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I.
Introduetion and summary.

1.1.2 We have united in this paper a series of contributions towards the
solution of various outstanding questions in the Analytic Theory of Numbers.

! Some of the results of which this memoir contains the first full account have already
been stated shortly and incompletely in the following notes and abstracts.

G. H. Harpy: (1) 'On the zeros of Riemaxn’s Zeta-function’, Proc. London Math. Soc. (records
of proceedings at meetings), ser. 2, vol. 13, 12 March 1914, p. xx1x; (2) 'Sur les zéros de la fonc-
tion ¢(s) de Riemaxx’, Comptes Rendus, 6 April i914.

J. E. LirrLewoon: 'Sur la distribution des nombres premiers’, Comptes Rendus, 22 June 1914.

G. H. Haroy and J. E. LitrLewoon: (1) 'New proofs of the prime-number theorem and
similar theorems’, Quarterly Jowrnal, vol. 46, 1915, pp. 215—219; (2) 'On the zergs of the Riemaxx
Zeta-function’ and (3) 'On an assertion of TscaeBysceer’, Proc. London Math. Soc. (records etc.),
ser. 2, vol. 14, 1915, p. x1v.

? The sections, paragraphs, and formulae contained in this memoir are numbered accord.
ing to the decimal system of Pgaxo, the aggregate of numbers employed forming a selection
of the rational numbers arranged in order of magnitude. Thus every number occurring in the
first section begins with 1; the first paragraph is 1.1 and the first formula of the first para-
graph 1. 11, The second would naturally be 1.12; but here four formulae occur which are par-
allel for the purposes of our argument, and so these are numbered 1. 121, 1.122, 1.123 and 1. 124.

In a fong and complicated memoir such as this, Pgano’s system has many advantages.
It enables the author, in the process of revision of his work, to delete or insert formulae without
serious interference with the numbering of the remainder; and it enables the reader to discover
any formula referred to with the minimum of trouble.
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Our answers to these questions are naturally tentative and fragmentary. The
importance and difficulty of the problems deals with should be a sufficient apo-
logy for the incompleteness and miscellaneous character of the results.

We begin, in section 2, by considering some applications to the theory of
primes of the formula

x4ioo
1
(r.11) ;tzfl“(s)y—sds=e*y, (x>0, R(y) > o),
Py P
of CaHEN and MELLIN,'! a formula which seems not unlikely to play a more
prominent part in the Theory of Numbers than has been assigned to it hitherto.
Using this formula in combination with some of the *Tauberian’ theorems which
we have proved in a series of recent papers in the Proceedings of the London
Mathematical Society and elsewhere, we are able (in 2. 1) to deduce new theorems
as to the convergence of Dirichlet’s series of the most general type, from which
follow as corollaries such results as

(. 121) Y(x) ooz,
(1. 122) M(z) = o(x),
(1. 123) 2!‘(7”) =o,

all of which are known to be equivalent® to the *Prime Number Theorem’?

' Canex, These, Paris, 1894, and Annales de I'Ecole Normale Supérieure, ser. 3, vol. 11, 1804,
pp- 75—164 (p. 99); MELLIN, Acta Societatis Fennicae, vol. 20, 1895, no. 7, pp. 1—39 (p. 6), and
Math. Annalen, vol. 68, 1910, pp. 305—337.

* By this we mean that, from any one of these results, all the rest can be deduced by
elementary reasoning which involves no appeal to the theory of functions of a complex vari-
able. That (1.121), and (1. 124) are equivalent in this sense was shown by pE La VaLLEE-PoussiN
(Annales de la Société Scientifique de Bruxelles, vol. 20, part 2, 1896, pp 360—361). The deduction
of (1.122) from*(1.123) is of a very simple character: that of (1.123) from (1.122) was first made
by Axwr (Prace Matematyczno-Fizyczne, vol. 21, 1910, pp. 65—95). That (1. 123) follows from (1. 121)
was shown by Laxpav (Dissertation, Berlin, 1899), and the converse deduction is also due to
him (Wiener Siteungsberichle, vol. 115, 1906, pp. 589—632).

* We append the following definitions for the benefit of readers who may not be familiar
with the notations usual in the Analytic Theory of Numbers.

(1) f(x)= O (v (x)) means that a constant K exists such that | f| < Ko.

(2) f(x)=0(s(x)) means that

S @)

lim~—~=o0

o (x)

when x tends to «, or to whatever limit may be in question.
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(1. 124) I (z)co 2.
log z

In 2.2 we obtain an explicit formula for the function

o

(1. 13) Fiy)=Q(Am)—1)e—™ (R(y)>o),

1

from which we deduce that, assuming the hypothesis of RIEMANN as to the
zeros of {(s),

(x. 141) F(y>=o]/§

as y—o, while a positive constant K exists, such that each of the inequalities

(1. 142) Fiy)<—K ;:/ F(y)>K]/§

is satisfied for an infinity of values of y tending to zero. From this follows as
a corollary the theorem of ScrmMIDT! which asserts the existence of a K such that
each of the inequalities

(1.143) Ya)—x< —KVz, Y(x)—x>KVx

is satisfied for an infinity of values of 2 tending to infinity.
It should be observed, however, that our method does not enable us to
prove the wider inequalities

(1. 15) Y(a) —r<—28-9, Y(x) —z>29-9,

(3) p(m) =(— 1) if n is a product of ¢ different primes, and is otherwise zero.
(4) A(m)=1log p if » =pm, and is otherwise zero.

