
Math 539—Group Work #5
Thursday, February 13, 2025

In all these problems, ε, σ0, T , U , x, and y are positive real numbers with ε < T and U > σ0, and
α(s) =

∑∞
n=1 ann

−s is a Dirichlet series with finite abscissa of convergence.

1. Suppose y ≥ 2. By considering the contour integral
1

2πi

∮
R−

ys

s
ds, where R− is the rectangle

with corners at σ0 − iT , σ0 + iT , −U + iT , and −U − iT (oriented counterclockwise), show that

1 =
1

2πi

∫ σ0+iT

σ0−iT

ys

s
ds+O

(
yσ0

T log y
+

T

U
y−U

)
. (1)

Conclude that uniformly for y ≥ 2,

1

2πi

∫ σ0+iT

σ0−iT

ys

s
ds = 1 +O

(
yσ0

T

)
.

The only pole of the integrand is at s = 0, at which the residue is y0 = 1; since this pole lies inside
the closed path of integration, the contour integral equals 1 by the residue theorem; therefore

1 =
1

2πi

∫ σ0+iT

σ0−iT

ys

s
ds+O

(∣∣∣∣ 1

2πi

∫ −U+iT

σ0+iT

ys

s
ds

∣∣∣∣+ ∣∣∣∣ 1

2πi

∫ −U−iT

−U+iT

ys

s
ds

∣∣∣∣+ ∣∣∣∣ 1

2πi

∫ σ0−iT

−U−iT

ys

s
ds

∣∣∣∣).
On the other hand, the contribution to the contour integral from the top edge of R− is at most∣∣∣∣− 1

2πi

∫ σ0+iT

−U+iT

ys

s
ds

∣∣∣∣ ≤ ∫ σ0

−U

yσ

T
dσ <

∫ σ0

−∞

yσ

T
dσ =

yσ0

T log y
,

where the lower boundary term vanishes since y > 1. The same bound holds for the contribution
from the bottom edge of R−. Finally, the contribution from the left edge of R− is at most∣∣∣∣− 1

2πi

∫ −U+iT

−U−iT

ys

s
ds

∣∣∣∣ ≤ ∫ T

−T

y−U

U
dt =

2T

U
y−U ,

which completes the proof of equation (1). Since that equation is uniform in U , we may take the
limit as U → ∞ to obtain

1

2πi

∫ σ0+iT

σ0−iT

ys

s
ds = 1 +O

(
yσ0

T log y

)
= 1 +O

(
yσ0

T

)
,

where we have used y ≥ 2 in the last step.
(Some people would phrase this argument directly as an integral over the infinite contour from
−∞− iT to σ0− iT to σ0+ iT to −∞+ iT . However, the legitimacy of the residue theorem over
noncompact regions such as this half-infinite strip requires some decay condition on the integrand,
which is basically equivalent to the argument above.)

(continued on next page)



2. Suppose 0 < y ≤ 1
2
. By considering the contour integral

1

2πi

∮
R+

ys

s
ds, where R+ is the

rectangle with corners at σ0 − iT , σ0 + iT , U + iT , and U − iT , show that

0 =
1

2πi

∫ σ0+iT

σ0−iT

ys

s
ds+O

(
yσ0

T | log y|
+

T

U
yU

)
. (2)

Conclude that uniformly for 0 < y ≤ 1
2
,

1

2πi

∫ σ0+iT

σ0−iT

ys

s
ds = O

(
yσ0

T

)
.

