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Abstract. . . .

1. Introduction

[basically a longer version of the abstract, together with notes on the organization of this
article]

2. Notation

[gathering together notation and other information that will be useful for the entire an-
notated bibliography]

The letter p will always denote a prime.

2.1. Elementary functions. Euler φ-function. ω and Ω and µ and Λ.
λ(n) = (−1)Ω(n) is Liouville’s function.
Also cq(a) = #{b (mod q) : b2 ≡ a (mod q)}. Shorthand: cq = cq(1), which is also the

number of real characters (mod q), or equivalently the index
[
(Z/qZ)× :

(
(Z/qZ)×

)2]
. It is

easy to see, for (a, q) = 1, that cq(a) equals cq if a is a square (mod q) and 0 otherwise.
Logarithmic integrals:

li(x) = lim
ε→0+

(∫ 1−ε

0

dt

log t
+

∫ x

1+ε

dt

log t

)
Li(x) =

∫ x

2

dt

log t
= li(x)− li(2)

These functions have asymptotic expansions, one example of which is

li(x) =
x

log x
+

x

log2 x
+

2x

log3 x
+

6x

log4 x
+O

(
x

log5 x

)
.
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2.2. Prime counting functions. Prime counting functions:

π(x) = #{p ≤ x} =
∑
p≤x

1

Π(x) =
∑
n≤x

Λ(n)

log n
=
∑
pk≤x

1

k
=
∞∑
k=1

1

k
π(x1/k)

Π∗(x) =
∑
pk≤x

1 =
∞∑
k=1

π(x1/k)

θ(x) =
∑
p≤x

log p

ψ(x) =
∑
n≤x

Λ(n) =
∑
pk≤x

log p =
∑
p≤x

⌊
log x

log p

⌋
log p =

∞∑
k=1

1

k
θ(x1/k)

2.3. Primes in arithmetic progressions. Counting functions for primes in arithmetic
progressions:

π(x; q, a) = #{p ≤ x : p ≡ a (mod q)} =
∑
p≤x

p≡a (mod q)

1

θ(x; q, a) =
∑
p≤x

p≡a (mod q)

log p

ψ(x; q, a) =
∑
n≤x

n≡a (mod q)

Λ(n) =
∑
pk≤x

pk≡a (mod q)

log p

General notation for racing (multi)sets of residue classes; show that the case of different
moduli reduces to this. . . . Some relatives, when q is a modulus with primitive roots:

π(x; q, R) = #{p ≤ x : p is a quadratic residue (mod q)}
π(x; q,N) = #{p ≤ x : p is a quadratic nonresidue (mod q)}

In these arithmetic progression functions, an extra argument denotes a difference (some
authors use ∆ for this): for example,

ψ(x; q, a, 1) = ψ(x; q, a)− ψ(x; q, 1) and π(x; q,N,R) = π(x; q,N)− π(x; q, R).

2.4. Error terms for prime counting functions. We use ∆ for the error terms in prime
counting functions:

∆ψ(x) = ψ(x)− x, ∆θ(x) = θ(x)− x, ∆Π(x) = Π(x)− li(x), ∆π(x) = π(x)− li(x).

(We’re not very careful about the difference between li and Li here.) We also use E for
normalized versions of these error terms:

Eψ(x) =
∆ψ(x)√

x
, Eθ(x) =

∆θ(x)√
x
, EΠ(x) =

∆Π(x)√
x/ log x

, Eπ(x) =
∆π(x)√
x/ log x

.

It’s not uncommon to integrate these error terms: for any f ∈ {π,Π, θ, ψ} we define ∆f
0(x) =

∆f (x) and, for n ≥ 1,

∆f
n(x) =

∫ x

2

∆f
n−1(x) dx.
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We also define ∆f
|0|(x) = |∆f (x)| and ∆f

|n|(x) = 1
x

∫ x
2

∆f
|n−1|(x) dx. There are similar loga-

rithmic integration operators: we define ∆f
0(x) = ∆f (x) and, for n ≥ 1,

∆f
n(x) =

∫ x

2

∆f
n−1(x)

dx

x
.

[for summatory functions, the ∆ operator multiplies each factor by x − n, while the ∆
operator multiplies each factor by log x

n
; for explicit formulae, the ∆ operator changes xρ/ρ

to xρ+1/ρ(ρ+ 1) and so on, while the ∆ operator multiplies each xρ term by 1/ρ]
When we count primes in arithmetic progressions, we multiply through by φ(q) for simplicity—

for example,

∆ψ(x; q, a) = φ(q)ψ(x; q, a)− x and ∆π(x; q, a) = φ(q)π(x; q, a)− li(x).

Then the normalization is the same as before—for example,

Eψ(x; q, a) =
∆ψ(x; q, a)√

x
and Eπ(x; q, a) =

∆π(x; q, a)√
x/ log x

.

VARIANT ∆̊ WHERE WE SUBTRACT for example π(x) instead of li(x)? We extend our
convention regarding counting functions in arithmetic progressions, so that for example,

∆ψ(x; q, a, b) = ∆ψ(x; q, a)−∆ψ(x; q, b) and Eπ(x; q, a, b) = Eπ(x; q, a)− Eπ(x; q, b).

Notice that the first such function is almost redundant, since ∆ψ(x; q, a, b) = φ(q)ψ(x; q, a, b)
exactly. (And recall that some authors use ∆ to mean this difference function without the
factor φ(q), which we are calling ψ here.) However, there will situations where each notation
is useful to us; furthermore, this new use of ∆ already follows from existing notational
conventions.

We’ll also have some notation for vector-valued versions of these functions; we’ll need to
do it carefully to make the r = 2 case of the notation not clash with the difference notations
above. [See [89] for an example.]

2.5. Weighted versions and variants. Interval notation like π
(
[x, 2x)

)
....

We use various subscripts to indicate weighted versions of the above sums.

• The subscript 0 modifies jump discontinuities....
• The subscript r represents one of the above sums weighted by a reciprocal factor

(often resulting in a “Mertens sum”); for example,

πr(x) =
∑
p≤x

1

p
and ψr(x; q, a) =

∑
n≤x

n≡a (mod q)

Λ(n)

n
.

If we need both the 0 and r subscripts, we’ll simply write (for example) π0r(x).
• The subscript e represents one of the above sums weighted by an exponentially de-

caying factor rather than cutting off abruptly at x; for example,

πe(x) =
∑
p

e−p/x and ψe(x; q, a) =
∑
n≥1

n≡a (mod q)

Λ(n)e−n/x.

In terms of their asymptotics, these exponentially weighted sums usually act like
their abrupt-cutoff versions; for example, πe(x) sometimes acts like π(x). However,
their oscillations are typically damped, often resulting in rather different properties
when comparing two such functions to each other (such as the exponentially weighted
version having a bias for one sign while the unweighted version exhibits oscillations
of sign).
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• The (somewhat arbitrary) subscript l represents one of the above sums weighted by
a strange-looking factor: by way of example,

πl(x, r) =
∑
p

e−
1
r

(log p
x

)2 and ψl(x, r; q, a) =
∑
n≥1

n≡a (mod q)

Λ(n)e−
1
r

(log n
x

)2 .

This can be thought of as restricting the range of summation to approximately
[e−
√
rx, e

√
rx]. Remarks from the above version apply here as well to the asymp-

totics and comparative properties of this version.
• When a weight function is a Dirichlet charater χ (see Section 3.1), we follow the

tradition of putting χ as an extra argument rather than a subscript; for example,

θ(x, χ) =
∑
p≤x

χ(p) log p.

2.6. Summatory functions. Summatory functions: Mertens sum M(x) =
∑

n≤x µ(n) and
the related L(x) =

∑
n≤x λ(n). Arithmetic progression notation in play here too, for example

M(x; q, a) =
∑
n≤x

n≡a (mod q)

µ(n).

ADD Me example. Mertens and Polyá conjectures.

2.7. Counting sign changes. If f , g, and h are functions from (1,∞) to R, then we define
W (h;T ) to be the number of sign changes of h(x) in the interval (1, T ), while W (f, g;T ) =
W (f−g;T ) similarly counts sign changes of the difference f(x)−g(x). Certain special cases
of this notation get a shorthand: we define W π(T ) = W (π, li;T ) and WΠ(T ) = W (Π, li;T )
and W θ(T ) = W (θ, x;T ) (where x denotes the identity function) and Wψ(T ) = W (ψ, x;T ).
(We aren’t very careful about the difference between li(x) and Li(x) here.) And we further
shorten W (T ) = W π(T ).

In addition, let q be a positive integer, and let a and b be distinct reduced residues (mod q).

Then we define W f
q;a,b(T ) = W (f(x; q, a), f(x; q, b);T ), for any function f for which f(x; q, a)

makes sense (such as f = π,Π,Π∗, θ, ψ). As shorter shorthand, Wq;a,b(T ) = W π
q;a,b(T ) =

W (π(x; q, a), π(x; q, b);T ).
To be pedantic,

W (h;T ) = max
{
n ≥ 0: there exist 1 < t0 < t1 < · · · < tn < T

with h(tj−1)h(tj) < 0 for all 1 ≤ j ≤ n
}
.

We can demand large oscillations to go along with our sign changes by adding a function as
an additional argument:

W
(
h;T ;S

)
= max

{
n ≥ 0: there exist 1 < t0 < t1 < · · · < tn < T

with h(tj−1)h(tj) < 0 for all 1 ≤ j ≤ n and |h(tj)| > S for all 0 ≤ j ≤ n
}
.

This additional argument can be used with the notations above, such as Wq;a,b(T ;S).

2.8. Densities. Densities: the natural density of a set S of positive real numbers is

lim
x→∞

measure
(
{0 < t ≤ x : x ∈ S}

)
x

= lim
x→∞

1

x

∫
0<t<x
x∈S

dt.
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On the other hand, the logarithmic density of a set S ⊂ (1,∞) is

δ(S) = lim
x→∞

1

log x

∫
1<t<x
x∈S

dt

t
.

An easy change of variables shows that the logarithmic density of S equals the natural density
of the set logS = {log z : z ∈ S}. Moreover, a partial summation argument shows that if the
natural density of S exists, then the logarithmic density δ(S) also exists and has the same
value. However, there are sets whose natural density does not exist but whose logarithmic
density does exist; for example, the union (over k ∈ N) of all the intervals of the form
[102k−1, 102k) has this property. (There are discrete analogues of natural and logarithmic
density for subsets of the positive integers; this last counterexample is analogous to the set
of all positive integers with an even number of digits, which does not have a natural density
but whose logarithmic density equals 1

2
.)

We will use many variants of this logarithmic density notation. If f1, . . . , fr are functions
from (1,∞) to R, then we define the shorthand notation

δ(f1, f2, . . . , fr) = δ
(
{x > 1: f1(x) > f2(x) > · · · > fr(x)}

)
.

For example, δ(li, π) is the logarithmic density of the set of real numbers x > 1 for which
li(x) > π(x). Certain special cases of this notation get even further shorthand. For example,
let q be a positive integer, and let a1, . . . , ar be distinct reduced residues (mod q). Then we
define

δq;a1,...,ar = δ
(
π(x; q, a1), . . . , π(x; q, ar)

)
= δ
(
{x > 1: π(x; q, a1) > · · · > π(x; q, ar)}

)
.

We also define

δq;N,R = δ
(
π(x; q,N), π(x; q, R)

)
= δ
(
{x > 1: π(x; q,N) > π(x; q, R)}

)
and similarly for δq;R,N .

Finally, we define the upper and lower logarithmic densities of S (which always exist) to
be

δ(S) = lim sup
x→∞

1

log x

∫
1<t<x
x∈S

dt

t
, δ(S) = lim inf

x→∞

1

log x

∫
1<t<x
x∈S

dt

t
,

so that δ(S) exists if and only if δ(S) = δ(S). This notation for upper and lower densi-
ties can propogate through our shorthand notations as well; for instance, δq;N,R = δ

(
{x >

1: π(x; q,N) > π(x; q, R)}
)
.

2.9. Limiting distribution and density functions. [Limiting cumulative distribution
functions and limiting density functions (define), and their logarithmic counterparts.] Given
a function h : [0,∞) → R, the limiting (or asymptotic) cumulative distribution function of
h is the nondecreasing function

κ(α) = lim
T→∞

meas{t ∈ [0, T ] : h(t) < α}
T

,

which we require to be defined except for at most a countable number of jump discontinuities.
Given such a distribution function κ, its spectrum is the set of points α ∈ R such that
κ(x) < κ(y) for all x < α < y.



6 MARTIN, SCARFY, BAHRINI, BAJPAI, DOWNEY, PARVARDI, SIMPSON, AND WHITE

3. Complex analytic stuff

3.1. Dirichlet characters and Dirichlet L-functions. Dirichlet characters, χ0, χD, χ∗

(χ1 and β1?)....
N(T ) and N(T, χ), and the convention ρ = β + iγ

3.2. Landau’s theorem. For a real-valued function A(x), define

g(s) =

∫ ∞
1

A(x)

xs
dx

Suppose that g(σ) is analytic on the ray {σ ∈ R : σ > γ} but g(s) is not analytic in the
half-plane {s ∈ C : σ > γ}. Then A(x) has arbitrarily large sign changes.

3.3. Explicit formulas. [my favorite formulas!]
—for now, just two such formulas: the fundamental explicit formula

ψ0(x) = x−
∑
ρ∈C

0<<ρ<1
ζ(ρ)=0

xρ

ρ
− log 2π − 1

2
log

(
1− 1

x2

)
,

and a homework problem from the recent MATH 539: on GRH, for (a, q) = (b, q) = 1,

θ(x; q, a)− θ(x; q, b)√
x

=
cq(b)− cq(a)

φ(q)
− 1

φ(q)

∑
χ (mod q)

(
χ(a)−χ(b)

)
lim
T→∞

∑
|γ|≤T

L(1/2+iγ,χ)=0

xiγ

1
2

+ iγ
+Oq(x

−1/6),

where cq(r) is the number of solutions to x2 ≡ r (mod q).
[In terms of explicit formulas/limiting distributions: the normalized error terms of ψ and

Π are centered at 0, while those of θ and π are centered at −1 (and that of Π∗ is centered
at 1). The normalized error term of θ(x; q, a, b), above, is centered at a positive value of a is
a quadratic nonresidue and b is a quadratic residue, centered at a negative value if vice versa,
and centered at 0 if a and b are both quadratic residues or both quadratic nonresidues.]

3.4. The power sum method. Brief description of both “one-sided” and “two-sided”
Turán theorems

3.5. k-functions. For =z > 0, define

k(z, χ) =
∑
γ>0

eρz and K(z, χ) =
∑
γ>0

eρz

ρ
,

where the sums are over zeros of L(s, χ). Let M be the Riemann surface for log z; every
point on the surface can be uniquely written as reia where a ∈ R. Let zc denote the
natural extension of complex conjugation to M, namely (reia)c = re−ia; also let z∗ denote
an extension of multiplication by −1 to M, namely (reia)∗ = rei(a−π).

