Math 539—Group Work #6
Tuesday, March 4, 2025
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Define the “logarithmic integral” function li(z) = /
2

1. In this problem, we will explore various ways to write the error term in the prime number
theorem for m(x).
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(a) Using integration by parts, or otherwise, show that li(x) = i + / Z - —.
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(b) Show thatli(z) = —— + —* 4 =2 +O( v )
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(c) For any positive integer K, prove that 7(z) = Z W + Og (W) You
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may assume equation (1) below to accomplish this task.

(d) For any fixed o > 2, deduce that it is not the case that m(x) = ’ +0 :1; .
log x log™ x

(a) Integration by parts (integrating 1 and differentiating 1/ log u) yields
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(b) We continue integrating by parts:
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As for the remaining integral, again we split at some 2 < y < x and estimate each integral
trivially:
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and many choices of y make the right-hand side < -/ log" 2 (for example, y = /).
Another way of estimating this last integral: noting that

d( m ) 1 4 > 1/2 for logx > 8,
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we may write (when z > ¢%)
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(c) Using repeated integration by parts as in part (b), it is easy to prove by induction on K that
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(Notice a slight subtlety of the notation: adding K quantities that are each O(1) yields a
quantity that is Ox (1), but not necessarily O(1) uniformly in K.) As in part (b), split-
ting the remaining integral at y = /7, say, shows that the integral is <y z/(logz)%*!,
Therefore by problem #1(b), there exists an absolute constant ¢ > 0 such that

7(z) = li(z) + O(z exp(—cy/log z))
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since (log x)5 " < exp(cy/log x) for any K. (No dependence on c is necessary since it

is an absolute constant.)
[Note that it is tempting to extend this finite series to an infinite series, writing something

like li(z) = > /7 . However, the ratio test reveals that this series does not converge
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for any value of x! ThlS is an example of a divergent series, where any specific truncation
provides a good approximation asymptotically even though the infinite series itself isn’t
useful.]

(d) Suppose that the estimate did hold; then from part (c) with K = 2,
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after rearranging this becomes
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which is certainly false when o > 2.

2. In this problem, we will give an asymptotic formula for w(x) with a better error term than what
we saw in class.

(a) Show that
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(b) Suppose that ¢ > 0 is a constant such that (x) = x 4+ O(x exp(—cy/logz)). Prove that

7(z) = li(z) + O(z exp(—cy/log z)). (1)
(a) We can write w(z) = > _ 1in terms of f(z) = }_ _ logp using Riemann-Stieltjes

integrals:

m(w) = /; lo;u do(u) = /; lo;u d(0(u) - u) + /: lo;u du
_ /2 L 46(u) — u) +1i(x) — Ti(2-).

_logu

Rearranging terms, replacing li(2—) by li(2) = 0 (due to the implicit limit in that lower
endpoint that will soon be taken), and integrating by parts, we obtain
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(b) From part (a),
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for any 2 < y < z. Since the integrand is positive and decreasing for v > 2, it is also
bounded, and so
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< wexp(—cy/log) +y + wexp(—cy/logy).

A reasonable choice for y seems to be y = x exp(—c+/log x). With this choice,

logy = logz — cy/logy = (log x) <1+O( 10gy>>;
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since /1 + O(g) = 1 + O(e) by the tangent line for /1 + ¢ att = 0,

Viogy = \/logx(l +0<m>) = logz +O(1)
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We conclude that

m(z) — li(z) < zexp(—cy/logz) + zexp (—c(y/logz 4+ O(1))) < zexp(—cy/log z),
since exp(O(1)) < 1.

Alternatively, we can use the “wishful thinking derivative” method we saw in #1(b): since
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we have
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= zexp(—cy/logz) — 2exp(—cy/log2) < zexp(—cy/logz),

with which the required estimate follows from equation (2).