The only pole of the integrand is again at s = 0, but now that pole is outside the closed path of
integration; therefore the contour integral equals 0 by the residue theorem, and so

0 =
1

2πi

∫ σ0+iT

σ0−iT

ys

s
ds+O

(∣∣∣∣ 1

2πi

∫ U+iT

σ0+iT

ys

s
ds

∣∣∣∣+ ∣∣∣∣ 1

2πi

∫ U−iT

U+iT

ys

s
ds

∣∣∣∣+ ∣∣∣∣ 1

2πi

∫ σ0−iT

U−iT

ys

s
ds

∣∣∣∣).
(As written, we are traversing the contour clockwise, but that’s insignificant since −0 = 0.) The
contribution from the top edge of R+ is at most∣∣∣∣ 1

2πi

∫ U+iT

σ0+iT

ys

s
ds

∣∣∣∣ ≤ ∫ U

σ0

yσ

T
dσ <

∫ ∞

σ0

yσ

T
dσ = − yσ0

T log y
=

yσ0

T | log y|
,

where the lower boundary term vanishes since 0 < y < 1. The same bound holds for the con-
tribution from the bottom edge of R+. Finally, the contribution from the right edge of R+ is at
most ∣∣∣∣ 1

2πi

∫ σ0−iT

U−iT

ys

s
ds

∣∣∣∣ ≤ ∫ T

−T

yU

U
dt =

2T

U
yU ,

which completes the proof of equation (2). Since that equation is uniform in U , we may take the
limit as U → ∞ to obtain

1

2πi

∫ σ0+iT

σ0−iT

ys

s
ds = 1 +O

(
yσ0

T | log y|

)
= 1 +O

(
yσ0

T

)
,

where we have used 0 < y ≤ 1
2

in the last step.

Define the “sine integral” si(x) = −
∫ ∞

x

sinu

u
du. You may use (without proof) the facts that

si(x) is bounded and si(x) + si(−x) = limx→−∞ si(x) = −π.

We note for later use that si(0) = −π/2, since si(0) + si(−0) = −π.

3. Show that for all σ0 > max{0, σa},

1

2πi

∫ σ0+iT

σ0−iT

α(s)
xs

s
ds =

∑′

n≤x

an +
∑

x/2<n<x

an
π

si

(
T log

x

n

)
−

∑
x<n<2x

an
π

si

(
T log

n

x

)

+O

(
(4x)σ0

T

∞∑
n=1

|an|
nσ0

)
.

You may use the result in equation (5) below to solve #3.



[Remark: this statement is Theorem 5.2 in Montgomery and Vaughan’s book.] Since the Dirichlet
series α(s) converges absolutely on the path of integration by assumption, we may exchange the
integral and the infinite sum (by Fubini’s theorem), obtaining

1

2πi

∫ σ0+iT

σ0−iT

α(s)
xs

s
ds =

1

2πi

∫ σ0+iT

σ0−iT

∞∑
n=1

ann
−sx

s

s
ds =

∞∑
n=1

an
1

2πi

∫ σ0+iT

σ0−iT

(x/n)s

s
ds.

We split this sum into four subsums, writing the right-hand side as

∑
n≤x/2

an
2πi

∫ σ0+iT

σ0−iT

(x/n)s

s
ds+

∑
x/2<n≤x

an
2πi

∫ σ0+iT

σ0−iT

(x/n)s

s
ds

+
∑

x<n<2x

an
2πi

∫ σ0+iT

σ0−iT

(x/n)s

s
ds+

∑
n≥2x

an
2πi

∫ σ0+iT

σ0−iT

(x/n)s

s
ds. (3)

In the first subsum, x/n ≥ 2, and so problem #1 gives∑
n≤x/2

an
2πi

∫ σ0+iT

σ0−iT

(x/n)s

s
ds =

∑
n≤x/2

an

(
1 +O

(
(x/n)σ0

T

))
;

similarly, in the last subsum, 0 < x/n ≤ 1/2, and so problem #2 gives∑
n≥2x

an
2πi

∫ σ0+iT

σ0−iT

(x/n)s

s
ds =

∑
n≤x/2

anO

(
(x/n)σ0

T

)
.