Define

D(z, χ) = −
∑
β>0

L(β,χ)=0

eβz +
1

e2z − 1


e3z + e2z − 1, if χ = χ0,

ez, if χ 6= χ0 and χ(−1) = 1,

e2z, if χ(−1) = −1.

Also define

F (x, χ) = lim
y→0+

(
K(x+ iy, χ) +K(x+ iy, χ)

)
.
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Also also define

R1(x) =
1

2
log(1− e−2x), R−1(x) =

1

2
log

ex − 1

ex + 1
.

Define constants (B(χ) probably conflicts with other notation)

B(χ) =
∑
β>0

L(β,χ)=0

1

β
− C0

2
− 1

2
log

π

q
+ F (0, χ)−


1, if χ = χ0,

0, if χ 6= χ0 and χ(−1) = 1,

log 2, if χ(−1) = −1.

C(χ) = B(χ) + C0 + log
2π

q
.

3.6. Hypotheses on zeros. [various assumptions on the zeros of Dirichlet L-functions,
including GRH and LI. LI(σ) is LI for the set of imaginary parts corresponding to zeros with
real parts at least σ]

• HC: the Haselgrove condition that L(σ, χ) does not vanish on the segment 0 < σ < 1
of the real axis. By continuity, this means there exists Ek > 0 such that no L(s, χ)
with χ (mod k) vanishes on the rectangle {0 < σ < 1, |t| ≤ Ek}; we use HC(Ek)
if we need to name this parameter. Remark: a zero on the real axis would cause a
non-oscillating term (a bias).
• GRH(H) is GRH up to height H (sometimes called the “finite Riemann–Piltz” con-

jecture, Riemann–Piltz itself being GRH for Dirichlet L-functions), namely the state-
ment that if ρ is a nontrivial zero of L(s, χ) with |γ| ≤ H, then σ = 1

2
.

Note that if Ek ≥ H, then GRH(H) is actually implied by HC(Ek). On the
other hand, GRH(H) gives no constraint at all upon zeros on the critical line. We
therefore introduce the notation GRH(H,Ek) to mean the combination of GRH(H)
and HC(Ek), the latter of which constrains only the zeros on the critical line when
Ek < H.

Note also that GRH(0) is almost the same as HC, except that the former allows
for the possibility of a zero at s = 1

2
.

• σ0-GRH for zero-free strip σ > σ0.
• GRH is 1

2
-GRH and, simultaneously, GRH(∞).

• Given a nonempty set X of Dirichlet characters (or L-functions), Θ(X) denotes the
supremum of the real parts of their zeros, that is, the smallest real number such
that Θ(X)-GRH holds. SA for Supremum Attained (“Ingham’s condition”). Special
cases: Θ(q) for all Dirichlet L-functions (mod q), Θ(χ) for the single character χ,
and Θ alone for ζ(s).

4. Types of questions

[what do we want to know about these prime counting functions?]
Given two functions f, g : (1,∞) → R (for example, π(x) and li(x), or π(x; 4, 1) and

π(x; 4, 3)) that are asymptotic to each other, we can ask:

• Are there arbitrarily large values of x for which f(x) > g(x), and arbitrarily large
values of x for which g(x) < f(x)? In other words, does the difference f(x) − g(x)
change signs infinitely often? (These are not quite mathematically identical because
of the possibility of plentiful or carefully arranged ties f(x) = g(x), so implicit in
this question is asking whether such ties are rare.) The other alternative is that one
of the functions exceeds the other for all sufficiently large x.
• How large and positive can the difference f(x) − g(x) get? How large and negative

can it get?
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• More generally, what is the distribution of values of f(x)− g(x)? Is it possible that
some suitably normalized version of this difference, such as (f(x)−g(x))/

√
x, actually

has a limiting distribution or a limiting logarithmic distribution?
• How often does the difference f(x)− g(x) change sign? How many sign changes are

there in (1, X) as a function of X? How close can we take Y = Y (X) to X to ensure
that there is always a sign change in [X, Y ]?
• What is the natural density of the set of real numbers x > 1 for which f(x) > g(x)?

What is its logarithmic density, which we denote by δ(f, g)? (As we shall see, we
believe that the natural densities of such sets do not exist in prime number races,
but that their logarithmic densities do exist.)
• Given a family of races, such as π(x; q,N) versus π(x; q, R): how do answers to the

above questions, such as δq;N,R, depend upon the member of the family (q in this
case)? Do the distributions of the members of the family tend to some limit, such as
a normal distribution?

Given several functions f1, . . . , fr : (1,∞) → R, we can ask some of the above questions as
well:

• Are there arbitrarily large values of x for which f1(x) > · · · > fr(x)?
• More generally, what is the distribution of values of the vector

(
f1(x), . . . , fr(x)

)
∈

Rr? Is it possible that some suitably normalized version of this difference actually
has a limiting distribution or a limiting logarithmic distribution?
• What is the natural density of the set of real numbers x > 1 for which f1(x) > · · · >
fr(x)? What is its logarithmic density, which we denote by δ(f, g)? (As before, we
believe that the natural densities of such sets do not exist in prime number races,
but that their logarithmic densities do exist.)
• Given a family of such r-way races, how do answers to the above questions depend

upon the member of the family? Do the distributions of the members of the family
tend to some limit, such as a multivariate normal distribution?

The papers [19] and [28] present organized schema for problems in comparative prime
number theory, although several of the questions listed above had not yet been investigated
sufficiently deeply to make their lists.

Global LATEX changes

• change Ek to Ak in the HC references
• change every \pmod to \mod
• change every \epsilon and \varepsilon to \ep
• change every \varphi to \phi
• change “cites \cite” to “cites∼\cite”
• change every Turan and Tur\’{a}n to Tur\’an
• change “zeroes” to “zeros”
• change “paper” to “article”
• unhyphenate “non-”s and “square-free”s
• remove tabs everywhere

5. References

REMARKS ON THE ANNOTATIONS Systemized notation, as described above, rather
than preserving the notation of the original articles.
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This article contains full proofs of several results that had been announced by (at least one of) the
authors in the few years prior.

In Section 2.2, the authors obtain an explicit formula for the exponentially weighted sum∑∞
n=1(Λ(n) − 1)e−n/x = ψe(x) − 1/(e1/x − 1); furthermore, assuming RH, they show that this ex-

pression is both �
√
x and Ω±(

√
x). From the latter they deduce that ψ(x)− x = Ω±(

√
x).

In Section 2.3 they consider the function
∑
p≥3(−1)(p+1)/2e−p/x = −πe(x, χ−4). Assuming GRH for

L(s, χ−4), they prove that πe(x, χ−4) → −∞ as x → ∞, which is one way of justifying Chebyshev’s
observation that there are more primes congruent to 3 (mod 4) than to 1 (mod 4).

In Section 5, the authors provide a full proof of “Littlewood’s theorem” (announced in [4]) on
irregularities in the distribution of primes: they prove that

∆π(x) = Ω±

( √
x

log x
log log log x

)
,

which in particular refutes the conjecture that π(x) < li(x) for all x > 1. Their proof, which begins
with the assumption of RH thanks to prior work of Landau [140, Sections 201–3], uses homogenous
Diophantine approximation for the imaginary parts of the zeros of ζ(s). They assert that it can be
shown in a similar way that ψ(x, χ−4) = Ω±(

√
x log log log x) and

π(x; 4, 3, 1) = Ω±

( √
x

log x
log log log x

)
;

these results are actually dissonant with Chebyshev’s observations.

(As a side remark, this is also the article in which appears the proof of the asymptotic formula for
the second moment of ζ(s) on the critical line.)

This article cites [4, 137,140,142].
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[6] E. Landau, Über einige ältere Vermutungen und Behauptungen in der Primzahltheorie, Math. Z. 1
(1918), 1–24 (German).

Reportedly, the author shows that Chebyshev’s assertion that the function πe(x, χ−4)→ −∞ as x→∞
implies GRH for L(s, χ−4).

[7] , Über einige ältere Vermutungen und Behauptungen in der Primzahltheorie. Zweite Abhand-
lung, Math. Z. 1 (1918), 213–219 (German). MR1544293

Reportedly, the author provides a simpler proof of the result of Hardy–Littlewood [5, Section 2.3]
justifying, assuming GRH for L(s, χ−4), Chebyshev’s assertion that the function πe(x, χ−4)→ −∞ as
x→∞.

[8] G. Pólya, Über das Vorzeichen des Restgliedes im Primzahltheorie, Gött. Nachr. (1930), 19–27
(German).

Reportedly, the author proves that lim supT→∞Wψ(T )/ log T ≥ γ1/π, where γ1 ≈ 14.135 is the small-
est ordinate of a nontrivial zero of ζ(s). It was known for a long while that this article contained an
error that could be mended; the corrected version finally appeared as [184].

[9] S. Skewes, On the difference π(x)−li(x) (I), J. London Math. Soc. 8 (1933), no. 4, 277–283. MR1573970

This article shows, assuming RH, that π(x) > li(x) for some x < 10101034

. Littlewood [4,5] proved the
existence of such an x by considering the function F (z) =

∑
γ>0 e

−γ(ξ+iη)/γ for 0 ≤ ξ ≤ 1 and η ≥ 1,

which is relevant since the explicit formula yields −2=F (i log x) = Eψ(x) + O(1). Using the Dirichlet
box principle, Littlewood showed that =F (ξ + iη) has large values (on the order of log log η) of either
prescribed sign, with ξ tending to 0, and then used a modified form of the Phragmén–Lindelöf principle
to show that an equally large value of −=F (iη) must be attained.

The Phragmén–Lindelöf principle, that the maximum of an analytic function defined on a semi-
infinite strip (with suitable growth conditions) must occur on the boundary of the strip, is only an
existence result; Skewes strengthens the result to give quantitative bounds on when an approximation
to an interior value is attained on the boundary of the strip. In this way he is able to make Littlewood’s
result explicit (although the details are not included), which was not clearly possible beforehand.

(Estimates of the smallest x such that π(x) > li(x) have since been called “Skewes numbers”. For
comparison, the best estimates today are about 1.4× 10316.)

This article cites [147].

[10] A. E. Ingham, A note on the distribution of primes, Acta Arith. 1 (1936), 201–211.

This article follows on [9] to give another proof of an explicit version of “Littlewood’s theorem” [5],
and to establish the following stronger result: Let Θ be the supremum of the real parts of the zeros of
the Riemann zeta function. If Θ is attained, then there exists an absolute constant A > 1 such that,
for all x > 1, the interval (x,Ax) contains a sign change of π(x)− Li(x).

In particular if the Riemann hypothesis is true, then Θ = 1/2 is attained (by every zero) and so
the conclusion of the theorem follows. On the other hand, if Θ = 1, then it cannot be attained and no
conclusion can be drawn. The author highlights his use of Fejér kernels in the proof, in contrast with
the Poisson kernel used in [9].

This article cites [5, 8, 9].

[11] A. Wintner, On the distribution function of the remainder term of the prime number theorem, Amer.
J. Math. 63 (1941), 233–248. MR0004255

This paper investigates the normalized remainder term EΨ(x) by establishing the existence of its lim-
iting logarithmic cumulative distribution function. Assuming RH, the author proves that the spectrum
of this limiting distribution is unbounded both above and below, which implies the same for EΨ(x).
He also gives an estimate for all of the moments of this limiting distribution, in an effort to determine
whether these moments uniquely determine the given distribution. The techniques involved in the proof
come primarily from the application of the theory of almost-periodic functions (of both the uniform
and Besicovitch varities) to the sum over the non-trivial zeros in the fundamental explicit formula.
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This article cites [147–149].

[12] A. E. Ingham, On two conjectures in the theory of numbers, Amer. J. Math. 64 (1942), 313–319.
MR0006202

In this paper, Ingham probes conjectured bounds for the summatory functions M(x) and L(x). He
proves that the truth, for sufficiently large x, of any one of the inequalities M(x) < Kx1/2, M(x) >
−Kx1/2, L(x) < Kx1/2, or L(x) > −Kx1/2 (where K is a constant) would not only imply RH and
the simplicity of the zeros of ζ(s) (as was “well known”), but also LI. Of this last assumption, the
author writes: “It would be easy to relax this hypothesis a little, but there seems no obvious way of
replacing it by anything essentially easier to verify.” Indeed, he shows that if there are only finitely
many rational linear relations among the positive imaginary parts of these zeros, then M(x)/

√
x and

L(x)/
√
x would be unbounded both above and below, contrary to existing conjectures.

The method of the proof is similar to Littlewood’s disproof of the conjecture π(x) < li(x) in [5],
including a reliance on trigonometric polynomials involving the zeros of ζ(s), except that Dirichlet’s
theorem on homogeneous Diophantine approximation is replaced by Kronecker’s theorem on inho-
mogeneous Diophantine approximation. For the proof, the author establishes two main results, one
concerning Laplace transforms of real trigonometric polynomials, and the other establishing the diver-
gence (assuming RH) of the two residue series

∑
γ>0 1/ρζ ′(ρ) and

∑
γ>0 ζ(2ρ)/ρζ ′(ρ).

This article cites [134–136,138,141,143].

[13] C. L. Siegel, On the zeros of the Dirichlet L-functions, Annals of Math. 46 (1945), 409–422.

[THIS PAPER WILL EVENTUALLY BE REMOVED]

The author proves a number of results regarding the distribution of zeros of the functions L(s, χ),
for varying character χ as well as varying conductor m.

Let T0 be a fixed large positive constant. The first result shows that if 1/ log logm < δ < 1/2, then
the number of zeros of all L(s, χ) with χ of given conductor m, in the box 1

2 +δ < σ < 1,−T0 < t < T0,

is �T0
φ(m) · δ−1(logm)−2δ. As m increases we can decrease the chosen δ, and the result then shows

that not too many zeros can lie far from the critical line. Choosing δ = 1
2 (log logm)(log log logm)−1

gives that for m large enough, at least one of the functions L(s, χ) has no zero in the box described.

This contrasts with the next two theorems, which establish that the L(s, χ) must have more zeros
up to height T0 than counted above. Let A(T ) denote the number of zeros of all L(s, χ), again for fixed
conductor m, in the box 0 < σ < 1, 0 ≤ t < T , for some T < T0. The author shows that

∣∣∣∣A(T )− φ(m)

2π
T logm

∣∣∣∣�T0
φ(m)(logm)2/3.

Finally he proves that if −T0 < T1 < T2 < T0, with T2 − T1 > 4(log log logm)−1, then each of the
functions L(s, χ) (where χ has conductor m) has a zero in the rectangle 1

2 ≤ σ < 1, T1 < t < T2. These

results combine to give that every point on the critical line σ = 1
2 is a limit point for the set of zeros of

the L(s, χ) for variable χ and m, and in fact a subset of these functions have zeros that cluster exactly
towards all points of the critical line.

