
Math 539—Group Work #2
Tuesday, January 21, 2025

Group work criteria: Start from the top and understand one problem fully before moving on to
the next one; quality is more important than quantity (although these group work problems are
designed so that ideally you will be able to finish them all). I will be going from group to group
during the hour, paying attention to the following aspects.

1. Effective communication—including both listening and speaking, with respect for other
people and their ideas

2. Engagement with, and curiosity about, the material (for instance, how far might something
generalize?)

3. Boldness—suggesting ideas, and trying plans even when they’re incomplete
4. Obtaining valid solutions (which are understood by everyone in the group) to the given

problems

Definition: For any positive integer k, the generalized divisor function dk(n) is the number of
ordered k-tuples (m1, . . . ,mk) of positive integers such that m1 × · · · × mk = n. For example,
d1(n) = 1 for all n ≥ 1, while d2(n) = d(n).

1. Prove that dj ∗ dk = dj+k for all positive integers j and k.

Given positive integers n and ℓ, define the set

Tℓ(n) =
{
(m1, . . . ,mℓ) ∈ Nℓ : m1 × · · · ×mℓ = n

}
(so that #Tℓ(n) = dℓ(n)), and define a union of Cartesian products of sets

Uj,k(n) =
⋃
a|n

(
Tj(a)× Tk(

n
a
)
)
.

Then it suffices to show that

#Tj+k(n) = dj+k(n) = (dj ∗ dk)(n) =
∑
a|n

dj(a)dk(
n
a
) = #Uj,k(n).

But there is an obvious function from Uj,k(n) to Tj+k(n): for any a | n, send the element(
(m1, . . . ,mj), (q1, . . . , qk)

)
of Tj(a)×Tk(

n
a
) to (m1, . . . ,mj, q1, . . . , qk). One can check that this

function is well-defined and invertible: its inverse sends the element (m1, . . . ,mj+k) of Tj+k(n) to(
(m1, . . . ,mj), (mj+1, . . . ,mj+k)

)
, which is an element of Tj(a)×Tk(

n
a
) with a = m1×· · ·×mj .

This bijection proves that #Tj+k(n) = #Uj,k(n) as desired.
One could also prove the identity dj ∗ 1 = dj ∗ d1 = dj+1 for all positive integers j (by a sim-
ilar but perhaps simpler counting argument) and then deduce, using the associativity of Dirichlet
convolution and induction, that dj ∗ dk = 1 ∗ · · · ∗ 1︸ ︷︷ ︸

j+k

= dj+k.

Note that this induction method also makes it easy to see that dk is multiplicative for all integers
k ≥ 1, since the Dirichlet convolution of two multiplicative functions is automatically multiplica-
tive, and d1 = 1 is certainly multiplicative.
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2. Given the identity proved in question #1:

(a) What do you think a sensible way to define d1/2 would be?
(b) Calculate d1/2(539) and d1/2(16), given your “sensible” definition above.

(a) We definitely want d1/2 to satisfy d1/2 ∗ d1/2 = d1 = 1, that is,∑
a|n

d1/2(a)d1/2(
n
a
) = 1 (1)

for all n ∈ N. After thinking about part (b) for a bit, we realize that it’s also sensible to ask
that d1/2(n) > 0 for all n. (Indeed, in the best possible world, we would like d1/2 to be a
multiplicative function, in harmony with the fact that dk is multiplicative for all k ∈ N as
remarked in #1 above; but we will not need to assume that d1/2 has this property.)

(b) First, the desired identity (1) for n = 1 becomes simply d1/2(1)
2 = 1, so that d1/2(1) = ±1.

