
Math 539—Suggested Problems #2
posted Thursday, February 6, 2025

1. Let a < b be real numbers, and let f and g be real-valued functions.

(a) Suppose that g(x) ≥ 0 and that f(x) = o(g(x)). Give an example to show that it is
not necessarily true that

∫ x

a
f(u) du = o

( ∫ x

a
g(u) du

)
. Show however that it is true if we

assume that
∫∞
a

g(u) du diverges.
(b) Suppose that the Riemann–Stieltjes integrals

∫ b

a
f(u) dg(u) and

∫ b

a
|f(u)| dg(u) exist. Give

an example to show that it is not necessarily true that
∣∣ ∫ b

a
f(u) dg(u)

∣∣ ≤ ∫ b

a
|f(u)| dg(u).

Show however that it is true if we assume that g(u) is increasing.

2. Recall that the (natural) density of a set S of positive integers is the following limit (if it exists):

lim
x→∞

#{n ≤ x : n ∈ S}
x

= lim
x→∞

(
1

x

∑
n≤x
n∈S

1

)
.

Define the logarithmic density of a set S of positive integers to be the following limit (if it exists):

lim
x→∞

(
1

log x

∑
n≤x
n∈S

1

n

)
.

(a) Suppose that the density of a set S exists and equals c. Show that the logarithmic density
of S also exists and equals c.

(b) Let S3 be the set of all positive integers whose first (leftmost) digit is 3. Show that the
density of S3 does not exist.

(c) Show that the logarithmic density of the set S3 from part (b) does exist, and calculate it.

3.

(a) Using our Dirichlet convolution method (see page 35 of Montgomery & Vaughan), show

that
∑
d≤x

µ(d)

⌊
x

d

⌋
= 1 for all x ≥ 1.

(b) Using part (a), show that
∣∣∣∣∑
d≤x

µ(d)

d

∣∣∣∣ ≤ 1 for all x ≥ 1.

(c) For every real number t ∈ (0, 1), show that
∣∣∣∣∑
d≤x

µ(d)

d
td
∣∣∣∣ ≤ t for all x ≥ 1.

4. Define Φ(s) =
∑∞

n−1 ϕ(n)n
−s.

(a) Show directly from the definition of σc that the abscissa of convergence of Φ(s) is σc = 2.
(b) Can Φ(s) be analytically continued to a neighborhood of s = 2? (You should be able to

answer this part without using part (c) below.)
(c) For σ > 2, write Φ(s) in terms of the Riemann zeta function.

5. The goal of this problem is to use Dirichlet’s hyperbola method to find a strong asymptotic
formula for the summatory function of 2ω(n).



(a) Show that 2ω(n) = (1 ∗ µ2)(n).
(b) Let Q(x) be the number of squarefree integers up to x, and define R(x) = Q(x) − 6

π2x.
Find a constant M such that∑

n≤x

µ2(n)

n
=

6

π2
log x+M +O

(
1√
x

)
.

(Your definition of M might contain an integral, over an infinite interval, of a function
involving R(x).)

(c) Find an asymptotic formula for
∑

n≤x 2
ω(n) with an error term of the form O(xα) for the

smallest constant α < 1 you can obtain. (Your asymptotic formula might involve the
constant M from part (b).)

6. Recall that σ(n) denotes the sum of the (positive) divisors of n.

(a) Find the smallest constant S such that σ(n) < Sn log log n+O(n) for all numbers n.
(b) Find the smallest constant T such that σ(n) ≤ Tn21/20 for all numbers n.
(c) Are there finitely many or infinitely many numbers n for which σ(n) ≥ n21/20?

7. For this question, you can use the product formula

sin πz

πz
=

∞∏
k=1

(
1− z2

k2

)
(1)

(due to Euler), which is valid for all complex numbers z once the apparent singularity at z = 0 is
removed; you may also use the Maclaurin series for sin z and cos z that you know from calculus.
For this question, define T (z) = πz cotπz.

(a) Logarithmically differentiate the identity (1) to discover an infinite series that sums to T (z).

(b) For |z| < 1, conclude that T (z) = 1 − 2
∞∑
n=1

ζ(2n)z2n, where ζ is the Riemann zeta-

function. (Hint: in your answer to part (a), write 1/(1 − z2

k2
) as its Maclaurin series, and

exchange the order of summation. Why is that exchange justified?)
(c) Prove that ζ(2) = π2

6
. (Hint: write T (z) = (cos πz)

/
sinπz
πz

to find a second way to compute
the first few terms of its Maclaurin series.)

(d) Show that zT ′(z) = T (z)− T (z)2 − π2z2.
(e) For all n > 1, conclude that

2n+ 1

2
ζ(2n) =

n−1∑
k=1

ζ(2k)ζ(2n− 2k).

(f) Calculate
∑∞

n=1
1

n12 in closed form.

8. By “the n×n multiplication table” we mean the n×n array whose (i, j)-th entry is ij. Note that
the n× n multiplication table has n2 entries, each of which is a positive integer not exceeding n2,
but there are repetitions due to commutativity and to multiple factorizations of various entries.
Define D(n) to be the number of distinct integers in the n× n multiplication table. Erdős gave an
ingenious argument showing that D(n) = o(n2). The idea is as follows: by the Hardy–Ramanujan
Theorem, almost all integers up to n have about log log n prime factors. That means that almost all



of the entries in the n×n multiplication table have about 2 log log n prime factors. But these entries
do not exceed n2, and almost all integers up to n2 only have about log log n2 = log log n + log 2
prime factors. Therefore almost all integers up to n2 must be missing from the n×n multiplication
table.
Turn this sketch into a rigorous, quantitative proof: find an explicit function f(n), satisfying
f(n) = o(n2), for which you can prove that D(n) ≪ f(n). Hint: use Theorem 2.12.