[14] S. Skewes, On the difference π(x)−li(x) (II), Proc. London Math. Soc. (3) 5 (1955), 48–70. MR0067145

This article provides an unconditional explicit estimate for a sign change of the difference π(x)− li(x):

if we define X1 = ee
e7.703

and X2 = e4X30
1 < ee

ee
7.705

< 10101010
3

, then the author shows that there
exists some x < X2 such that π(x) > li(x). The author divides the proof into two cases, first when RH
is “nearly true” and then the contrary case. More specifically, he defines a hypothesis (H) (the “nearly
true” case) as follows: Every zero ρ = β + iγ for which |γ| < X3

1 satisfies β − 1
2 ≤ X

−3
1 log−2X1.

For the case where (H) holds, the author modifies Ingham’s technique from [10], which assumed
RH but improved the estimation of ψ0(x)− x by showing that zeros with γ large relative to x do not
contribute meaningfully to the sum. Ultimately the author’s argument boils down to estimation of the
sum

∑
0<γ<500

sin γω
γ

(
1− γ

500

)
; Dirichlet’s box principle is used again, in conjunction with estimates

of the values of the 269 zeros of ζ(s) with 0 < γ < 500.
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For the contrary case, which the author calls (NH), he remarks that it no longer suffices to work
first with ψ(x) and then pass to π(x) with standard partial summation techniques. Instead, he works
directly from the explicit formula for Π0(x) − li(x), introducing a smoothing factor to amplify the
contribution from the hypothesized (H)-violating zero. Throughout, the author uses explicit estimates
for sums over nontrivial zeros of ζ(s), such as |N(T + h) − N(T )| < 1

2π (h + 1.77) log T + 8.7 for

7.1 < h < T
2 .

This article cites [4, 9, 10,147].

[15] J. Leech, Note on the distribution of prime numbers, J. London Math. Soc. 32 (1957), 56–58.
MR0083001

The author uses the EDSAC at Cambridge to compute π(x; 4, 1) and π(x; 4, 3) for x up to 3× 106. He
discovers that π(x; 4, 1) > π(x; 4, 3) at x = 26,861, for which π(x; 4, 1) = 1,473 and π(x; 4, 3) = 1,472.
The other values of x above 26,863 for which π(x; 4, 1) > π(x; 4, 3) are between 616,000 and 634,000;
the greatest difference found is at x = 623,681, for which π(x; 4, 1) = 25,444 and π(x; 4, 3) = 25,436.
The author notes that πi(x) = 2π(x; 4, 1) + π(

√
x; 4, 3) + 1, the number of Gaussian primes with norm

at most x (up to associates, and for x ≥ 2), is consequently large near this latter range as well; the
most extreme value found is at x = 617,537, for which πi(x) = 50,509 ≈ li(x) + 19.5.

When examining the explicit formula for π(x; 4, 3, 1) at x = 620,000, the author found that the first
20 pairs of zeros of L(s, χ−4), whose imaginary parts ranged from ±6.020948 to ±49.723129, included
16 pairs that give negative contributions to the explicit formula, while subsequent zeros gave more or
less random contributions.

This article cites [9, 147].

[16] D. Shanks, Quadratic residues and the distribution of primes, Math. Tables Aids Comput. 13 (1959),
272–284. MR0108470

In this paper, the author investigates Chebyshev’s assertion that there are more primes of the form
4m−1 than of the form 4m+1. Define τ(n) = π(n; 4, 3, 1)

√
n/π(n) (which is asymptotically equivalent

to π(n; 4, 3, 1) log n/
√
n but is easier to manipulate numerically). Upon computing π(n; 4, 3, 1) for values

of n up to 3 million, he analyzes the values τ(1000k) for 1 ≤ k ≤ 2000, noting that their histogram is
“roughly normal with a mean of (nearly) 1”. The author conjectures that

lim
x→∞

1

x

∑
n≤x

τ(n) = lim
x→∞

1

x

∑
n≤x

π(x; 4, 3, 1)
√
n

π(n)
= 1,

and notes that weaker versions of the conjecture—namely, that the above limit holds under GRH for
L(s, χ−4), or that the above limit either equals 1 or fails to exist—are also open. (He can show, under
GRH, that the mean value inside the limit is positive and bounded away from 0 for sufficiently large x.)

Next, the author discusses the distribution of primes in the residue classes modulo 8, 10, and 12.
Both from examining the collected data and from combinatorial reasoning involving the multiplicative
groups of those moduli, he concludes that the quadratic residues are the ones with a smaller number
of primes (on average). For the specific modulus 4, he outlines an argument, based on combinatorial
reasoning with the quantities #{n ≤ x : Ω(n) = a, n ≡ ±1 (mod 4)}, that shows that the mean value
of τ(n) should be 1. Indeed, he remarks that the generalization of this mean value to the integers
with a prime factors (counted with multiplicity) predicts that it is the residue class (−1)a (mod 4)
that should have more such integers; in other words, the bias switches according to the parity of the
number of prime factors. A related remark is that there is a bias towards integers for which λ(n)χ−4(n)
equals 1 over those for which it equals −1.

This paper ends with a discussion of how similar arguments to those laid out in this paper could be
used to analyze the relationship between π(x) and li(x).

This article cites [1–3,5, 9, 15,155].

[17] S. Knapowski, On sign-changes in the remainder-term in the prime-number formula, J. London Math.
Soc. 36 (1961), 451–460. MR0133309
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The author shows that if ρ0 = β0 + iγ0 is any zero of ζ(s), then for T sufficiently large in terms of γ0,

∆ψ(t) = Ω±

(
T β0 exp

(
−15 log T√

log log T

))
,

and the same for ∆Π(t) (which implies an Ω−-result, though not an Ω+-result, for ∆π(t)). The author
also observes that these large oscillations in ∆ψ(t) cannot occur when t < T 1/2−ε, which implies that
lim infT→∞Wψ(T )/ log log T ≥ 1/ log 2.

This article cites [10,14,153].

[18] , On sign-changes of the difference π(x)− lix, Acta Arith. 7 (1961/1962), 107–119. MR0133308

This article is concerned with explicit lower bounds for the number W (T ) of sign changes of the function
li(x)−π(x). Previously, Ingham [10] had shown, assuming SA, that lim infT→∞W (T )/log T > 0, while
the author [17] had proved unconditionally that lim infT→∞W (T )/log log T > 0. Skewes [14] famously

found that W
(
ee
ee

7.705 )
≥ 1.

In this paper, the author shows unconditionally that W (T ) ≥ e−35 log log log log T for T ≥ ee
ee

35

(the author did not try to optimize these constants). Similar to [14], the proof is divided into two cases,
first when RH is “nearly true” and then the contrary case. More specifically, setting X = 7

√
log log T ,

the author defines a hypothesis (C) (the “nearly true” case) as follows: Every zero ρ = β+ iγ for which
|γ| ≤ X3 satisfies β − 1

2 ≤ 2/(3X3 logX). The author then proves the inequality above first assuming
(C) and then again assuming its negation (NC).

This article cites [4, 14,17,147].

[19] S. Knapowski and P. Turán, Comparative prime-number theory. I. Introduction, Acta Math. Acad. Sci.
Hungar. 13 (1962), 299–314. MR0146156

The authors start by introducing ten problems of interest in “comparative prime-number theory” to
the modulus k, the first seven concerning the sign changes and extreme values of π(x; k, `1, `2) and
the natural density of the solutions to π(x; k, `1, `2) > 0. The eighth problem, which the authors
call the “race-problem of Shanks–Rényi” (which is perhaps the first time Rényi’s name was linked to
comparative prime number theory) is whether there are arbitrarily large solutions x to π(x; k, `1) <
· · · < π(x; k, `φ(k)); the last two problems concern the simultaneous inequalities π(x; k, `j) >

1
φ(k) li(x).

The authors allude to variants of these ten problems generated by replacing π(x; k, `) by πe(x; k, `)

(and, where needed, Li(x) by
∫∞

2
e−t/x

log t dt), and further vary these problems by replacing π with ψ or Π.

They are aware that such problems could be further varied (“. . . the analogous problems concerning
the distribution of primes in binary quadratic forms with fixed discriminant or of the prime ideals of
a fixed field in various idealclasses”).

In Section 4, the authors discuss how some of the problems involving ψ(x; k, `) can be conditionally
solved using Laudau’s theorem (and hence unconditionally for moduli dividing 24). In Section 5,
the authors discuss the results they have so far concerning the problems involving π(x; k, `), and in
Section 8, they briefly discuss what is known about prime number races modulo 4. Throughout the
rest of this paper, the authors introduce the results that will be proved in the next seven papers of the
series.

This article cites [1, 2, 5, 8, 10,14,16].

[20] , Comparative prime-number theory. II. Comparison of the progressions ≡ 1 mod k and ≡ l
mod k, l 6≡ 1 mod k, Acta Math. Acad. Sci. Hungar. 13 (1962), 315–342. MR0146157

This article focuses on the race between the residue class 1 (mod k) and other residue classes ` 6≡
1 (mod k), for a fixed modulus k for which HC holds.
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Fix a character χ (mod k) such that χ(`) 6= 1, and let ρ0 = β0 +iγ0 be a zero of L(s, χ). The authors
prove that for T large enough,

max
T 1/3≤x≤T

ψ(x; k, 1, `) > T β0 exp

(
−41

log T log log log T

log log T

)
max

T 1/3≤x≤T
Π(x; k, 1, `) > T β0 exp

(
−41

log T log log log T

log log T

)
and symmetric results for the minimum. As one might expect, the oscillations obtained for π(x; k, 1, `)
are worse, but the authors do prove

max
exp(log

1/130
3 T )≤x≤T

(
log x√
x

)
π(x; k, 1, `) >

1

100
log log log log log T

and the symmetric result for the minimum. Each of these results yields lower bounds on the correspond-
ing number of sign changes, although for π(x; k, 1, `) the bound is very low—improving this bound is
addressed directly in [21]. The authors’ methods can also compaire primes congruent to 1 (mod k) to
the average number of primes in other residue classes (mod k):

max
exp(log

1/130
3 T )≤x≤T

(
log x√
x

)(
π(x; k, 1)− 1

φ(k)− 1

∑
(`,k)=1
` 6=1

π(x; k, `)

)
>

1

100
log5 T

and the symmetric result for the minimum.

The proofs follow from the application of Turán’s method for bounding exponential sums. Siegel’s
theorem on the existence of zeros in certain rectangles, coupled with the verification of HC for certain
moduli up to 24, give for these moduli the first unconditional results about the size of the fluctuations
of the above functions and the number of their sign changes.

This article cites [4, 5, 10,14,17].

[21] , Comparative prime-number theory. III. Continuation of the study of comparison of the pro-
gressions ≡ 1 mod k and ≡ l mod k, Acta Math. Acad. Sci. Hungar. 13 (1962), 343–364. MR0146158

The authors continue their comparison of π(x; k, `) and π(x; k, 1), where ` 6≡ 1 (mod k) and (`, k) = 1,
assuming HC for the modulus k. They show that Wk;`,1(T ) > k−c log log log log T for sufficiently
large T , where c is an absolute effective constant. The proof technique involves Dirichlet’s box principle
and bounds obtained on Π(x; k, `, 1) in [20].

When ` is a quadratic residue (mod k), they also show that if ρ0 = β0 + iγ0 is a zero of L(s, χ) for
some character χ such that χ(`) 6= 1, then for sufficiently large T ,

max
T 1/3≤x≤T

π(x; k, `, 1) > T β0 exp

(
−42

log T log log log T

log log T

)
,

and a similar statement holds for the minimum; consequently, for such k and `, the inequality
Wk;`,1(T ) > 1

log 3 log log T + O(1) holds for sufficiently large T . The proof involves Turán’s method

for bounds on exponential sums.

The authors remark that both theorems hold as well for W
(
φ(k)π(x; k, 1), π(x);T

)
and

W
(
φ(k)π(x; k, 1),Li(x);T

)
.

This article cites [5, 9, 10,13,19,20].

[22] , Comparative prime-number theory. IV. Paradigma to the general case, k = 8 and 5, Acta
Math. Acad. Sci. Hungar. 14 (1963), 31–42. MR0146159

The authors apply techniques from earlier in this series of papers to the modulus k = 8, when `1, `2 ∈
{3, 5, 7} are distinct quadratic nonresidues. They show that

max
T 1/3≤x≤T

π(x; 8, `1, `2) >
√
T exp

(
−23

log T log log log T

log log T

)
,

and similarly for Π(x; 8, `1, `2) and ψ(x; 8, `1, `2). Since `1 and `2 can be interchanged, this result implies

the inequality W8;`1,`2(T ) > 1
log 3 log log T +O(1), and similarly for WΠ

8;`1,`2
(T ) and Wψ

8;`1,`2
(T ).
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In the third section, the authors remark on the modulus k = 5. The case (`1, `2) = (`, 1) has already
been handled earlier in this series; the authors mention that the case (`1, `2) = (2, 3), where both
are quadratic nonresidues, can be handled in a similar way to the k = 8 cases treated in this paper.
The remaining cases have `1 = 4, a quadratic residue not equal to 1 (mod 5), and `2 ∈ {2, 3}, and
these cases yield “an unpleasant (or pleasant?) surprise”: the authors cannot establish sign changes
for π(x; 5, 4, 2) and π(x; 5, 4, 3) even assuming GRH (although the methods do work for the Π and ψ
versions, a situation the authors discuss further in the later papers of this series).

This article cites [19–21].

[23] , Comparative prime-number theory. V. Some theorems concerning the general case, Acta Math.
Acad. Sci. Hungar. 14 (1963), 43–63. MR0146160

Under the assumption of a “finite Riemann–Piltz conjecture” GRH(H(k), A(k)), the authors estab-
lish the following result for any distinct reduced residues `1, `2 (mod k) and for T sufficiently large
(explicitly quantified in the paper):

max
T 1/3≤x≤T

Π(x; k, `1, `2) >
√
T exp

(
−44

log T log log log T

log log T

)
,

and the same with Π replaced by ψ. A central element to their proof is the estimation of the integral

J(T ) = − 1

2πi

∫
2

(
ey1s

s

)v
(ω0L

v0
1 )s

sv0+1
· 1

φ(k)

{ ∑
χ (mod k)
χ(`1) 6=χ(`2)

(χ(`1)− χ(`2))
L′

L
(s, χ)

}
ds

=
1

(v + v0)!

∫ Y1

1

Π(x; k, `1, `2)
d

dx

((
log

Y1

x

)v+v0

log x

)
dx.

Their approach involves an application of Turán’s method similar to what appears in the previous
papers of the series. The authors note that their main theorem gives similar bounds on Π(x; k, `) −
Li(x)/φ(k) and ψ(x; k, `) − x/φ(k). In particular, this result implies the lower bounds WΠ

k;`1,`2
(T ) >

1
log 3 log log T +O(1) and Wψ

k;`1,`2
(T ) > 1

log 3 log log T +O(1).

This article cites [13,19–22,162].

