Math 539—Group Work #9

Thursday, April 3, 2025

1. Throughout this problem, p is an odd prime and χ is a nonprincipal Dirichlet character (mod p), and $S_{\chi}(b)$ is defined by

$$S_{\chi}(b) = \sum_{n=0}^{p-1} \chi(n) \overline{\chi(n+b)}.$$

(a) If $p \nmid bb'$, show that $S_{\chi}(b) = S_{\chi}(b')$. (Hint: change variables $n \mapsto bn$.)

Since $p \nmid b$, the product bn runs through a complete residue system (mod p) as n does. Therefore, using total multiplicativity,

$$S_{\chi}(b) = \sum_{n=0}^{p-1} \chi(n)\overline{\chi(n+b)} = \sum_{n=0}^{p-1} \chi(bn)\overline{\chi(bn+b)}$$
$$= \sum_{n=0}^{p-1} \chi(b)\chi(n) \cdot \overline{\chi(b)\chi(n+1)} = \sum_{n=0}^{p-1} \chi(n)\overline{\chi(n+1)} = S_{\chi}(1)$$

since $\chi(b)\overline{\chi(b)} = |\chi(b)|^2 = 1$ for $p \nmid b$. In particular, since p divides neither b nor b', we conclude that $S_{\chi}(b) = S_{\chi}(1) = S_{\chi}(b')$.

(b) By evaluating the double sum

$$\sum_{b=0}^{p-1} \sum_{n=0}^{p-1} \chi(n) \overline{\chi(n+b)}$$

in two different ways, show that $S_{\chi}(b) = -1$ for all $b \not\equiv 0 \pmod{p}$.

On one hand, note that

$$S_{\chi}(0) = \sum_{n=0}^{p-1} \chi(n) \overline{\chi(n+0)} = 0 + \sum_{n=1}^{p-1} |\chi(n)|^2 = p - 1.$$

Thus, from part (a),

$$\sum_{b=0}^{p-1} \sum_{n=0}^{p-1} \chi(n) \overline{\chi(n+b)} = \sum_{n=0}^{p-1} S_{\chi}(b) = p - 1 + \sum_{n=1}^{p-1} S_{\chi}(1) = (p-1)(1 + S_{\chi}(1)).$$

On the other hand, exchanging the order of summation yields

$$\sum_{b=0}^{p-1} \sum_{n=0}^{p-1} \chi(n) \overline{\chi(n+b)} = \sum_{n=0}^{p-1} \chi(n) \sum_{b=0}^{p-1} \chi(n+b) = \sum_{n=0}^{p-1} \chi(n) \overline{0} = 0$$

by orthogonality, since for each fixed n, the sum n + b runs through a complete residue system (mod p) as b does. We conclude that $(p - 1)(1 + S_{\chi}(1)) = 0$, which shows that $S_{\chi}(1) = -1$ and therefore $S_{\chi}(b) = -1$ whenever $p \nmid b$ by part (a).

2. Throughout this problem, p is an odd prime, and $\left(\frac{n}{p}\right)$ is the Legendre symbol (which is a quadratic Dirichlet character (mod p) when considered a function of n).

(a) For any arithmetic function f(n) that is periodic with period p, convince yourself that

$$\sum_{x=0}^{p-1} f(x^2) = \sum_{y=0}^{p-1} \left(1 + \left(\frac{y}{p}\right) \right) f(y).$$

(*Hint: group the summands according to the value of* $x^2 \pmod{p}$.)

More generally, suppose that $q \in \mathbb{N}$ and that f and g are any two functions with period q defined on the integers, and suppose further that the values of g are also integers. Then

$$\sum_{g \pmod{q}} f(g(x)) = \sum_{y \pmod{q}} f(y) \# \left\{ x \pmod{q} \colon g(x) \equiv y \pmod{q} \right\}$$

is a valid change-of-variables formula, justified by "grouping the terms according to the value of $g(x) \pmod{q}$ ". Analogously, if $r_2(y)$ is the number of ways to write y as the sum of squares of two integers, then $\left(\sum_{m \in \mathbb{Z}} e^{-m^2}\right)^2 = \sum_{m,n \in \mathbb{Z}} e^{-(m^2+n^2)} = \sum_{y \in \mathbb{Z}} r_2(y)e^{-y^2}$ (and that identity quickly generalizes to sums of k squares for k > 2).

When $g(x) = x^2$ and the modulus is a prime p, it is merely a convenient coincidence that $\#\{x \pmod{p}: x^2 \equiv y \pmod{p}\} = 1 + \left(\frac{y}{p}\right)$.

(b) If $p \nmid d$, show that

x

$$\sum_{x=0}^{p-1} \left(\frac{x^2 - d}{p} \right) = -1.$$

If χ is the (nonprincipal) Dirichlet character $\chi(n) = \left(\frac{n}{n}\right)$, then using part (a),

$$\sum_{x=0}^{p-1} \left(\frac{x^2 - d}{p}\right) = \sum_{y=0}^{p-1} \left(1 + \left(\frac{y}{p}\right)\right) \left(\frac{y - d}{p}\right) = \sum_{y=0}^{p-1} \left(\frac{y - d}{p}\right) + S_{\chi}(-d) = 0 + (-1)$$

by orthogonality (since y - d runs over a complete set of residues (mod p) as y does) and problem #1(b).