(Indeed, if d1/2 is a function satisfying the identity (1), then so is the function −d1/2; so
it makes sense that we would have a sign choice like this at some point.) Being sensible
people, we choose d1/2 = 1 and proceed. For prime powers pr for small values of r, the
identity (1) becomes

1 = d1/2(1)d1/2(p) + d1/2(p)d1/2(1)

1 = d1/2(1)d1/2(p
2) + d1/2(p)d1/2(p) + d1/2(p

2)d1/2(1)

1 = d1/2(1)d1/2(p
3) + d1/2(p)d1/2(p

2) + d1/2(p
2)d1/2(p) + d1/2(p

3)d1/2(1)

1 = d1/2(1)d1/2(p
4) + d1/2(p)d1/2(p

3)

+ d1/2(p
2)d1/2(p

2) + d1/2(p
3)d1/2(p) + d1/2(p

4)d1/2(1),

which we can solve recursively, obtaining d1/2(p) =
1
2
, d1/2(p2) = 3

8
, d1/2(p3) = 5

16
, and

d1/2(p
4) = 35

128
; in particular, d1/2(16) = 35

128
.

A similar computation when n = pq and n = p2q for distinct primes p and q yields

1 = d1/2(1)d1/2(pq) + d1/2(p)d1/2(q) + d1/2(q)d1/2(p) + d1/2(pq)d1/2(1)

1 = d1/2(1)d1/2(p
2q) + d1/2(p)d1/2(pq) + d1/2(p

2)d1/2(q)

+ d1/2(q)d1/2(p
2) + d1/2(pq)d1/2(p) + d1/2(p

2q)d1/2(1),

which we can solve recursively to obtain d1/2(pq) =
1
4

and d1/2(p
2q) = 3

16
; in particular,

d1/2(539) =
3
16

. Note that the values we have computed do satisfy d1/2(pq) =
1
4
= 1

2
· 1
2
=

d1/2(p)d1/2(q) and d1/2(p
2q) = 3

16
= 3

8
· 1
2
= d1/2(p

2)d1/2(q), giving evidence that perhaps
d1/2 is a multiplicative function (a fact which we will more fully justify in #5 below).

[We remark that it is possible to prove the following general statement: if f ∗ f = g
where g is multiplicative and f(1) = 1, then f is multiplicative. The proof essentially
proceeds by showing that given g, there is only one such function f , and then showing
that the multiplicative function generated by the values of f on prime powers satisfies the
correct identity. Indeed, a similar approach works for f ∗ f ∗ · · · ∗ f = g. For a different
approach when all functions are real-valued, see D. Rearick, Operators on algebras of
arithmetic functions, Duke Math. J. 35 (1968), 761–766.]
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3.

(a) For all positive integers k, prove that
∑∞

n=1 dk(n)n
−s converges, in a suitable half-plane,

to ζ(s)k.
(b) For which real numbers α is it true that

∑
n≤x dk(n) ≪k,α xα?

(a) We proceed by induction on k, the case k = 1 being obvious (in the half-plane σ > 1)
since d1 = 1 identically. Assuming that

∑∞
n=1 dk(n)n

−s = ζ(s)k for σ > 1: note that
in particular

∑∞
n=1 |dk(n)n−s| =

∑∞
n=1 dk(n)n

−σ < ∞, so that the series converges ab-
solutely for σ > 1, as does the series defining ζ(s) itself. (In general, any Dirichlet se-
ries with nonnegative coefficients satisfies σa = σc.) Then by Theorem 1.8, the series∑∞

n=1 dk+1(n)n
−s =

∑∞
n=1(dk ∗ d1)(n)n

−s (where we have used problem #1) also con-
verges absolutely for σ > 1, to( ∞∑

n=1

dk(n)n
−s

)( ∞∑
n=1

d1(n)n
−s

)
= ζ(s)kζ(s) = ζ(s)k+1.

(b) Applying Theorem 1.3 with an = dk(n) yields

lim sup
x→∞

log
(∑

n≤x dk(n)
)

log x
= σc = 1.

In other words, for every ε > 0, we know that log
(∑

n≤x dk(n)
)
/ log x < 1 + ε for all

sufficiently large x, but that log
(∑

n≤x dk(n)
)
/ log x > 1 − ε for a sequence of values of

x tending to infinity. We conclude that
∑

n≤x dk(n) < x1+ε for x sufficiently large in terms
of ε (and k), which implies that

∑
n≤x dk(n) ≪k,α xα for all α > 1; and we also conclude

that
∑

n≤x dk(n) ̸≪ xα for α < 1 (why? there’s a slightly nontrivial step). Of course we
could also argue that