[24] , Comparative prime-number theory. VI. Continuation of the general case., Acta Math. Acad.
Sci. Hungar. 14 (1963), 65–78. MR0146161

Under the assumption of a “finite Riemann–Piltz conjecture” GRH(H(k), A(k)), the authors establish
the following result in the case that `1 and `2 are either both quadratic residues or both quadratic
nonresidues (mod k): when T is sufficiently large in terms of k (the authors give an explicit lower
bound), the inequalities

max
T 1/3≤x≤T

π(x, k, `1, `2) >
√
T exp

(
−44

log T log log log T

log log T

)
min

T 1/3≤x≤T
π(x, k, `1, `2) < −

√
T exp

(
−44

log T log log log T

log log T

)
hold. As usual, this result implies the lower bound Wk;`1,`2(T ) > 1

log 3 log log T + O(1). The authors

rely on multiple lemmas from their use of Turán’s method in previous papers of this series.

This article cites [20,21,23].

[25] , Comparative Prime-Number Theory VII, Acta Math. Acad. Sci. Hung. 14 (1963), 241–250.

This article gives a general conditional proof that ψ(x; k, `1, `2) changes sign infinitely often. The
authors show, assuming HC(A(k)) for the modulus k for some constant 0 < Ak ≤ 1, that there exists a
positive constant c such that ψ(x; k, `1, `2) changes sign in every interval of the form ω ≤ x ≤ exp(2

√
ω)

as long as

ω ≥ max
{
ek
c

, e2/A(k)3
}
.

This result immediately implies results for the first sign change of ψ(x; k, `1, `2) and for its number of
sign changes.

This article cites [19–21,23,24].
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[26] , Comparative Prime-Number Theory VIII, Acta Math. Acad. Sci. Hung. 14 (1963), 251–268.

Hardy–Littlewood and Landau had already shown that the assertion limx→∞ πe(x; 4, 1, 3) = −∞ is
equivalent to GRH for L(s, χ−4). In this article the authors obtain an analogous equivalence concerning
the races between 1 and a nonsquare (mod 8): slightly modifying the arguments for the (mod 4)
case, they show that the assertion limx→∞ θe(x; 8, 1, `) = −∞ for all ` 6≡ 1 (mod 8) is equivalent
to GRH for the three nonprincipal Dirichlet L-functions (mod 8), and the same for the assertion
limx→∞ πe(x; 8, 1, `) = −∞.

They further show that the race between two nonsquares switches infinitely often—more precisely,
for `1 6≡ `2 6≡ 1 (mod 8), they unconditionally show that when T is large enough,

max
T 1/3≤x≤T

θe(x; 8, `1, `2) >
√
T exp

(
−22

log T log log log T

log log T

)
.

They indicate that this result is “deeper”, and in particular that they cannot yet replace θe with πe in
this result.

The proofs rely on Turán’s method, as well as some explicit numerical data for the low-lying zeros
of the L-functions (mod 8).

This article cites [5–7].

[27] I. Kátai, Eine Bemerkung zur “Comparative prime-number theory I–VIII” von S. Knapowski und P.
Turán, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 7 (1964), 33–40 (German). MR0176967

Let `1 and `2 be distinct reduced residues (mod k). Assuming HC, the author proves that

lim sup
x→∞

ψ(x, k, `1, `2)√
x

> 0

(and hence the corresponding statement for lim inf). When `1 and `2 are either both quadratic residues
or both quadratic nonresidues, it follows that

lim sup
x→∞

π(x, k, `1, `2)√
x/log x

> 0,

(and the corresponding statement for lim inf). The proof uses an idea of Littlewood, namely to estimate
the iterated integrals ∆n(x) =

∫ x
2

∆n−1(u) du where ∆0(x) = ψ(x; k, `1, `2) + O(log x) is the explicit
sum over zeros of Dirichlet L-functions (mod k).

Assuming GRH, the author can make the above statements quantitative and localized to intervals

of the form (x0, ax0), thus obtaining the lower bounds Wψ
k;`1,`2

(T ) � log x and (under the same

assumption on `1 and `2) the same estimate for Wψ
k;`1,`2

(T )� log x.

This article cites [3, 19–26,145].

[28] S. Knapowski and P. Turán, Further developments in the comparative prime-number theory I, Acta.
Arith. 9 (1964), 23–40. MR0162771

The first two sections offer a short summary of comparative prime number theory up to 1964. The
authors classify the subject into 48 separate problems over 12 categories (and additional variants on
these), which is of interest to those interested in the history of the field. They then move on to prove
results about “strongly localized accumulation problems”.

Most generally, assuming HC for the modulus k, they show that when T is sufficiently large in terms
of k, then for any (`, k) = 1 with ` 6≡ 1 (mod k),

max
I
ψ
(
I; k, `, 1

)
>
√
Te− log11/12 T and min

I
ψ
(
I; k, `, 1

)
< −
√
Te− log11/12 T ,

where the maximum and minimum are taken over all subintervals I of
[
Te− log11/12 T , T

]
. The central

argument involves the evaluation of the integral

1

2πi

∫
eAs
(
eBs − e−Bs

2Bs

)r(
1

ϕ(k)

∑
χ (mod k)

χ(`)
L′

L
(s, χ)

)
ds

for positive constants A and B.

This article cites [1, 5–7,13,17,19–26,156].
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[29] , Further developments in the comparative prime-number theory II, Acta. Arith. 10 (1964),
293–313.

The authors establish several theorems, all assuming HC(Ek) with Ek �
√

log k/k; most of their

results concern the function θl(x, r; k, `1, `2) where r = r(x, k) satisfies log k
Ek
� r ≤ log x. Their

most general result (Theorem VI) is that for any quadratic nonresidue `1 (mod k) and quadratic
residue `2 (mod k), if L(s, χ) satisfies GRH for all characters χ (mod k) such that χ(`1) 6= χ(`2), then
θl(x, r; k, `1, `2)�

√
x for x sufficiently large.

They also establish the following result. Let ` be a quadratic nonresidue (mod k), and suppose
that there exists a character χ (mod k) with χ(`) 6= 1 such that L(s, χ) has a zero ρ0 = β0 + iγ0

with β0 > 1
2 . Then for all T (sufficiently large in terms of k and ρ0), there exist subinter-

vals I± of
[
Te−5 log20/21 T , T e5 log20/21 T

]
such that π(I+; k, `, 1) > T β0 exp

(
−(2 + γ2

0)(log T )5/7
)

and

π(I−; k, `, 1) < −T β0 exp
(
−(2 + γ2

0)(log T )5/7
)
. They deduce this theorem from an analogous theorem

involving θl(x, r; k, `, 1), which serves as a sort of inverse to Theorem VI.

Together, these results imply, given a quadratic nonresidue ` (mod k), that the limit
limx→∞ θl(x, r; k, `, 1) = +∞ holds if and only if L(s, χ) satisfies GRH for all characters χ (mod k)
with χ(`) 6= 1. It follows that limx→∞ θl(x, r; k, `, 1) = +∞ holds for all quadratic nonresidues (mod k)
if and only if L(s, χ) satisfies GRH for every nonprincipal character χ (mod k).

The authors also make some remarks about races between residue classes to different moduli, showing
for example how the race between π(x; 3, 1) and π(x; 4, 1) reduces to a race between residue classes
modulo 12, to which their results apply.

This article cites [1, 5, 6, 17,20,22,26,156].

[30] , Further developments in the comparative prime-number theory III, Acta. Arith. 11 (1965),
115–127.

This paper concerns the weighted function θl(x, r; k, `, 1), for a modulus k satisfying HC and a quadratic
residue ` 6≡ 1 (mod k). Let β0 be the real part of any zero of an L(s, χ) where χ (mod k) a character
such that χ(`) 6= 1. The authors exhibit extreme values of θl(x, r; k, `, 1) where x is near T and r is near
(log T )2/3; more precisely, there exists a positive constant c such that for T sufficiently large, there

exist x1, x2 ∈ (Te−(log T )5/6 , T e(log T )11/15) such that for suitable r1, r2 ∈ [(2 log T )2/3, (2 log T )2/3 +
(2 log T )2/5],

θl(x1, r1; k, `, 1) > T β0e−c(log T )5/6 and θl(x2, r2; k, `, 1) < −T β0e−c(log T )5/6 .

The authors then state that using the methods of their prior paper [29], it follows that for T sufficiently

large, there exist closed subintervals I, J ⊆ [Te−(log T )6/7 , T e(log T )6/7 ] such that one has the “strongly
localized accumulations”

π(I; k, `, 1) >
√
Te−c(log T )5/6 and π(J ; k, `, 1) < −

√
Te−c(log T )5/6 .

This article cites [1, 5–7,13,20,26,29,156].

[31] , Further developments in the comparative prime-number theory IV, Acta Arith. 11 (1965),
147–161. MR0182616

Let `1 and `2 be quadratic non-residues modulo a sufficiently large modulus k. Let η be sufficiently
small in terms of k, and suppose that the Dirichlet L-functions (mod k) satisfy GRH(2/

√
η,Ek)

for suitable Ek. Then, when T is sufficiently large in terms of k and η, there exist x+ and x− in

the interval [T 1−√η, T elog3/4 T ], and η1 and η2 in the interval [2η log T, 2η log T +
√

log T ], such that
θl(x+, v+; k, `1, `2) > T 1/2−4

√
η and θl(x−, v−; k, `1, `2) < −T 1/2−4

√
η. Furthermore, under the same

assumptions, there exist subintervals I+, I− of [T 1−4
√
η, T 1+4

√
η] such that π(I+; k, `1, `2) > T 1/2−5

√
η

and π(I−; k, `1, `2) < −T 1/2−5
√
η.

This article cites [13,21,23,29,156].

[32] , Further developments in the comparative prime-number theory V, Acta Arith. 11 (1965), 193–
202. MR0182616
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This short paper is distinct among the second series by Knapowski and Turan, in that, rather than
make use of Turan’s “one-sided” methods, it uses a different, “two-sided” theorem to obtain its results:
If m > 0 and z1, . . . , zn ∈ C non-decreasing in absolute value with |z1| = 1, then for any b1, . . . , bn ∈ C,
there exists an integer ν such that m ≤ ν ≤ m+ n and∣∣∣∣ n∑

j=1

bjzj

∣∣∣∣ ≥ 1

2n

(
n

8e(m+ n)

)n
min

1≤k≤n

∣∣∣∣ k∑
j=1

bj

∣∣∣∣.
In addition to the use of the “two-sided” theorem above, the authors use a modified idea attributed to
Kreisel involving a sequence of integrals.

Their main result of their paper is a single theorem, for residues ` 6≡ 1 (mod k) for sufficiently
large moduli k, under the assumption that there exists 0 < δ < 1

10 such that no function L(s, χ) with

χ(`) 6= 1 vanishes in the closed disk |s− 1| ≤ 1
2 + 4δ. (This assumption is stronger than HC(2

√
δ) but

weaker than HC( 1
2 + 4δ).) For any sufficiently large T , the interval I = [T, e(log T )2(log log T )3 ] contains

x1, x2 such that

ψ(x1; k, 1, `) ≥ x1/2−4δ
1 and ψ(x2; k, 1, `) ≤ −x1/2−4δ

1 .

The authors compare their result to [20, Theorem 1.1], which uses more conventional methods and
yields a more localized sign change.

This paper cites [18,20,164].

[33] , On an assertion of Čebyšev, J. Analyse Math 14 (1965), 267–274.

The authors begin by remarking on some variants of the result of Hardy–Littlewood–Landau [5–7] that
Chebyshev’s assertion, namely that limx→∞ πe(x; 4, 1, 3) = −∞, is equivalent to GRH for L(s, χ−4).
The same methods would show the “Abelian preponderance-relations” that limx→∞ πe(x; 3, 1, 2) =
−∞ if and only if GRH holds for L(s, χ−3), while limx→∞ πe(x; 8, 1, `) = −∞ for all ` ∈ {3, 5, 7} if
and only if GRH holds for all nonprincipal Dirichlet L-functions (mod 8), and (“mutatis mutandis”)
limx→∞ πe(x; 12, 1, `) = −∞ for all ` ∈ {5, 7, 11} if and only if GRH holds for all nonprincipal Dirichlet
L-functions (mod 12). All of these results, they point out, hold with πe replaced by θe.

For the modulus k = 8, in the case where `1, `2 ∈ {3, 5, 7} are distinct quadratic nonresidues, the
authors had shown [26] that

max
T 1/3≤x≤T

θe(x; 8, `1, `2) >
√
T exp

(
−22

log T log log log T

log log T

)
;

however, they point out that the method failed to yield the analogous result for the “properly Čebyšev”
function πe. In this article, the authors do establish analogous large oscillations (without identifying
the signs of those oscillations) in the form

max
T 1/3≤x≤T

|πe(x; 8, `1, `2)| ≥
√
T exp

(
−23

log T log log log T

log log T

)
for any distinct reduced residues `1, `2 (mod 8), as well as the analogous statement for πe(x; 4, 1, 3).
The additional technical tool is a result (then unpublished) of Szegö that derives estimates for∑n
j=1 bje

−jy log j from estimates for
∑n
j=1 bje

−jy.

This article cites [1, 5–7,26].

[34] , Further developments in the comparative prime-number theory VI, Acta Arith. 12 (1966),
85–96.

The authors consider a “modified Abelian means” race between two quadratic residues `1, `2 (mod k),
under the assumption GRH( 3√

η , Ek) for suitable constants η and Ek. Their main result is that there

exist constants x ∈ [T 1−√η, T log T ] and ν ∼ 2η log T such that

θl(x, ν; k, `1, `2) > T 1/2−2
√
η,

(and thus the symmetric result for a large negative value). A corollary is the existence of an interval
I ⊂ [T 1−4

√
η, T 1+4

√
η] such that

π(I; k, `1, `2) > T 1/2−3
√
η.
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The authors obtained similar bounds for two quadratic nonresidues in [31], but emphasize they have
not been able to extend the results to races where `1 6≡ 1 (mod k) is a quadratic residue and `2 is
quadratic nonresidue. They employ Turan’s method for exponential sums.

This paper cites [13,21,29–31].

[35] I. Kátai, On investigations in the comparative prime number theory, Acta Math. Acad. Sci. Hungar 18
(1967), 379–391.

The author establishes an oscillation theorem of Landau type for Dirichlet integrals with a nonreal pole
of arbitrary mulitplicity, with the additional feature that the oscillations can be localized to explicit
intervals of the form [T, TK ]. From this, he deduces many unconditional number-theoretical results.
For example, all of the following oscillations can be found in all sufficiently large intervals of the form

[T, T 7+4
√

3]:

• M(x) = Ω±(
√
x), and the same for M(x, χ−4) and M(x; 4, 1) and M(x; 4, 3) and Me(x)

• Mr(x) = Ω±(1/
√
x), and the same for

∑∞
n=1

µ(n)
n e−(x/n)2

• for any k ≥ 2, the number of k-free integers up to x is x/ζ(k) + Ω±(x1/2k), and similarly for the
sum of e−n/x over all k-free numbers

• ψ(x; 8, `1, `2) = Ω±(x1/2) and, if `1, `2 6≡ 1 (mod 8), then π(x; 8, `1, `2) = Ω±(x1/2)/ log x

Furthermore, by considering separately the cases where RH or GRH is true or false, the author finds
all the following oscillations in intervals of the form [T, T 1+ε] for any fixed ε > 0:

• M(x) = Ω±(xΘ−ε), and similarly for the other functions in the previous list
• under HC, ψ(x; k, `1, `2) = Ω±(xΘ(k)−ε), and the same for ψe(x; k, `1, `2) (indeed, a hypothesis

slightly weaker than HC is required, in that real zeros of different L-functions could cancel each
other out)

These last theorems imply qualitative improvements on the number of sign changes of their respective

functions: for example, W (M,T )/ log log T →∞ and, under HC, Wψ
k,`1,`2

(T )/ log log T →∞.

