Math 539—Group Work #9
Thursday, April 3, 2025

1. Throughout this problem, p is an odd prime and x is a nonprincipal Dirichlet character (mod p),
and S, (b) is defined by

Sy(b) = x(n)x(n+D0).

(@) Ifp{ bV, show that S, (b) = S, (V). (Hint: change variables n +— bn.)

Since p 1 b, the product bn runs through a complete residue system (mod p) as n does.
Therefore, using total multiplicativity,

ZX x(n+b) = ben x(bn + )
p—1

= ZX XO)x(n+1) = x(n)x(n+1) = Sy(1)

n=0

since x(b)x(b) = |x(b)|?> = 1 for p { b. In particular, since p divides neither b nor ¥, we
conclude that S, (b) = S, (1) = S, (V).

(b) By evaluating the double sum

p—1 p—1
Z x(n)x(n+ b
b=0 n=0
in two different ways, show that S, (b) = —1 for all b # 0 (mod p).

On one hand, note that

p—1
ZX x(n+0) —O+Z|x P=p—1.
n=1
Thus, from part (a),
p—1 p—1 p—1
> > x(n)x(n+b) = Zs J=p—1+> S(1)=(p—1)(1+5(1)).
b=0 n=0 n=1

On the other hand, exchanglng the order of summation yields

p—1
x(n)x(n +b) = ZX Zx(n+b ZX )0=0
b=0 n=0 b=0

by orthogonality, since for each ﬁxed n, the sum n + b runs through a complete residue
system (mod p) as b does. We conclude that (p — 1)(1 + Sy (1)) = 0, which shows that
Sy (1) = —1 and therefore S, (b) = —1 whenever p 1 b by part (a).

p—1 p—1



2. Throughout this problem, p is an odd prime, and (%) is the Legendre symbol (which is a qua-
dratic Dirichlet character (mod p) when considered a function of n).

(a) For any arithmetic function f(n) that is periodic with period p, convince yourself that

S ) Z (1 ¥ (%))f(y)-

=0
(Hint: group the summands according to the value of x* (mod p).)

More generally, suppose that ¢ € N and that f and g are any two functions with period ¢
defined on the integers, and suppose further that the values of g are also integers. Then

> Fla@) = D fy)#{xmodg): g(x) =y (mod g)}

x (mod q) y (mod q)
is a valid change-of-variables formula, justified by “grouping the terms according to the
value of g(x) (mod ¢)”. Analogously, if 75(y) is the number of ways to write y as the sum
of squares of two integers, then (Y2, _, e™™) = S ez €T =30 ora(y)e™V
(and that identity quickly generalizes to sums of k& squares for k > 2).
When g(z) = x? and the modulus is a prime p, it is merely a convenient coincidence

that #{z (mod p): 2> =y (mod p)} = 1+ (%)

(b) If p1d, show that
p—1 2
p

=0

If x is the (nonprincipal) Dirichlet character x(n) = (%) , then using part (a),

55950 O)(59 55 v

=0 y=0

by orthogonality (since y — d runs over a complete set of residues (mod p) as y does) and
problem #1(b).

Another solution proceeds as follows: let T'(d) = 2_1 (IQT’d). If d is a quadratic

residue (mod p), say d = c? (mod p) with ¢ Z 0 (mod p), then the change of variables
x — cx yields

£ S £ O L) o

x

in particular, 7'(d) has the same value for all quadratic residues d (mod p). A similar change
of variables shows that 7T'(d) has the same value for all quadratic nonresidues d (mod p);
and the evaluation 7'(0) = p — 1 is easy. Moreover, note that we can obtain the value of
T'(d) on quadratic residues:

0-ER)-E () -E O -

y=0




by problem #1(b), using the change of variables y = = — 1. Now by summing over all
d (mod p) as in part (b), we can solve for the remaining values 7'(d) = —1 for quadratic
nonresidues d (mod p).

(c) For any integers a, b, and c such that p { (b*> — 4ac), prove that

p! (aw2 + bw + c) - (g)
— p p)

w

(Hint: complete the square. Note that we are not assuming p 1 a.)

First, if p | a, then the assumption p { (b*> — 4ac) implies p { b, and therefore (by
periodicity and orthogonality)

p-1 (aw —|—bw—|—c> :pz‘l(bwc) :O:_(g)’
0 w=0 p p

w=

since bw + c runs through a complete residue system (mod p) as w does.

On the other hand, if p 1 a, then (%) (%) = (%) (%) = 1 (since p is odd), and therefore

! (aw2 + bw + c) B (a) (4@) pz_l <aw2 + bw + c>
. P p)\pr) % P

w=

-() g ()

w=0

(S () - ()3

w=0 T

p

g
Il

—

(x2 - (b; - 4ac)> |

since p { 2a and therefore x = 2aw + b runs through a complete residue system (mod p)
as w does. But by part (b) and the assumption p { (b*> — 4ac), the right-hand side is simply
(4)(—1) as desired.

p

Il
=)

One can also use the general change of variables formula from the proof of part (a) in

the form
p—1 p1
b
Z(M) Z( ) {w (mod p): aw® + bw + ¢ = y (mod p) },
w=0 y=

and then evaluate
#{w (mod p): aw’ + bw + ¢ = y (mod p) }
= #{v (mod p): v* = 4ay + (b* — 4ac) (mod p)}
(again by completing the square) and proceed from there.
(d) Still assuming p 1 (b* — 4ac), conclude that
#{(v,w): 0<v<p—1,0<w<p—1,v° an2+bw+c(m0dp)} (1
equals either p — 1, p, or p + 1.



As before, the number of v (mod p) such that v?> = aw? + bw + ¢ (mod p) is equal to
1+ (%) Therefore the quantity in equation (1) is exactly

5 (25229 cno B (=) )

by part (c), and (%) equals either 1, 0, or —1.
Remark: over the real numbers, the equation v = aw?+bw+c is a hyperbola if a > 0 (that is, if a
is a quadratic residue in R), an ellipse if a < 0 (that is, if a is a nonquadratic residue in R), and
a parabola if a = 0. Problem 2(d) is actually counting points on these conics (quadratic curves)
when considered over the finite field I, rather than the field of real numbers. This is a gateway
result to algebraic geometry (similar to how the orthogonality relations for Dirichlet characters
are a gateway result to representation theory).