For the second subsum in equation (3), 1 ≤ x/n < 2, and so equation (5) below gives∑
x/2<n≤x

an
2πi

∫ σ0+iT

σ0−iT

(x/n)s

s
ds =

∑
x/2<n≤x

an

(
1 +

1

π
si

(
T log

x

n

)
+O

(
2σ0

T

))

=
∑

x/2<n≤x

an

(
1 +

1

π
si

(
T log

x

n

)
+O

(
2σ0(x/n)σ0

T

))
(since x/n ≥ 1); similarly, for the third subsum we have∑

x<n<2x

an
2πi

∫ σ0+iT

σ0−iT

(x/n)s

s
ds =

∑
x<n<2x

an

(
− 1

π
si

(
T log

n

x

)
+O

(
2σ0

T

))
=

∑
x<n<2x

an

(
− 1

π
si

(
T log

x

n

)
+O

(
2σ0(2x/n)σ0

T

))
(since 2x/n > 1). Combining all of these calculations is enough to complete the problem, once we
note that if x is an integer then the summand n = x becomes an(1 + si(0)/π) = an/2, as needed
for the

∑′ notation.

4. Let S be the closed contour (oriented counterclockwise) consisting of the line segments joining
the points −iε, −iT , σ0 − iT , σ0 + iT , iT , and iε together with the right half-circle with diameter
running from iε to −iε.



Suppose 1
2
< y < 2. By considering the contour integral

1

2πi

∮
S

ys

s
ds and letting ε → 0+, show

that

0 =
1

2πi

∫ σ0+iT

σ0−iT

ys

s
ds−

(
1

2
+

1

π
si(T log y)

)
− 1

2
+O

(
2σ0

T

)
. (4)

Conclude that uniformly for 1
2
< y < 2,

1

2πi

∫ σ0+iT

σ0−iT

ys

s
ds =

{
1 + 1

π
si(T log y) +O

(
2σ0/T

)
, if 1 ≤ y ≤ 2,

− 1
π
si(T log y−1) +O

(
2σ0/T

)
, if 1

2
≤ y ≤ 1.

(5)

As above, there are no poles of the integrand inside the closed contour of integration, and therefore
the contour integral equals 0. The integral in equation (4) is the contribution of the right edge of S
to the contour integral. The contribution of the semicircle, using the parametrization z = εeiθ, is

1

2πi

∫ −π/2

π/2

yεe
iθ

εeiθ
d(εeiθ) = − 1

2π

∫ π/2

−π/2

yεe
iθ

dθ;

as ε tends to 0, the integrand tends to 1 uniformly in θ, and therefore this contribution tends to
(−1/2π)(π/2 − (−π/2)) = −1/2. (This little technical trick is the way to deal with a contour
integral that wants to run through a pole of the integrand; heuristically, we see that such a pole is
counted as “half inside” the contour in terms of its contribution to the residue theorem.)
The contribution from the left edge of S, using the parametrization z = it (and then, in the second
integral, the change of variables t 7→ −t), is

1

2πi

∫ ε

T

yit

it
d(it) +

1

2πi

∫ −T

−ε

yit

it
d(it) = − 1

2πi

∫ T

ε

yit

t
dt+

1

2πi

∫ T

ε

y−it

t
dt

= − 1

π

∫ T

ε

eit log y − e−it log y

2it
dt

= − 1

π

∫ T

ε

sin(it log y)

t
dt =

1

π

(
si(ε log y)− si(T log y)

)
,

which tends to −1/2− si(T log y)/π as ε tends to 0, since si(0) = −π/2.
Finally, since y < 2, the contribution of the bottom edge of S to the contour integral is at most∣∣∣∣ 1

2πi

∫ σ0−iT

−iT

ys

s
ds

∣∣∣∣ ≤ ∫ σ0

0

yσ

T
dσ <

∫ σ0

0

2σ

T
dσ <

∫ σ0

−∞

2σ

T
dσ =

2σ0

T log 2
,

and similarly for the contribution of the top edge of S to the contour integral. (This method was
motivated by the desire to avoid dividing by log y when y is close to 1.) Together, these calculations
establish equation (4). Deriving equation (5) from equation (4) is just a matter of rearranging terms
and noting that

1 +
1

π
si(T log y) = − 1

π

(
−π − si(T log y)

)
= − 1

π
si(−T log y) = − 1

π
si(T log y−1).