This article cites [3, 5, 19–26].

[36] H. G. Diamond, Two oscillation theorems, The theory of arithmetic functions (Proc. Conf., Western
Michigan Univ., Kalamazoo, Mich., 1971), Springer, Berlin, 1972, pp. 113–118. Lecture Notes in Math.,
Vol. 251. MR0332684

The author presents two variants of oscillation theorems analogous to those of Ingham in [12]. Let
F (s) =

∫∞
0
e−suf(u) du denote the Laplace transform of the measurable function f : [0,∞) → R. We

suppose that the integral defining F (s) converges for <(s) > 0, and that F (s) can be continued as a
meromorphic function to a neighborhood of the imaginary axis; suppose further that all the poles of
F (s) on the imaginary axis are simple. Let T be the set of positive real numbers t such that it is a
pole of F (s), and let at be the residue of F (s) at s = it; furthermore, let a0 be the residue (possibly
0) of F (s) at s = 0.

The author defines a subset W ⊂ T to be “weakly independent of order N” if the only way to find
integers |nt| ≤ N (t ∈ W ) such that

∑
t∈W ntt ∈ T is to choose one nt equal to 1 and the rest equal

to 0. Given such a weakly independent subset W ⊂ T of order N , the author proves that

lim
x→∞

ess sup
u≥x

f(u) ≥ a0 +
2N

N + 1

∑
j∈J
|aj |

lim
x→∞

ess inf
u≥x

f(u) ≤ a0 −
2N

N + 1

∑
j∈J
|aj |

(where these essential supremum and infemum denote the supremum/infemum when we may ignore a
set of inputs of measure 0); equivalently, if 2N

N+1

∑
j∈J |aj | > |a0| then f(x) has arbitrarily large sign

changes. (The author gives a slight strengthening of this theorem as well.)

This article cites [12,159,173,177,186].

[37] H. Stark, A problem in comparative prime number theory, Acta Arith. 18 (1971), 311–320.
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The author states a Tauberian theorem of Landau type (with a proof sketch and a reference to an
unpublished paper of the author) and uses it to show that

lim sup
x→∞

Eπ(x; q, a, b)

≥ cq(b)− ck(a) +
∑

χ (mod q)
χ 6=χ0

∑
|γ|<T

χ(b)

ρ

(
1− γ

T

)
e(ρ−1/2)u −

∑
χ (mod k)
χ 6=χ0

∑
|γ|<T

χ(a)

ρ

(
1− γ

T

)
e(ρ−1/2)u

for any T > 0 and any u ∈ R, under the assumption of GRH(0) for nonprincipal L-functions modulo k
and q. In particular, the lim sup is positive if either a is a nonsquare (mod k) or b is a square (mod q)
(these are the cases for which cq(b)−ck(a) ≥ 0). Under the same assumption, the author further proves

lim sup
x→∞

Eπ(x; q, a, b)

≥ cq(b)− ck(a) +
∑

χ (mod q)
χ6=χ0

∑
|γ|<T

χ(b)

ρ
e(ρ−1/2)u −

∑
χ (mod k)
χ 6=χ0

∑
|γ|<T

χ(a)

ρ
e(ρ−1/2)u

for any T > 0 and any u 6= 0. Finally, the author obtains an exact formula for this right-hand side
with T = ∞ and u is negative, a version that implies that the lim sup is infinite if a ≡ 1 (mod k)
or b ≡ 1 (mod q) but not both. The author also uses this exact formula and some shrewd explicit
computation to show for the first time that π(x; 5, 4, 2) = Ω+(

√
x/ log x).

This article cites [12,19–26].

[38] S. Knapowski and P. Turán, Further Developments in the Comparative Prime-Number Theory VII,
Acta. Arith. 21 (1972), 193–201.

The authors show that for large enough T , there exist numbers U1, U2, U3, U4 with

log log log T ≤ U2 exp
(
− log15/16 U2

)
≤ U1 < U2 ≤ T

log log log T ≤ U4 exp
(
− log15/16 U4

)
≤ U3 < U4 ≤ T

such that θ([U1, U2]; 4, 1, 3) >
√
U2 and θ([U3, U4]; 4, 1, 3) < −

√
U4. In particular, there exist consecu-

tive primes pn and pn+1, both congruent to 1 (mod 4), satisfying log log log T ≤ pn < pn+1 ≤ T .

This paper cites [20,29,156].

[39] , On the sign changes of (π(x)−lix). I, Topics in number theory (Proc. Colloq., Debrecen, 1974),
North-Holland, Amsterdam, 1976, pp. 153–169. Colloq. Math. Soc. János Bolyai, Vol. 13. MR0439771

[40] , On the sign changes of (π(x)−lix). II, Monatsh. Math. 82 (1976), no. 2, 163–175. MR0439772

Following ideas of Littlewood, Ingham, and Skewes, the authors show unconditionally that W (Y ) �
log log log Y for sufficiently large Y , where the implied constants are effective. The proof itself is
divided into two cases. First, supposing the existence of an RH-violating zero β + iγ of ζ(s) such

that β ≥ 1
2 + 2 log−1/5 Y and 0 < γ ≤ log1/5 Y , the authors establish the much stronger lower bound

V1(Y ) >
1

2

(
log Y

2 log5/6 Y

)1/5

>
1

4
log1/30 Y.

The second case, where there is no such zero, is more technical and relies as usual upon Dirichlet’s box
principle.

This paper cites [4, 5, 8, 10,14,18,39,147].

[41] J. Pintz, Bemerkungen zur Arbeit: “On the sign changes of π(x)−li(x). II” (Monatsh. Math. 82 (1976),
no. 2, 163–175) von S. Knapowski und P. Turán, Monatsh. Math. 82 (1976), no. 3, 199–206 (German,
with English summary). MR0439773
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The author shows that there exists c > 0 such that W (T ) � (log log T )c when T is sufficiently large.
Indeed, this is a special case of a more general result that establishes many large oscillations of ∆(x): let
D be sufficiently large and set µ = D/ log log log log T . Then there are at least exp

(
(log log log T )1−µ)

sign changes of ∆(x) up to T , with oscillations as large as

∆(x) >

(
1

2
− 3 logD

D

)
µ ·
√
x log log log x

log x

(and the negative analogue), which, when D is so large that µ � 1, provides oscillations as large as
those established by Littlewood.

This article cites [4, 10,14,40].

[42] C. Bays and R. H. Hudson, The segmented sieve of Eratosthenes and primes in arithmetic progressions
to 1012, Nordisk Tidskr. Informationsbehandling (BIT) 17 (1977), 121–127.

The authors describe in detail a refinement of the segmented sieve of Eratosthenes, which they call the
dual sieve, designed to lower the execution time. As an illustration, they record the number of primes
in the eight reduced residue classes modulo 24 (from which one can calculate the number of primes
in residue classes modulo any divisor of 24) up to 1011, 2× 1011, . . . , 1012. From their table, one easily
observes that π(x; 24, 1) is consistently smaller than any other π(x; 24, a) by an amount that is very
roughly 1

2π(
√
x).

[43] J. Pintz, On the sign changes of π(x) − li(x), Journées Arithmétiques de Caen (Univ. Caen, Caen,
1976), Soc. Math. France, Paris, 1977, pp. 255–265. Astérisque No. 41–42. MR0447151

The author begins with a thorough summary of results on sign changes of ∆π(x) and related prob-
lems; he then announces, without proof, several new results of this type. He claims that for T suf-
ficiently large, unconditionally, W (T ) �

√
log T/ log log T , and that there exists c > 0 such that

every interval of the form [T c, T ] contains a sign change of ∆π(x); ineffectively one can narrow

these intervals to the form [Te−
√

log T log log T , T ]. Even if one restricts to “big sign changes”, where
∆π(x) = Ω±(

√
x log log log x/ log x), the author asserts that the number of such sign changes up to T

is �
√

log Te−
√

log log T effectively and �
√

log T/(log log T )2 ineffectively; these sign changes can be
localized as well, and the latter inequality even holds for large sign changes of the average of ∆π(x)
over intervals of length x/ log log x. The author further asserts that analogous theorems can be proved
for the other prime counting functions, as well as for π(x; 4, 1, 3) and some other class of prime races.

This article cites [4, 10,14,19–26,39–41].

[44] , On the remainder term of the prime number formula. III. Sign changes of π(x)− li(x), Studia
Sci. Math. Hungar. 12 (1977), no. 3–4, 345–369 (1980). MR607089

This article establishes new results on the number of sign changes of π(x) − Li(x). In particular it
proves the effective result

W (T )�
√

log T

log log T

and corresponding results for WΠ(T ), W θ(T ), and Wψ(T ) with the same lower bound. Moreover, it
establishes that there is necessarily a sign change in the interval [T, T exp(63

√
log T log log T )] for T

large enough in each of these cases, although the lower bound on such T is effectively computable only
in the Π(x) and ψ(x) versions.

Under RH, Ingham’s result from 1936 gives in fact a stronger localization theorem. The author here
uses Turán’s method, and in particular a result of Sós–Turán, to achieve a result under the assumption
that RH fails. Ingham’s idea to use Fejér kernels is also applied to prove the effective lower bound on
W (T ) in the absence of an effective localization result.

This article cites [4, 8, 10,14,17,18,39–41].

[45] C. Bays and R. H. Hudson, Details of the first region of integers x with π3,2(x) < π3,1(x), Math. Comp.
32 (1978), no. 142, 571–576. MR0476616

The authors determine that x = 608,981,813,029 is the smallest x such that π(x; 3, 2, 1) = −1. A faster
version of a previous program of theirs (which had run up to 2.5×1011) was used to find this sign change.
The authors provide graphs of π(x; 3, 2, 1) near this first sign change; they highlight that π(x; 3, 2, 1)
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becomes negative at two separate regions near the sign change, before taking on values shortly after
that are much more positive. The authors observe that neither π(x; 3, 2, 1) nor π(x; 4, 3, 1) becomes
very negative near the occurence of its first negative values; in attempts to determine a smaller Skewes
number, consequently, they recommend evaluation of ∆π(x) in regular intervals in order to not miss a
“shallow” sign change.

This paper cites [1, 4, 15,16,28,47,147,176,202].

[46] J. Pintz, On the remainder term of the prime number formula. IV. Sign changes of π(x)− li(x), Studia
Sci. Math. Hungar. 13 (1978), no. 1–2, 29–42 (1981). MR630377

This article establishes lower bounds for the number of sign changes for the error terms of classical
prime-counting functions. The main theorem of this article states that for f = π, Π, θ, or ψ, there
exists an absolute constant Y (f) such that for Y > Y (f),

W f (Y ) >
1

1011

log Y

(log log Y )3
.

Interestingly, Y (Π) and Y (ψ) are effectively computable in the author’s proof, whereas Y (π) and Y (θ)
are ineffective constants.

This article cites [4, 10,14,17,18,39–41,44].

[47] C. Bays and R. H. Hudson, Numerical and graphical description of all axis crossing regions for the
moduli 4 and 8 which occur before 1012, Internat. J. Math. Math. Sci. 2 (1979), no. 1, 111–119.
MR529694

The authors of this paper determine by computation the locations where π(x; 4, 3, 1) < 0, and where
π(x; 8, a, 1) < 0 for any a ∈ {3, 5, 7}, for x up to 1012. For x < 109, a check was made at every prime; for
109 ≤ x ≤ 1012, a check was made every 107 integers, with additional checks in between if π(x; q, a, b)
was found to be near zero. They then organize these locations into “axis-crossing regions” (ACRs)
[m,n], where π(m; q, a, 1) = π(n; q, a, 1) = −1 and π(x; q, a, 1) ≥ 0 for all x outside an ACR, with m
at least twice as large as the upper bound for the previous ACR.

For q = 4, they find six distinct ACRs under 1012. For (q, a) = (8, 5), they find two ACRs under
1012 and find no ACRs for (q, a) = (8, 3) or (q, a) = (8, 7). They compare their computations to earlier
published results from Leech [15], Shanks [16], and an unpublished communication from Lehmer (dated
October 29, 1975). While their results overlap with Leech and Shanks for q = 4 for x ≤ 3 · 106, they
find that their new information contradicts a prior characterization of the ACRs as mostly consisting
of sparse, tiny intervals. For example, one ACR below x < 2 · 1010 contains 5 · 108 integers where
π(x; 4, 3, 1) < 0; another ACR between 37·109 and 39·109 contains 1.2·109 integers with π(x; 8, 5, 1) < 0.
Consequently, they argue that for large x, such regions may be more typical than sign-changes being
sparse, isolated points.

This paper cites [1, 4, 15,16,20,21,42,202].

[48] H.–J. Besenfelder, Über eine Vermutung von Tschebyschef. I., J. Reine Angrew. Math. 307/308 (1979),
411–417 (German).

Using an existing explicit formula for general Mellin-transform pairs, the author shows that

2
√
πy

∑
0<σ<1

L(σ+iγ,χ−4)=0

ey(σ−1/2+iγ)2 = log
4

π
− 2

∞∑
n=1

Λ(n)χ−4(n)√
n

e−(logn)2/4y

− C0 + 2

∫ ∞
0

e−x
2/4y+x/2 − 1

1− e2x
dx.

From this identity, he proves unconditionally that

lim
x→∞

∑
p>2

(−1)(p−1)/2 log p
√
p
e−(log2 p)/x = −∞.

(Note: the author, Hans–Joachim Besenfelder, soon changed his last name to Bentz and began to
publish under that name.)
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This article cites [1, 5, 6, 29].

[49] H.–J. Bentz and J. Pintz, Quadratic Residues and the Distribution of Prime Numbers, Monatsh. Math.
90 (1980), no. 2, 91–100.

The first section of this article offers a short, conventional history of prime number races, specifically
citing Shanks’s computational work and heuristics from [16] as motivation for its results. Let `1 be a
quadratic residue (mod q) and `2 a quadratic non-residue (mod q). Suppose that Dirichlet L-functions
(mod q) satisfying the condition that all zeroes β + iγ satisfy the inequality β2 − γ2 ≤ 1

4 (a “bowtie”
assumption). Then for 0 ≤ α < 1/2,∑

p≡`1 (mod q)

log p

pα
e−(log p)2/x −

∑
p≡`2 (mod q)

log p

pα
e−(log p)2/x ∼ cq

ϕ(q)

√
πx · e x4 ( 1

2−α)2 ,

and in particular tends to infinity. By computations of Spira, this result is unconditional for q ≤ 24.

