p+1$.

As before, the number of $v(\bmod p)$ such that $v^{2} \equiv a w^{2}+b w+c(\bmod p)$ is equal to $1+\left(\frac{a w^{2}+b w+c}{p}\right)$. Therefore the quantity in equation (1) is exactly

$$
\sum_{w=0}^{p-1}\left(1+\left(\frac{a w^{2}+b w+c}{p}\right)\right)=p+\sum_{w=0}^{p-1}\left(\frac{a w^{2}+b w+c}{p}\right)=p-\left(\frac{a}{p}\right)
$$

by part (c), and $\left(\frac{a}{p}\right)$ equals either 1,0 , or -1 .

