Math 539—Group Work #3
Thursday, February 6, 2025

Group work criteria: Start from the top and understand one problem fully before moving on to
the next one; quality is more important than quantity (although these group work problems are
designed so that ideally you will be able to finish them all). T will be going from group to group
during the hour, paying attention to the following aspects.

1. Effective communication—including both listening and speaking, with respect for other
people and their ideas

2. Engagement with, and curiosity about, the material (for instance, how far might something
generalize?)

3. Boldness—suggesting ideas, and trying plans even when they’re incomplete

4. Obtaining valid solutions (which are understood by everyone in the group) to the given
problems

1. Define three prime-counting functions (where p always denotes a prime):
w(z) =#p<aey =Y 1, Ox)= logp,  W(z)= Aln)=) logp
p<w p<z n<x pr<z

(a) Without using Dirichlet series, pmve that A = i * log.
(b) Prove that lem([1,2,...,n] = e¥™ (exactly!).

(a) By Mobius inversion, it suffices to prove that log = A « 1. Butif n = pi'---p;* is the
factorization of n into the product of powers of distinct primes (so that & = w(n)), then
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(b) It’s equlvalent to prove that ¢)(n) = loglem([1,2,...,n]. For each prime p, the power
of p dividing lem[1,2,...,n| is exactly the largest power of p not exceeding n, which is
plleen)/logp] Therefore

1
p p

=Y logp D> 1=) logp=1(n
p

r<(logn)/logp pr<n

(One can also argue that ¢)(x) and log lem[{n < z}| are piecewise constant functions, both
with value 0 at z = 1, and both with jump discontinuities exactly at x = p”, for prime
powers p", of size log p.)

(continued on next page)



2. Assume that 1)(x) < x, which means that both ¢ (x) < x and 1)(x) > x are true.
(a) Prove that 0(x) = i(x) + O(\/x), and deduce that 0(z) < x.

0
(b) Prove that w(x) = (=) @) LQ , and deduce that 7(z) =< T
log log” x log
(c) Conclude that (x) = w(x)logx + O (%), and that the three statements
ogx
@)~ 0@ e b e

are all equivalent.

(a) Note the convenient identity
Yla) =Y logp=>Y_ > logp=>» 0('")=0(x)+0("?) +0(z"*) +--.
p" <z T pgqjl/T r
Since A(y) = 0 for all y < 2, the rth summand vanishes for » > (log )/ log 2, and thus

[(log z)/ log 2]

W(r) =60(x) + O(@(ml/z) + Z 9(1,1/7«))_

r=3
Trivially 6(y) < ¢ (y), and Chebyshev’s theorem gives in particular 1/(y) < y; therefore
[(log )/ log 2]
Y(x) = 6(x) + 0 (/ DY W) — 0(x) + 02 + 2 log ) = B(x) + O(x?).
r=3
Finally, Chebyshev’s theorem () =< x implies that 6(z) =< x4+ O(y/x), which is the same
as 0(x) < .
(b) Using partial summation,

(x) =) logp- !

= log p
= / df(u) = ow) |° _ / 0(u)d = bla) _ 0+ / 9(u2) du.
5 logu logu|, 9 logu logx o ulogu
Since f(u) < u by Chebyshev’s theorem as above, we may thus write

7(2) :%+0(/;10g12udu>.

The easiest possible bound for this integral—maximum value of the integrand times length
of the interval of integration—only gives O(x), which is true but unhelpful. However,
cutting the integral into two pieces and using this easy bound on both pieces works: for

any 2 <y <z,
| vl S| 1 1 x
du = du+/ du < (y —2)—— + (x — LY+ —,
/2 log® u /2 log? u y log?u  — y )log2 2 ( v) log?y Y log®y
and lots of choices of y (for example, y = /= or y = x/log” x) result in the estimate

o1
/ — du < x2 that we need to finish the proof. Finally, the result #(x) < x from
o log“u log® x



part (a) yields

() = — +0<

“logx

X

) , orequivalently 7(z) <

log® x " logx’

(c) Solving for §(x) in the formula from part (b) gives
0(z) = n(x) log s + 0(102 )

and therefore part (a) gives

Y(x) = 0(z) + O(Vx) = m(x)logz + O(% - \/5) = 7(x)logx + O(lozx)'
The equivalence of the three given asymptotic formulas is now easy from all the relations
we have. For example, if we assume that (x) ~ z, then using part (b) gives
o(x)/1 log” 0 1
lim ) gy Y@/ Mg+ Ow/logma) oy, (0@) o LYY g
oo x/logr  a—oo x/logx =00 \ I log

which means that 7(z) ~ x/log x.

3. In this problem, “the prime number theorem” refers to the statement that w(x) ~ x/log x.

(a) Assuming the prime number theorem, prove that Zpgx % ~ loglog .

(b) Mertens’s formula (Montgomery & Vaughan, Theorem 2.7(d)) states that

1 1
Z—zloglogx+b+0( >, (1)
P log

p<w

where b is a particular constant. Starting from this formula, use partial summation to see
what can be deduced about 7(x). Can you prove in this way that 7(xz) < x/logx? that
m(x) > x/logx? Can you prove the prime number theorem?

:_—/:W(u)dl:@—O—i-/iw(u)du.

(a) By partial summation,

0
Z;—/Q_udu .

p<z

u T

Given ¢ > 0, choose a real number ¢ = ¢(¢) such that 7(x) < (1+¢)z/logx forall x > ¢;
then when = > c,

Zl< (1+€)x/log:v+/ci1;)du+/$ (1+€)1;/10gudu

P x u u

p<w

:os( ! >+OE(1)+(1—|—€)/; W (14 Sloglog + O.(1).

log x ulogu
By a similar argument using w(x) > (1 — ¢)z/ log « for sufficiently large x, we find that

1
Z]; > (1 —¢)loglogx + O.(1).

p<w

Since the above inequalities are true for all € > 0, they are enough to show that
log log x.

1
p<z p



(b) Define M(z) =>_ _, % and R(z) = M (z) — (loglogx + b), so that R(z) < 1/log x by

assumption. Using partial summation, we try expressing 7(z) as
1 €T x
m(z) = Z —p= / udM(u) = / ud(loglogu + b+ R(u))
_ 2

p

p<w
X

:/ ud(loglogu+b)+/ udR(u)
2— 2

= —i—xRx—/Rudu.
| o ar(o) - [ R

Using R(z) < 1/ logx, we obtain

Y odu x T odu x Y du
() = +O(—+ < +
5 logu log x 5 logu log 5 logu

(the “main term” has disappeared into the error term). The trick used in #2(b) above (split-
ting into two pieces and using trivial bounds on each piece) shows that f; du/logu <
x/log x, and so we have deduced that 7(z) < x/log .

However, if R(x) were about —100/ log x, say, then the above argument gives a negative
lower bound (since we can’t predict the sign of [, R(u) du from the sign of R(z) alone);
hence we cannot prove 7(z) > x/logx, much less the prime number theorem from the
given information on M (x).

Remark: we will see later in the semester (and you could actually derive for yourself)
that f; du/logu ~ x/log x. If we actually assumed the stronger statement

1 1
Z—:loglogx—l—b—l—o( ), (2)
P log x

p<z

then the above partial summation argument actually would show that

(2) /m du n x x
w(xr) = —+o0 ~ .
5 logu log x log x

Indeed, it is known that the seemingly tiny strengthening (2) of Mertens’s theorem (1) is
actually equivalent to the prime number theorem.