This paper cites [1, 5–7,15,16,19–26,28–32,34,48,50,61].

[50] H.–J. Besenfelder, Über eine Vermutung von Tschebyschef. II., J. Reine Angrew. Math. 313 (1980),
52–58.

[TO POLISH] Besenfelder (1980), in the beginning of his paper noted that there is a small typo in
Turan’s (1971) paper titled “Commemoration on Stanislaw Knapowski” which the correct form is

limx→∞
∑
p>2(−1)(p−1)/2e− log2(p/x). To prove his theorem Besenfelder provided an explicit formula

which is simplified as

(5.1)

∑
p>2

log p · p−α · e− log2 p/4y · χ1(p) = log 4/π − C +

∫ ∞
0

e−x
2/4y+αx − 1

1− e2x
dx

+

∫ ∞
0

e−x
2/4y+(1−α)x − 1

1− e2x
dx−

∑
p>2,n=2

log p · p−2α · e− log2 p/y · χ1(p2)

−
∑

p>2,n≥3

log p · p−nα · e− log2 pn/4y · χ1(pn)−
∑
p,n

log p · p−n(1−α) · e− log2 pn/4y · χ1(pn)

−
∑
ρ(x1)

∗2
√
πy · ey(ρ−1/2)2

which arises after applying F (x) = e−x
2/4y+(1/2−α)x for α, y ∈ R and y > 0 in the initial explicit

formula. In this explicit formula, χ1(p) = (−1)(p−1)/2, χ1(p2) = +1, and the star next to the summation
shows that the roots of ρ are ordered by growing amount of their ordinates γ. Besenfelder showed that
regardless of any assumptions for 0 ≤ α ≤ 1/2 we have

lim
x→∞

∑
p>2

(−1)(p−1)/2 · log p · p−αe− log2 p/4y = −∞.

Since the obtained equation is invariant under the substitution of α → 1 − α, the limit holds for
any 0 ≤ α ≤ 1, therefore only the prove of the case when 0 ≤ α ≤ 1/2 is sufficient. There exist a
typo in the second remark when defining the partial multiplication function g(p). The correct form is

g(p) = e−p/x

e−(log2 p)/x
.

This article cites [1, 5–7,25,29,48,187,188].

[51] R. H. Hudson, A common combinatorial principle underlies Riemann’s formula, the Chebyshev phe-
nomenon, and other subtle effects in comparative prime number theory. I, J. Reine Angew. Math. 313
(1980), 133–150. MR552467

In this article, the author outlines a combinatorial principle that seeks to explain various effects and
biases in comparitive prime number theory. He highlights Riemann’s original explicit formula π(x) ∼
li(x) − 1

2 li(x1/2) − 1
3 li(x1/3) + · · · and connects it to Chebyshev’s observation, which can be seen as

approximating π(x; 4, 3, 1) by half the number of prime squares. Arguing from a generalisation of an
exact formula of Meissel, the author deduces, in the example of primes (mod 4), that an “excess” in
the number of integers of the form pq, where p and q are prime, in the class 1 (mod 4) must result in a
corresponding “deficiency” in the number of primes of exactly this magnitude, that is, half the number
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of prime squares. A combinatorial observation gives a reason for such an excess: in counting integers
that are the product of two primes from a set, products of distinct primes are counted twice (as pq
and qp), while the prime squares are not. The author then provides similar arguments for why cubic
and higher order effects should exist. Along with describing the combinatorial principle in generality,
he provides details of some numerical investigations into these effects.

This article cites [1, 4, 16,28,29,37].

[52] W. R. Monach, Numerical Investigation of Several Problems in Number Theory, ProQuest LLC, Ann
Arbor, MI, 1980. Thesis (Ph.D.), University of Michigan. MR2631002

[53] H. L. Montgomery, The zeta function and prime numbers, Proceedings of the Queen’s Number Theory
Conference, 1979 (Kingston, Ont., 1979), Queen’s Papers in Pure and Appl. Math., vol. 54, Queen’s
Univ., Kingston, Ont., 1980, pp. 1–31. MR634679

Section 3 of this article examines random variables of the form X =
∑∞
k=1 rk sin(2πθk) for {rk} a

decreasing `2 sequence, where the θk are independently uniformly distributed on R/Z. The author
establishes, for any integer K ≥ 1, the bounds

P

(
X ≥ 2

K∑
k=1

rk

)
≤ exp

(
−3

4

( K∑
k=1

rk

)2( ∞∑
k=K+1

r2
k

)−1
)

P

(
X ≥ 1

2

K∑
k=1

rk

)
≥ 1

240
exp

(
−100

( K∑
k=1

rk

)2( ∞∑
k=K+1

r2
k

)−1
)

;

in addition, if δ is sufficiently small and
∑
k : rk>δ

(rk − δ) ≥ V , then

P (X ≥ V ) ≥ 1

2
exp

(
−1

2

∑
k : rk>δ

log
π2rk
2δ

)
.

These results can be applied to the limiting logarithmic distribution function of Eψ(x), which
(assuming RH and LI) is the same as the distribution of the random variable Y =

∑
γ>0

2
|ρ| sin(2πθρ).

In particular, the second result implies that there exist constants 0 < c1 < c2 such that

exp
(
−c2
√
ve
√

2πv
)
≤ P (Y > v) ≤ exp

(
−c1
√
ve
√

2πv
)
,

which suggests the conjecture

lim sup
Eψ(x)

(log log log x)2
=

1

2π
and lim inf

Eψ(x)

(log log log x)2
= − 1

2π
.

[54] J. Pintz, Oscillatory properties of M(x) =
∑
n≤x µ(n). II, Studia Sci. Math. Hungar. 15 (1980), no. 4,

491–496. MR688630

[55] , On the remainder term of the prime number formula. I. On a problem of Littlewood, Acta
Arith. 36 (1980), no. 4, 341–365. MR585891

This article contains explicit oscillation results under the assumption that RH is false. Suppose that
ρ0 = β0 + iγ0 is a nontrivial zero of ζ(s). Let 0 < ε ≤ 0.02, and set A = 40000ε−2 log γ0. Then for H
sufficiently large in terms of ρ0, there exist x+ and x− in the interval [H,HA] such that

∆π(x+) > (1− ε)
xβ0

+

|ρ0| log x+
and ∆π(x−) < −(1− ε)

xβ0

−
|ρ0| log x−

,

and the same for ∆Π(x); similarly, the result holds without the factor log x in the denominator for
∆ψ(x) and ∆θ(x). In all these theorems, if in addition β0 >

1
2 +ε and γ0 is sufficiently large in terms of

ε, then by replacing the factor (1− ε)/|ρ0| by the smaller 1/γ1+ε
0 , the localization can be improved to

the interval [H,H1+ε]. Consequently, W f (T )/ log log T tends to infinity for each of the four functions
f ∈ {π,Π, θ, ψ} (the case where RH is true having been handled by Ingham [10]).

This article cites [4, 10,19–26,28–32,39,53].

[56] , On the remainder term of the prime number formula. II. On a theorem of Ingham, Acta Arith.
37 (1980), 209–220. MR598876
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This article investigates the connection between the zero free region of ζ(s) and the size of the remainder
term in the prime number theorem. Let η : [1,∞) → (0, 1

2 ] be a continuous, decreasing function, and
suppose that ζ(s) does not vanish when σ > 1 − η(|t|). If we define ω(x) = mint≥1(η(t) log x + log t),
then for any 0 < ε < 1,

∆ψ(x)�ε x/e
(1−ε)ω(x),

and the same is true for ∆θ(x) and ∆Π(x) and ∆π(x). This is an improvement of a result of Ingham [147,
Theorem 22], which had a factor of 1

2 in the exponent (and additional conditions upon η). In particular,
when combined with a 1960/61 theorem of Staś, this result provides a nearly lossless relationship
between zero-free regions for ζ(s) and error terms in the prime number theorem. It follows that an
Ω-theorem for any of the four error terms given above actually implies Ω±-theorems, of the same order
of magnitude up to an ε in the exponent, for all four error terms, an implication that seems extremely
difficult to prove directly.

This article cites [4, 19–26,28–32,39,53,147].

[57] , On the remainder term of the prime number formula. V. Effective mean value theorems, Studia
Sci. Math. Hungar. 15 (1980), no. 1–3, 215–223. MR681441

For any of the functions f ∈ {π,Π, θ, ψ}, the author establishes lower bounds for the integrated

absolute error term ∆f
|1|(x). The main theorem of this article states that if β0 + iγ0 is a zero of

the Riemann zeta function, then ∆f
|1|(Y )/Y ≥ Y β0e−2

√
log Y (log log Y )2 when Y is sufficiently large in

terms of γ0. The author sketches a modification of the proof that yields the stronger lower bound

∆f
|1|(Y ) ≥ Y β0e−18(log Y )1/3(log log Y )4/3 .

This article cites [44,46,55,56,58,144,150,153,161,162,195].

[58] , On the remainder term of the prime number formula. VI. Ineffective mean value theorems,
Studia Sci. Math. Hungar. 15 (1980), no. 1–3, 225–230. MR681442

This article concerns the absolute averages ∆|1| of various standard error terms for prime counting
functions. When Y is sufficiently large (ineffectively), the author proves that

∆π
|1|(Y ) > 0.62

Y 3/2

log Y
, ∆Π

|1|(Y ) > 9 · 10−5 Y
3/2

log Y
,

∆θ
|1|(Y ) > 0.62Y 3/2, ∆ψ

|1|(Y ) > 10−4Y 3/2.

Thanks to work of Cramér [144], if RH is true then these bounds are best possible up to the leading
constants (and even those constants are not too far off). Under RH, the author can improve some of
these constants and also better localize the implied large values of the error terms; indeed, the lower
bounds for the ∆|1| are derived from the existence of large oscillations of the error terms, rather than
the other way around.

This article cites [10,57,144].

[59] , On the sign changes of M(x) =
∑
n≤x µ(n), Analysis 1 (1981), no. 3, 191–195. MR660714

[60] H.–J. Bentz, Discrepancies in the Distribution of Prime Numbers, J. Number Theory 15 (1982), 252–
274.

For 0 ≤ α < 1
2 , the author shows unconditionally that∑

p

χ−4(p)
log p

pα
e−(log x)2/p ∼ −

√
πx

2
ex(1−2α)2/16;

when α = 1
2 , the right-hand side must be replaced by 1

4

√
πx. Both results remain valid if χ−4 is

replaced by χ−3. These results can be interpreted as comparing (in a specific way) the residue class
1 to the other reduced residue class modulo 4 or 3. Analogously, when α = 1

2 , the author establishes
the same result when comparing 1 (mod 8) to another reduced residue class (mod 8); if two reduced
residue classes (mod 8) are compared, the resulting expression is bounded. The author asserts that
the required hypotheses on zeros of relevant Dirichlet L-functions is that they do not vanish in the
“bowtie” {s : σ > 0, 0 < |t| < |σ − 1

2 |}. The author also presents some numerical data concerning the
prime number race (mod 3).
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This paper cites [5–7,15,16,19–26,28–32,34,38,48–50,147,199].

[61] H.–J. Bentz and J. Pintz, Über das Tschebyschef-Problem, Resultate Math. 5 (1982), no. 1, 1–5
(German). MR662791

[62] J. Pintz, Oscillatory properties of M(x) =
∑
n≤x µ(n). I, Acta Arith. 42 (1982/83), no. 1, 49–55.

MR678996

This article is concerned with oscillations in the Mertens sum. The natural difficulty of this problem
comes from the fact that the explicit formula for M(x) contains terms of the form xρ/ρζ ′(ρ), which are
more difficult to handle than the terms xρ/ρ appearing in the explicit formula for ∆ψ(x). The author
proves that if ρ0 = β0 + iγ0 is a zero of ζ(s), then for Y > e|γ0|+4,

1

Y

∫ Y

Y/(100 log Y )

|M(x)| dx > 1

6|ρ0|3
Y β0 and max

x≤Y
|M(x)| ≥ 1

6|ρ0|3
Y β0 .

Consequently, using the first zeta zero 1
2 + iγ1 with γ1 ≈ 14.13,

max
Y/(100 log Y )≤x≤Y

|M(x)| ≥ 1

17000

√
Y

for Y ≥ 2; the constant 1/17000 can be improved but not enough to disprove the Mertens conjecture.

This paper cites [35,153].

[63] , Oscillatory properties of the remainder term of the prime number formula, Studies in pure
mathematics, Birkhäuser, Basel, 1983, pp. 551–560. MR820251

The author establishes two theorems that improve and simplify prior work of Turán and of Ingham.
The first theorem states that if ζ(β0 + iγ0) = 0, then for T sufficiently large in terms of γ0, there exists
an x ∈ [T 1/4, T ] for which |∆ψ(x)| �γ0 x

β1 (with an explicit dependence on γ0). The second theorem
assumes that ζ(s) 6= 0 in a region of the shape σ ≥ 1− η(t) where η is continuous and decreasing, and,
defining ω(x) = mint≥0(η(t) log x+ log t), concludes that ∆ψ(x) = Ω(x/e54ω(x)). The main tool is the
powersum estimate of Sós and Turán. Near-optimal improvements (by the author) of these two results
appeared slightly earlier [55,56].

This article cites [2, 55,56,147,153,154,157].

[64] J. Kaczorowski, On sign-changes in the remainder-term of the prime-number formula. I, Acta Arith.
44 (1984), no. 4, 365–377. MR777013

This article establishes a lower bound on the growth of the number of sign changes of ∆ψ(x) and
∆Π(x). Specifically, the author proves that Wψ(T ) ≥ γ1

4π log T (and the same for WΠ(x)) when T is
sufficiently large (effectively), where γ1 ≈ 14.1347. The key technique used in the paper is to bound

Wψ(T ) below by W
(
∆ψ
n ;T

)
, the number of sign changes of repeated logarithmic integrals of ∆ψ(x);

using the fact that the second-lowest nontrivial zero of ζ(s) has imaginary part exceeding 15, the author

derives an explicit formula for W
(
∆ψ
n ;T

)
when n � log T is suitably chosen.

This paper cites [4, 5, 8–10,14,17,18,39–41,44,46,137,147,176,196].

[65] J. Pintz and S. Salerno, Irregularities in the distribution of primes in arithmetic progressions. I, Arch.
Math. (Basel) 42 (1984), no. 5, 439–447. MR756697

Assuming a finite Riemann-Piltz conjecture, the authors show that when Y is sufficiently large,∫ Y

Y 1−7/λ

ψ(x; q, `1, `2)
dx

x
�
√
Y exp

(
−2 log Y

λ
− c3qλ log2 Y

)
(and the same for Π in place of ψ) for any λ satisfying

√
log Y

√
q log log Y

< λ <
c2 log Y

q(log log Y )2
.

Essentially any such choice of λ improves upon analogous results of Knapowski [162,166,168]. The proof
also works for ψ replaced by θ or π, but only if `1 and `2 are both quadratic nonresidues (mod q).