∑
n≤x dk(n) ̸≪ xα for α < 1 simply by noting that dk(n) ≥ 1 for all

n ∈ N.
As it turns out, we don’t yet have enough information to decide the case of α = 1,

namely whether
∑

n≤x dk(n) ≪k x (although we will in the next couple of weeks). If
dk(n) were bounded then the answer would be yes, or even if dk(n) were occasionally
large but “usually” bounded; if dk(n) > log n (say) for all n then the answer would be no.
It turns out that none of these assertions hold for dk(n). Note that we are asking how large
dk(n) is “on average”, which will turn out to be an easier problem; nevertheless, we will
eventually learn pointwise bounds for dk(n) as well.

4. Given the identity proved in question #3(a):

(a) What do you think a sensible way to define dz would be for any complex number z?
(b) Calculate di(539) and di(16), given your “sensible” definition above. (Here, i =

√
−1.)

(a) It seems that we would love for ζ(s)z to be a Dirichlet series, so we can define dz(n) to be
the coefficient of n−s in the Dirichlet series for ζ(s)z. And indeed, the fact that ζ(s) has an
Euler product gives us great hope, since then

ζ(s)z =
∏
p

(
1− p−s

)−z (2)

seems like a sensible enough function.



(b) One way to calculate the coefficients of the Dirichlet series hidden in the right-hand side
of equation (2) is to write

ζ(s)z =
∏
p

exp
(
z log(1− p−s)−1

)
=

∏
p

exp
(
z(p−s + 1

2
p−2s + 1

3
p−3s + · · · )

)
.

For example,

ζ(s)i =
∏
p

exp
(
i(p−s + 1

2
p−2s + 1

3
p−3s + 1

4
p−4s + · · · )

)
=

∏
p

∞∑
k=0

1

k!
ik(p−s + 1

2
p−2s + 1

3
p−3s + 1

4
p−4s + · · · )k

=
∏
p

(
1 + i(p−s + 1

2
p−2s + 1

3
p−3s + 1

4
p−4s + · · · )− 1

2
(p−s + 1

2
p−2s + 1

3
p−3s + · · · )2

− i

6
(p−s + 1

2
p−2s + · · · )3 + 1

24
(p−s + · · · )4 + · · ·

)
,

where all of the terms required to compute the coefficients up to p−4s have been included
explicitly. Simplifying,

ζ(s)i =
∏
p

(
1 + ip−s +

(
−1

2
+

i

2

)
p−2s +

(
−1

2
+

i

6

)
p−3s − 5

12
p−4s + · · ·

)
.

Therefore, if we write ζ(s)i =
∑∞

n=1 di(n)n
−s, then di(n) is multiplicative (given the

Euler product above) and, on prime powers, takes the values di(p) = i, di(p2) = −1
2
+ i

2
,

di(p
3) = −1

2
+ i

6
, di(p4) = − 5

12
, . . . . In particular, di(539) = di(7

2)di(11) = (−1
2
+ i

2
)i =

−1
2
− i

2
and di(16) = di(2

4) = − 5
12

.

5. Can you write down a formula for d1/2(pr) as a function of r?

We could find the key to this problem either through experimentation as above, or through having
seen before the Maclaurin series representation for arbitrary powers of 1 + x, namely (1 + x)w =∑∞

k=0

(
w
k

)
xk where (

w

k

)
=

w(w − 1)(w − 2) · · · (w − k + 1)

k!
is the generalized binomial coefficient (defined for nonnegative integers k but for all complex
numbers w). Either way, we are led to observe that equation (2) can be written as

ζ(s)z =
∏
p

(
1− p−s

)−z
=

∏
p

∞∑
k=0

(
−z

k

)
(−p−s)k,

and so the function dz(n) can be defined as the multiplicative function whose value on prime
powers pr equals (−1)r

(−z
r

)
. (Check that this is the familiar answer when z = 2!) In particular,

d1/2(n) is the multiplicative function whose value on prime powers pr equals

(−1)r
(
−1/2

r

)
= (−1)r

−1
2
(−1

2
− 1)(−1

2
− 2) · · · (−1

2
− r + 1)

r!
=

(2r)!

4r(r!)2

after some simplification.