Another solution proceeds as follows: let $T(d) = \sum_{x=0}^{p-1} \left(\frac{x^2-d}{p}\right)$. If d is a quadratic residue (mod p), say $d \equiv c^2 \pmod{p}$ with $c \not\equiv 0 \pmod{p}$, then the change of variables $x \mapsto cx$ yields

$$T(d) = \sum_{x=0}^{p-1} \left(\frac{x^2 - d}{p}\right) = \sum_{x=0}^{p-1} \left(\frac{(cx)^2 - d}{p}\right) = \sum_{x=0}^{p-1} \left(\frac{c^2}{p}\right) \left(\frac{x^2 - 1}{p}\right) = \sum_{x=0}^{p-1} \left(\frac{x^2 - 1}{p}\right) = T(1);$$

in particular, T(d) has the same value for all quadratic residues $d \pmod{p}$. A similar change of variables shows that T(d) has the same value for all quadratic nonresidues $d \pmod{p}$; and the evaluation T(0) = p - 1 is easy. Moreover, note that we can obtain the value of T(d) on quadratic residues:

$$T(1) = \sum_{x=0}^{p-1} \left(\frac{x^2 - 1}{p}\right) = \sum_{x=0}^{p-1} \left(\frac{x - 1}{p}\right) \left(\frac{x + 1}{p}\right) = \sum_{y=0}^{p-1} \left(\frac{y}{p}\right) \left(\frac{y + 2}{p}\right) = S_{\chi}(2) = -1$$

by problem #1(b), using the change of variables y = x - 1. Now by summing over all $d \pmod{p}$ as in part (b), we can solve for the remaining values T(d) = -1 for quadratic nonresidues $d \pmod{p}$.

(c) For any integers a, b, and c such that $p \nmid (b^2 - 4ac)$, prove that

$$\sum_{w=0}^{p-1} \left(\frac{aw^2 + bw + c}{p} \right) = -\left(\frac{a}{p}\right).$$

(*Hint: complete the square. Note that we are not assuming* $p \nmid a$.)

First, if $p \mid a$, then the assumption $p \nmid (b^2 - 4ac)$ implies $p \nmid b$, and therefore (by periodicity and orthogonality)

$$\sum_{w=0}^{p-1} \left(\frac{aw^2 + bw + c}{p} \right) = \sum_{w=0}^{p-1} \left(\frac{bw + c}{p} \right) = 0 = -\left(\frac{a}{p}\right),$$

since bw + c runs through a complete residue system (mod p) as w does.

On the other hand, if $p \nmid a$, then $\left(\frac{a}{p}\right)\left(\frac{4a}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{a}{p}\right) = 1$ (since p is odd), and therefore

$$\sum_{w=0}^{p-1} \left(\frac{aw^2 + bw + c}{p}\right) = {\binom{a}{p}} {\binom{4a}{p}} \sum_{w=0}^{p-1} \left(\frac{aw^2 + bw + c}{p}\right)$$
$$= {\binom{a}{p}} \sum_{w=0}^{p-1} \left(\frac{4a(aw^2 + bw + c)}{p}\right)$$
$$= {\binom{a}{p}} \sum_{w=0}^{p-1} \left(\frac{(2aw + b)^2 - (b^2 - 4ac)}{p}\right) = {\binom{a}{p}} \sum_{x=0}^{p-1} \left(\frac{x^2 - (b^2 - 4ac)}{p}\right),$$

since $p \nmid 2a$ and therefore x = 2aw + b runs through a complete residue system (mod p) as w does. But by part (b) and the assumption $p \nmid (b^2 - 4ac)$, the right-hand side is simply $\left(\frac{a}{p}\right)(-1)$ as desired.

One can also use the general change of variables formula from the proof of part (a) in the form

$$\sum_{w=0}^{p-1} \left(\frac{aw^2 + bw + c}{p} \right) = \sum_{y=0}^{p-1} \left(\frac{y}{p} \right) \# \left\{ w \pmod{p} \colon aw^2 + bw + c \equiv y \pmod{p} \right\},$$

and then evaluate

 $\# \{ w \pmod{p} \colon aw^2 + bw + c \equiv y \pmod{p} \}$

$$= \# \left\{ v \pmod{p} \colon v^2 \equiv 4ay + (b^2 - 4ac) \pmod{p} \right\}$$

(again by completing the square) and proceed from there.

(d) Still assuming $p \nmid (b^2 - 4ac)$, conclude that

$$\#\{(v,w): 0 \le v \le p-1, \ 0 \le w \le p-1, \ v^2 \equiv aw^2 + bw + c \ (\text{mod } p)\}$$
(1)

equals either p - 1, p, or p + 1.

As before, the number of $v \pmod{p}$ such that $v^2 \equiv aw^2 + bw + c \pmod{p}$ is equal to $1 + \left(\frac{aw^2 + bw + c}{n}\right)$. Therefore the quantity in equation (1) is exactly

$$\sum_{w=0}^{p-1} \left(1 + \left(\frac{aw^2 + bw + c}{p} \right) \right) = p + \sum_{w=0}^{p-1} \left(\frac{aw^2 + bw + c}{p} \right) = p - \left(\frac{a}{p} \right)$$

by part (c), and $\left(\frac{a}{p}\right)$ equals either 1, 0, or -1.

Remark: over the real numbers, the equation $v^2 = aw^2 + bw + c$ is a hyperbola if a > 0 (that is, if a is a quadratic residue in \mathbb{R}), an ellipse if a < 0 (that is, if a is a nonquadratic residue in \mathbb{R}), and a parabola if a = 0. Problem 2(d) is actually counting points on these conics (quadratic curves) when considered over the finite field \mathbb{F}_p rather than the field of real numbers. This is a gateway result to algebraic geometry (similar to how the orthogonality relations for Dirichlet characters are a gateway result to representation theory).