This paper cites [31,162,166,168,214].
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[66] , Irregularities in the distribution of primes in arithmetic progressions. II, Arch. Math. (Basel)
43 (1984), no. 4, 351–357. MR802311

The authors elaborate on their work in [65] to handle prime number races where a bias is present.
Again assuming a finite Riemann-Piltz conjecture, they show that when Y is sufficiently large,

1

Y

∫ Y

Y 1−7/λ

|π(x; q, `1, `2)| dx ≥
√
Y exp

(
−9 log Y

λ
− c3qλ(log log Y )2

)
,

(and the same for θ in place of π) for any λ satisfying
√

log Y
√
q log log Y

< λ <
c2 log Y

q (log log Y )
2 .

They first deal with the case when both `1 and `2 are quadratic residues (mod q), using an explicit
formula involving zeros of both L(s, χ) and L(2s, χ). In the remaining case when `1 is a residue and
`2 is a nonresidue, there is an additional term corresponding to the pole of L(2s, χ0) at s = 1

2 .

This paper cites [65,162,166,168].

[67] J. Pintz, On the partial sums of the Möbius function, Topics in classical number theory, Vol. I, II
(Budapest, 1981), Colloq. Math. Soc. János Bolyai, vol. 34, North-Holland, Amsterdam, 1984, pp. 1229–
1250. MR781183

[68] , On the remainder term of the prime number formula and the zeros of Riemann’s zeta-function,
Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983), Lecture Notes in Math., vol. 1068,
Springer, Berlin, 1984, pp. 186–197. MR756094

This paper is primarily a summary of the results to be proved in the series [54–59] by the author. The

main functions of interest are S(x) = max0≤u≤x |∆ψ(u)| and ∆ψ
|1|(x) =

∫ x
0
|∆ψ(u)| du. The following

theorem is proved: Define ω(x) = log x
Z(x) , where Z(x) = maxρ

xβ

|γ| . Then

log
x

S(x)
∼ log

x2

∆ψ
|1|(x)

∼ ω(x).

In particular, this implies that S(x) and 1
x∆ψ
|1|(x) are close in value, that is, the mean and maximum

of |∆ψ(u)| are close. The proof uses a zero-density theorem of Carlson (for the upper bounds) and the
power-sum method (for the lower bounds).

This article cites [4, 14,17,18,39,40,54–59,64,147,161,163].

[69] , Oscillatory properties of M(x) =
∑
n≤x µ(n). III, Acta Arith. 43 (1984), no. 2, 105–113.

MR736725

By refining the proof method in his previous work [54], the author proves that if ρ0 = β0 + iγ0 is a
zero of ζ(s), then when Y is sufficiently large in terms of γ0,

max
x∈[Y exp(−5(log log Y )5/2),Y ]

M(x)

xβ0
>

1

48|ρ0|3
and min

x∈[Y exp(−5(log log Y )5/2),Y ]

M(x)

xβ0
< − 1

48|ρ0|3
.

This article cites [46,54,62,169,174,178,179].

[70] J. Pintz and S. Salerno, On the comparative theory of primes, Ann. Scuola Norm. Sup. Pisa Cl. Sci.
(4) 11 (1984), no. 2, 245–260. MR764945

The authors obtain new estimates on ψ(x; q, `1, `2) for arbitrary residues `1, `2. Assuming
GRH(cq2 log6 q, A(q)), the authors prove that for Y sufficiently large, there exists

x ∈

[
Y exp

(
− cq√

A(q)
(log Y )1/2(log log Y )3/2

)
, Y

]
such that

ψ(x; q, `1, `2) >
√
Y exp

(
− cq√

A(q)
(log Y )1/2(log log Y )3/2

)
.
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This is an improvement over the work of Knapowski and Turan both in the localization and in the
lower bound. The authors improve the power-sum bounds used by Knapowski and Turan to prove their
results.

This article cites [19–26,140,173].

[71] J. Kaczorowski, On sign-changes in the remainder-term of the prime-number formula. II, Acta Arith.
45 (1985), no. 1, 65–74. MR791085

The author proves unconditionally that Wπ(T )� log T , though with an ineffective constant, and the
same for W θ(T ). He also proves unconditionally that lim infT→∞Wψ(T )/log T ≥ γ(Θ)/π, where γ(Θ)
is the smallest γ > 0 such that ζ(Θ + iγ) = 0 (or γ(Θ) = ∞ if Θ is not attained); this improves a
result of Pólya [8], which had lim sup in place of lim inf. He remarks that if RH is false, then the proof
of this latter result can be extended to W θ(T ) and (with a bit more difficulty) to WΠ(T ) and Wπ(T ).

As in a previous paper, the proofs of both theorems make use of the iterated averages ∆f
n(x).

This paper cites [4, 5, 8, 10,17,18,39–41,64,196].

[72] J. Kaczorowski and J. Pintz, Oscillatory properties of arithmetical functions. I, Acta Math. Hungar.
48 (1986), no. 1–2, 173–185. MR858395

In this article, the authors improve upon and extend results of Landau [3], Pólya [8], and Gross-
wald [173]. Given a Dirichlet intergal F (s) =

∫∞
x0
f(x)x−s−1 dx converging on a right half-plane

{σ > θ}, with a continuation to a larger half-plane except for perhaps countably many poles or

logarithmic singularities (in a precise sense), the authors show that lim infT→∞
W (f,T )

log T ≥ γ
π where

γ = inf{|t| : F (s) is not regular at θ + it}. This result implies � log T sign changes of the functions
M(x) and

∑
n≤x µk(n)−x/ζ(k), as well as of ψ(x; q, `1, `2) assuming HC. For a slightly more restricted

class of functions, the authors prove an effective version of a similar result, again guaranteeing� log T
sign changes (essentially using a single singularity of F (s)) but now with effective constants.

This paper cites [3, 8, 23,24,35,54,64,71,173,177,196].

[73] G. Robin, Irrégularités dans la distribution des nombres premiers dans les progressions arithmétiques,
Ann. Fac. Sci. Toulouse Math. (5) 8 (1986/87), no. 2, 159–173.

This article examines, assuming HC, the asymptotic behaviour of the weighted average P(x) =∑
n≤x ∆̊(n; k, `)n−α logβ n where α and β are fixed real numbers. If GRH is false, then P(x) �

1 + x1−α+Θk logβ−1 x and P(x) = Ω±(x1−α+Θk−ε); under the additional assumption of SA, we have

P(x) = Ω±(x1−α+Θk logβ−1 x) (which is thus best possible for α < 1 + Θk).

If GRH is true, the behaviour depends more significantly upon α and β. When α > 3
2 , we have

P(x)� 1. When α = 3
2 , we have P(x)� 1 if β < 0, and P(x) = (1− ck(`)) log log x+O(1) if β = 0,

and P(x) = (1 − ck(`))(log x)β/β + O((log x)β−1 log log x) if β > 0. Finally, when α < 3
2 , we have

P(x)� x3/2−α logβ−1 x. This theorem disproves Shanks’s conjecture
∑
n≤x π(n; 4, 3, 1)n1/2/π(n) ∼ x,

as well as corresponding conjectures for other moduli. Moreover, it shows that Brent’s conjecture∑
n≤x π(n; 4, 3, 1)/n1/2π(n) ∼ log x is equivalent to GRH.

Again assuming GRH and α < 3
2 , the author asserts that for certain moduli including

3, 4, 5, 6, 7, 8, 9, 10, 12, there exists a constant αk,` such that for α > αk,`, when x is sufficiently large
then P(x) < 0 if ` is a quadratic residue and P(x) > 0 if ` is a quadratic nonresidue. (It seems that this
result actually holds for all moduli k ≥ 3.) On the other hand, for some moduli including 23, 43, 67, 163,

there exists a constant α′k,` such that for α < α′k,`, we have P(x) = Ω±(x3/2−α logβ−1 x).

This article cites [5–7,15,16,19–26,28–32,34,37,38,49,60,193,195,206,207].

[74] J. Kaczorowski and J. Pintz, Oscillatory properties of arithmetical functions. II, Acta Math. Hungar.
49 (1987), no. 3-4, 441–453. MR891057

The authors extend their earlier results to obtain� log T sign changes for functions such as ∆Π(x; q, a),
∆π(x; q, a) where a is a quadratic nonresidue, ∆Π(x; q, a, b) where a 6≡ b (mod q), and so on. They
also similarly obtain sign changes (in relatively short intervals) for the error term in the asymptotic
formula for the counting function of irreducible elements in the ring of integers OK of a number field K,
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assuming the Dedekind zeta function of the Hilbert class field of K does not vanish on the interval
[1/2, 1) and has at least one simple zero in the half-plane σ > 1/2.

This article cites [10,64,71,72].

[75] J. Kaczorowski, On sign-changes in the remainder-term of the prime-number formula. III, Acta Arith.
48 (1987), no. 4, 347–371. MR927376

This article examines W (∆ψ
e ;T ), the number of sign changes of ∆ψ

e (x) =
∑∞
n=1(Λ(n) − 1)e−n/x in

the interval [0, T ]. The author first proves that SA (which he calls “Ingham’s condition”) is equivalent
to the assertion that W

(
∆ψ
e ; [T, eT ]

)
� 1 uniformly for T > 0, which is further equivalent to each

of lim supT→∞W (∆ψ
e ;T ) < ∞ and lim infT→∞W (∆ψ

e ;T ) < ∞. Assuming SA and LI(Θ), the author
proves that W (∆ψ

e ;T ) ∼ κ log T as T →∞, for a constant κ (given by an explicit integral) depending
on the zeros of ζ(s) on the line σ = Θ. Finally, assuming RH, the author proves that W (∆ψ

e ;T ) =
γ1
π log T +O(1), where γ1 ≈ 14.13, and indeed that these sign changes are extremely regularly spaced

and correspond to oscillations that are �
√
x. These results support the author’s conjecture that

W (∆ψ
e ;T ) ∼ c log T as T →∞.

This article cites [5, 10,64,71,165].

[76] H. J. J. te Riele, On the sign of the difference π(x)− li(x), Math. Comp. 48 (1987), no. 177, 323–328.
MR866118

The author shows that π(x) > li(x) for some 6.62 × 10370 ≤ x ≤ 6.69 × 10370, thereby improving the
previous best estimate, 1.65 × 101165, for Skewes’s number found by Lehman [176]. Using an explicit
formula for Eπ(eu) averaged by a Gaussian kernel, Lehman had found three candidates for x near
which π(x) > li(x), namely e727.952, e853.853, and e2682.977. Lehman showed that e2682.977 produced an
actual example; using the zeros of ζ(s) up to height 5 × 104, found on a CYBER 205 supercomputer
located at the Academic Computer Centre Amsterdam, the author shows that e853.853 produces an
actual example. The author speculates that zeros up to height 4× 105 would be required to determine
whether there is an actual example around e727.952.

This paper cites [4, 14,176].

[77] A. Fujii, Some generalizations of Chebyshev’s conjecture, Proc. Japan Acad. Ser. A Math. Sci. 64
(1988), no. 7, 260–263. MR974088

[78] J. Kaczorowski, On sign-changes in the remainder-term of the prime-number formula. IV, Acta Arith.
50 (1988), no. 1, 15–21. MR945273

The author proves, when Θ > 1
2 , that for any ε > 0 we have maxT≤x≤(1+ε)T |∆ψ

e (x)| �ε T
Θ−ε.

In light of the author’s previous results [75] that assumed RH, it follows that unconditionally (but

ineffectively), maxT≤x≤(1+ε)T |∆ψ
e (x)| �ε

√
T . The author also deduces that Wψ

e (T ) = o(log2 T ), and
sketches a construction (of a “barrier”) showing that this result cannot be improved without further
information on the zeros of ζ(s).

This paper cites [64,71,75,156,162,165].

[79] B. Szyd lo, Über Vorzeichenwechsel einiger arithmetischer Funktionen. I, Math. Ann. 283 (1989),
139-149 (German).

[80] , Über Vorzeichenwechsel einiger arithmetischer Funktionen. II, Math. Ann. 283 (1989), 151-
163 (German).

[81] , Über Vorzeichenwechsel einiger arithmetischer Funktionen. III, Monatsh. Math. 108 (1989),
325-336 (German).

[82] J. Kaczorowski, The k-functions in multiplicative number theory. I. On complex explicit formulae, Acta
Arith. 56 (1990), no. 3, 195–211. MR1083000

This is the first in a series of articles on the “k-functions” k(z, χ) and K(z, χ) and certain limiting
values F (x, χ) of the latter (see Section 3.5 for definitions). In Section 3, the author proves that k(z, χ)
can be analytically continued to a meromorphic function on the Riemann surface M for log z, and
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indeed that

k(z, χ)− 1

2πi

ez

ez − 1
log z

is meromorphic and single-valued on C. Indeed, the author finds all of the singularities of k(z, χ) onM
(all simple poles) and their residues. He also establishes the functional equations

k(z, χ) + ezk(z∗, χ) = D(z, χ), k(z, χ) + k(zc, χ) = ezD(−z, χ).

In Section 4, the author establishes explicit formulas for ψ0(x, χ) and ψ0r(x, χ), stated in the forms

(x > 0) F (x, χ) +
∑
β>0

L(β,χ)=0

eβx

β
= −ψ0(ex, χ)−Rχ(−1)(x) +B(χ) +


ex, if χ = χ0,

−x, if χ 6= χ0 and χ(−1) = 1,

0, if χ(−1) = −1.

(x < 0) F (x, χ) +
∑
β>0

L(β,χ)=0

eβx

β
= ψ0r(e

|x|, χ) +R−χ(−1)(|x|) + C(χ) +


ex, if χ = χ0,

x, if χ 6= χ0 and χ(−1) = 1,

0, if χ(−1) = −1.

The author then shows that the left-hand side is equal to the series
∑
ρ e

ρx/ρ as in the classical explicit
formulas for the right-hand sides.

This article cites [147].

[83] , The k-functions in multiplicative number theory. II. Uniform distribution of zeta zeros, Acta
Arith. 56 (1990), no. 3, 213–224. MR1083001

Let 0 < γ1 ≤ γ2 ≤ · · · denote the imaginary parts of non-trivial zeros of L(s, χ) in the up-
per half plane. In this paper Kaczorowski defines a positive Toeplitz matrix A = (ank) by ank =

e−γkγnk (
∑∞
h=1 e

−γhγnh )
−1

(for n, k ≥ 1), and proves that for any non-zero real x, the sequence (xγn)∞n=1

is A-uniformly distributed (mod 1); the known result that the xγn are uniformly distributed (mod 1)
(in the sense of Weyl) follows as a corollary.

This article cites [82].

[84] , The k-functions in multiplicative number theory. III. Uniform distribution of zeta zeros; dis-
crepancy, Acta Arith. 57 (1991), no. 3, 199–210. MR1105605

Continuing the previous paper in this series, the author defines an “A-discrepancy”

D∗n(x) = sup
0≤t≤1

∣∣∣∣( ∑
k≥1
{xγk}<t

e−γkγnk

)/( ∞∑
k=1

e−γkγnk

)
− t
∣∣∣∣.

He shows that D∗n(x)� (log log n/ log n)2/3 for every real number x 6= 0. Under a certain A-variant of
zero-density theorems for Dirichlet L-functions, he proves that D∗n(x)� 1/ log n and conjectures that
D∗n(x) ∼ α(x)/ log n for some constant α(x).

This article cites [83].

[85] , The k-functions in multiplicative number theory. IV. On a method of A. E. Ingham, Acta
Arith. 57 (1991), no. 3, 231–244. MR1105608

[86] , The k-functions in multiplicative number theory. V. Changes of sign of some arithmetical error
terms, Acta Arith. 59 (1991), no. 1, 37–58. MR1133236

[87] D. R. Heath-Brown, The distribution and moments of the error term in the Dirichlet divisor problem,
Acta Arith. 60 (1992), no. 4, 389–415. MR1159354

[88] J. Kaczorowski, A contribution to the Shanks-Rényi race problem, Quart. J. Math. Oxford Ser (2) 44
(1993), 451-458.
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[TO POLISH] In this paper, Kaczorowski examines the Shanks–Rényi prime number race modulo q,
for q ≥ 3, with particular interest on what happens to the residue class of numbers congruent to 1
modulo q. The main theorem of this paper assumes GRH, and then states that for q ≥ 3, there exist
infinitely-many integers m such that

π(m; q, 1) > max
a6≡1 (mod q)

π(m; q, a).

Furthermore, the set of all m which satisfy the above inequality has positive lower density.

This statement is also true for the set of all m satisfying the following inequality

π(m; q, 1) < min
a6≡1 (mod q)

π(m; q, a).

From this theorem, the author arrives at the following conjecture, which he calls ‘The Strong Race
Hypothesis’. It states that if {a1, a2, . . . , aφ(q)} is the set of reduced residue classes modulo q, then for
each permutation of this set, the set of integers m such that

π(m; q, a1) < π(m; q, a2) < . . . < π(m; q, aφ(q))

has positive lower density.

Instead of proving the main theorem directly, Kaczorowski proves the following theorem, from which
the main theorem follows. Again, assume GRH. Also, let q ≥ 3 and let u be an arbitrary non-negative
real number. Then, there exist constants b0 > 0, c0 > 1 that depend on u such that for every T ≥ 1,
we have

#

{
T ≤ m ≤ c0T : ψ(m; q, 1) ≥ max

a 6≡1 (mod q)
ψ(m; q, a) + u

√
m

}
≥ b0T,

#

{
T ≤ m ≤ c0T : π(m; q, 1) ≥ max

a6≡1 (mod q)
π(m; q, a) + u

√
m

logm

}
≥ b0T,

#

{
T ≤ m ≤ c0T : ψ(m; q, 1) ≤ min

a 6≡1 (mod q)
ψ(m; q, a)− u

√
m

}
≥ b0T,

#

{
T ≤ m ≤ c0T : π(m; q, 1) ≤ min

a6≡1 (mod q)
π(m; q, a)− u

√
m

logm

}
≥ b0T.

In order to prove this theorem, Kaczorowski uses k-functions, as well as the boundary values of
Dirichlet series, which are discussed in Sections 2 and 3 of this paper respectively.

This article cites [16,19,82,85].

[89] M. Rubinstein and P. Sarnak, Chebyshev’s bias, Experiment. Math. 3 (1994), no. 3, 173–197.
MR1329368

This is the paper that really placed in central roles the logarithmic limiting distributions and logarith-
mic densities of prime number races.

Assuming GRH: the authors show that

Eq;a1,...,ar (x) =
log x√
x

(
φ(q)π(x; q, a1)− π(x), . . . , φ(q)π(x; q, ar)− π(x)

)
has a limiting logarithmic distribution µq;a1,...,ar on Rr. They give an exponential upper bound for
the “tail” of µq;a1,...,ar (that is, the mass assigned to the exterior of a large ball), as well as a doubly
exponential lower bound for the portion of that tail lying in certain specific orthants. They note the
analogous results for the race between π(x) and Li(x), as well as for the race between π(x; q,N)
and π(x; q,R); in these two-way races, it follows that δ(π,Li), δ(Li, π), δq;R,N , and δq;N,R are strictly
positive.

Assuming GRH and LI: they give the formula for the Fourier transform of µq;a1,...,ar . From it they
deduce that the densities δq;a1,...,ar exist and are strictly positive. They characterize the races (all with
r ≤ 3) for which µq;a1,...,ar is symmetric under all permutations of the coordinates. They show that
δq;a1,...,ar tends to 1/r! as q tends to infinity, and establish a central limit theorem for Eq;N,R(x)/

√
log q.

They also compute δ(Li, π), and δq;N,R for q ∈ {3, 4, 5, 7, 11, 13}, to several decimal places.

This paper cites [4, 9, 11,15,16,19,45,76,87,147,151,198].
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[90] J. Kaczorowski, On the Shanks-Rényi race problem mod 5, J. Number Theory 50 (1995), 106-118.

[TO POLISH] The author establishes another result concerning the Shanks-Rényi race problem, and
under GRH settles the question of the race for ψ between residue classes (mod 5). He conditionally
proves that for any possible arrangement in this race, the set of integers such that this arrangement is
attained (with square root gap between players) has positive lower density. More precisely, he shows
(assuming GRH for the L-functions (mod 5)) that there exist positive constants c, b0, and b1 such that
for any permutation (a1, a2, a3, a4) of (1, 2, 3, 4),

#
{
T ≤ x ≤ c0T : ψ(x; 5, a1) > ψ(x; 5, a2) > ψ(x; 5, a3) > ψ(x; 5, a4),

min
1≤i<j≤4

|ψ(x; 5, ai)− ψ(x; 5, aj)| ≥ b0
√
x
}
≥ b1T.

The proof is another application of the author’s theory of k-functions described in [82–86], and in-
volves explicit calculations using the L-functions (mod 5) and exponential sums corresponding to each
permutation.

This article cites [19,82,88].

[91] Jerzy Kaczorowski, On the Shanks-Rényi race problem, Acta Arith. 74 (1996), no. 1, 31–46. MR1367576

[TO POLISH] In [88], the author proved on GRH that in every Shanks-Rényi race (mod q), the set
of x for which the residue class 1 (mod q) is in first place has positive lower density (as does the set of
x for which 1 is last). In this paper the author gives a method for computing explicit permutations, in
any given race, such that those permutations occur with positive lower density and feature the class
1 (mod q) in first or last place. He finds sufficient conditions for a given permutation of this kind to
occur with positive lower density, and reduces these conditions to finite computable formulae. As an
application, he gives permutations for each race with prime modulus ≤ 29 that satisfy these conditions
and therefore provably occur with positive lower density. For example, modulo 13 he provides the
permutation (7, 8, 9, 2, 6, 12, 10, 11, 5, 3, 4) to which 1 can be appended in either first or last place.

This article cites [19,82,85,88,90,218].

[92] Carter Bays and Richard H. Hudson, Zeroes of Dirichlet L-functions and irregularities in the distribu-
tion of primes, Math. Comp. 69 (2000), no. 230, 861–866. MR1651741

[TO POLISH] Bays and Hudson (2000) investigated seven widely spaced regions of integers with
π4,3(x) < π4,1(x) using conventional prime sieves. Let b = 2α0Pα1

1 · · ·P
αk
k and γ(b) = 2k+β−1 where

β = 1 if α0 = 0 or 1, β = 2 if α0 = 2, and β = 3 if α0 ≥ 3 in which γ(b) denotes the ratio of quadratic
non-residues of b to quadratic residues. Also, let

∑
N (x, b) and

∑
R(x, b) denote the number of primes

≤ x in all progressions bn+ c with c a quadratic non-residue of b and in all progressions bn+ c′ with c′

a quadratic residue of b, respectively. To compute the entire distribution of π4,3(x)− π4,1(x) including
the sign change regions, in time linear in x, using zeroes of L(s, χ), and χ the non-principal character
mod 4, they introduced the following theorem: For b = 4, qα, or 2qα, where q is an odd prime, and for
x ≥ 2, T ≥ 1 under the GRH we have

∑
N

(x, b)−
∑
R

(x, b) = π(
√
x)/2 + π(

√
x)

∑
0≤γ≤T

sin γ log x

γ
+Ox,T (

x(log x+ log T )2

T log x
+

√
x

log2 x
),

where γ runs over the imaginary parts of the non-trivial zeroes of L(s, χ), and χ is the real non-principal
character. Their computer program based on this theorem shows the accuracy with which the zeroes
duplicate the distribution is satisfying, can discover all known axis crossing regions, and find probable
regions up to 101000.

Their result is applicable to a variety of problems in comparative prime number theory including
theoretical computations of logarithmic densities for Chebshev’s bias for all moduli for which zeroes
as well as the sign changes of li(x)− π(x) have been computed.

This article cites [15,16,42,45,47,89,90,92].

[93] A. Feuerverger and G. Martin, Biases in the Shanks–Rényi Prime Number Race, Experiment. Math.
9 (2000), 535-570.
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[94] N. Ng, Limiting processes and Zeros of Artin L-Functions, Ph.D. Thesis, University of British
Columbia. (2000).

[95] J.–C. Puchta, On large oscillations of the remainder of the prime number theorems, Acta Math. Hungar.
87 (2000), no. 3, 213–227. MR1761276

[96] Carter Bays, Kevin Ford, Richard H. Hudson, and Michael Rubinstein, Zeros of Dirichlet L-functions
near the real axis and Chebyshev’s bias, J. Number Theory 87 (2001), no. 1, 54–76. MR1816036

[TO POLISH] By reviewing the GRH and GSH application in Rubenstein and Sarnak paper (1994),
Bays et al. (2001), considered logarithmic densities to find an easier way to compute the Chebyshev’s
bias which made it possible to quickly approximate the bias for any modulus q for which zeros had
been computed. Also, plots of Pq,N,R(x) for all q with h(−q) = 1 is provided to outline the method
of computing Chebyshev’s bias. They showed that Chebyshev’s bias depends strongly on the location
of the first few zeros of L(s, χq) and the size of the first zero when q has a primitive root. By using
the Chowla-Selberg formula they showed that the L−function has a relatively low first zero, especially
for L(s, χq=163), if Q(

√
−q) is an imaginary quadratic formula with class number 1. Bays et al. (2001)

also analyzed the connection between low-lying zeros and some class number 3 and 5. In the end, they
explored the sign changes of ∆q,a,b(x) by comparing the results of Leech (1957), Lehmer (1969), Bays
and Hudson (1979), Bays and Hudson (1978), and Bays and Hudson (1996).

This article cites [1, 4, 15,16,19,45,47,51,88–90,92].

[97] K. Ford and S. Konyagin, The prime number race and zeros of L-functions off the critical line, Duke
Math. J. 113 (2002), no. 2, 313–330. MR1909220

[TO POLISH] The authors show that in the absence of an ERH, it is possible that at least one of
the six orderings of residues in a three-way Shanks–Rényi race does not occur later in the sequence.
The authors consider arrangements, called barriers, of the zeroes of L-functions, such that at least one
of the six orderings does not occur. Barriers are found for all possible three-way races. The authors
highlight the fact that their results do not imply that the failure of an ERH implies that one of the
orderings must not occur, and give a counterexample. Most constructions of barriers assume the failure
of both an ERH and LI. In the final section a barrier is constructed with linearly independent zeros.

This article cites [1, 4, 16,19–26,28–32,34,45,88–91].

[98] , Chebyshev’s conjecture and the prime number race, IV International Conference “Modern
Problems of Number Theory and its Applications”: Current Problems, Part II (Russian) (Tula, 2001),
Mosk. Gos. Univ. im. Lomonosova, Mekh.-Mat. Fak., Moscow, 2002, pp. 67–91. MR1985941

[TO POLISH] In this paper, the authors present nine problems that are central to the study of com-
parative prime number theory. The first eight are taken from or inspired by the problems listed by
Knapowski and Turán in [19]. The ninth problem, entitled “Union–problems”, examines the distribu-
tion of ∑

p≤x
p∈A

1− |A|
|B|

∑
p≤x
p∈B

1,

where k is a positive integer and A and B are disjoint subsets of reduced residue classes modulo k.

Throughout the rest of the paper, Ford and Konyagin provide an overview of what is already known
about the first seven problems. Many results from earlier papers in this bibliography are presented.

This article cites [1,3–7,9,11,12,14–16,19–32,34,36–38,42,47,51,53,76,82,85,88–93,96,97,100,151,
176,177,186,189,198,201,202,225,229].

[99] , The prime number race and zeros of L-functions off the critical line. II, Proceedings of the
Session in Analytic Number Theory and Diophantine Equations, Bonner Math. Schriften, vol. 360,
Univ. Bonn, Bonn, 2003, pp. 40. MR2075622

[TO POLISH] The authors continue further their results on barriers from [97]. In this paper, they are
primarily concerned with races in which the residue 1 is leading or trailing infinitely often, and also
the number of orderings of residues that occur infinitely often in the race. Instead of configurations
of zeros, the authors consider a different type of barrier which is a system of trigonometric sums. In
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the second section of the paper, results are given on trigonometric polynomials. In the later sections,
barriers are examined with respect to races where the residue 1 is leading or trailing infinitely often,
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holds. The second major theorem of this paper again assumes RH and that J−1(T ) � T and then
states that ey/2M(ey) has a limiting distribution ν on R. In other words, for all bounded Lipschitz
continuous real functions f ,

lim
Y→∞
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−∞

f(x)dν(x).
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first theorem, assume GRH for some modulus q, and let q+ = max{q, exp(1260)} and f(q) = #{a ∈
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[134] F. Mertens, Über eine zahlentheoretische Funktion, SBer. Kais. Akad. Wissensch. Wien 106 (1897),
761–830 (Abt. 2a).



38 MARTIN, SCARFY, BAHRINI, BAJPAI, DOWNEY, PARVARDI, SIMPSON, AND WHITE

Reportedly, the author conjectures the bound
∣∣∑

n≤x µ(n)
∣∣ ≤ √x for the summatory function that

now bears his name.

[135] R. D. von Sterneck, Empirische Untersuchung über den Verlauf der zahlen-theoretischen Funktion
σ(n) =

∑x=n
x=1 µ(x) im Intervalle von 0 bis 150000, SBer. Kais. Akad. Wissensch. Wien 106 (1897),

835–1024 (Abt. 2a).

[136] , Empirische Untersuchung . . . von 150000 bis 500000, SBer. Kais. Akad. Wissensch. Wien 110
(1901), 1053–1102 (Abt. 2a).

Reportedly, the author conjectures the bound
∣∣∑

n≤x µ(n)
∣∣ ≤ 1

2

√
x for the Mertens function.
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[163] W. Staś, Über die Umkehrung eines Satzes von Ingham, Acta Arith. 6 (1960/1961), 435–446 (German).
MR0146153

[164] P. Turán, On some further one-sided theorems of new type in the theory of Diophantine approximations,
Acta Math. Acad. Sci. Hungar. 12 (1961), 455–468 (English, with Russian summary). MR0132728
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