) M@= D un)
n<z

® $@)= D AMm)
n<z

(7) Nl (x) is the number of primes less than or equal to z.

1 Maih. Annalen, vol. 57, 1903, pp. 195—204; Laxoav, Handbuch, pp. 711 et seq. Naturally
our argument does not give 8o large a value of K as Scamint’s. The actual inequalities proved
by Scaminr are not the inequalities (I.143) but the substantially equivalent inequalities (1.51).

Acta mathematica. 41. Imprimé le 9 juin 1917. 16
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which hold when the upper limit @ of the real parts of the zeros of {(s) is
greater than 2 Nor does it seem possible, in the present state of our know-

ledge of the properties of {(s), to give a satisfactory proof of the explicit for-
mula for

L

f(y) = Du(n)e=nv

1

which corresponds to that which we find for the function (r.13).

1.2. In 2.3 we are concerned with a statement made by TscHEBYSCHEF! in
1853, of which no proof of ary kind has yet been published. TSCHEBYSCHEF asserts
that the function

p+1
2

F(y)—e=3 —e=50 fe=T0  g—1y—..... .___2(_) e—PY

tends to infinity as y—o0. We prove that this result is true if all the complex
zeros of the function

(1.21) L(s)=1"%—3"%+ 5= 8—....... (6>0)

have their real part equal to % There seems to be little doubt that, if this

assumption is false, then TSCHEBYSCHEF’s assertion is also false, but this we have

not succeeded in proving rigorously. The difficulties which have debarred us

from a proof are of the same nature as those which have prevented us from

deducing the inequalities (1. 15) from our explicit formula for the function (1. 13).
In 2.4 we prove that

T
(1. 22) /IC(“:‘+'it)|’dtcv2T log T
7

as T—cw. The method used may be adapted to show that

T

(1.23) [IC(/?+it)l’dtN(27r)2-”‘1§(2—Zﬂ)

.
-7

2—-28

2—26’

! Tscursyscuer, Bulletin de UAcadémie Impériale des Sciences de St. Petersbourg, vol. 11,
1853, p. 208, and Qeuwres, vol. 1, p. 697; Laxoau, Rendiconti di Palermo, vol. 24, 1907, pp. 155—156.
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if p’<§—; but there is nothing essentially new in this Jast formula, as it follows

from the functional equation satisfied by {(s) and the known result

T
[icw ivparsatenr,
'

where g > 2.1

We conclude this section by noticing a remarkable formula, the form of
which was suggested to us by an observation of Mr S. RamaNusaN. We are
unable to give a satisfactory proof of this formula, but it seems to us well
worthy of attention. It is intimately connected with an expression of the func-
tionr—(%as a definite integral, which is due to MarckL Ripsz.®
-]

1.3. In section 3 we are concerned with the series
(1.31) Zeaoloz(—io)xog —x,

where a,z, and x are real, and ¢ is a complex zero of {(s). Our object is to
obtain results for this series similar to those obtained by Lanpavu? for the
simpler series

2

and our main argument is an adaptation of his.* The results of this section are
simplified in form if we assume the truth of the RiEMANN hypothesis. Writing

2+ iy for g, and confining ourselves to the zeros for which y > o0, series of the

type (1.31) are found to be substantially equivalent to series of the type
(1.32) Dy—wesirioeuo),

where @,0, and w are real and the first two positive. Our principal result is that

1 Laxoav, Handbuch, p. 816.

* Acta Mathematica, vol. 40, 1916, pp. 185—190.

8 Math. Annalen, vol. 71, 1912, pp. $48—564.

* The idea which dominates the critical stage of the argument is also Laxvav’s, but is to
be found in another of his papers (Uber die Anzahl der Gitterpunkte in gewissen Bereichen’,
Gittinger Nachrichten, 1912, pp. 687—771, especially p. 707, Hilfsatz 10).
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(%)
(1. 33) zemrlog(m)zo 72}
0y

this result is trivial if @ > 1, but otherwise significant. The apparent dependence
of the order on a is curious, and we are disposed to believe that it does not

1
really correspond to the truth, and that the order is really O(T‘ZM) for all

values of ¢ and all positive values of §. But this we are unable to prove.
1. 4. Section 4 is devoted to a closer study than has yet been published

of the zeros of the Zeta-function which lie on the line 0_2- That some such

zeros exist was first shown by Gram,! and the later investigations of DE LA
VALLEE-PoussiN, Gram,! LINDELOF,! and BACKLUND! have shown that there are
exactly 58 on the line

I N ¢ .
(——Iooz, —~+IOO‘1),
2 2 !

and no other complex zeros between the lines = —3100, {=100. In other
words the function 5(f) of RIEMANN has exactly 58 real zeros between — 100
and 100, and no complex zeros whose real part lies between these limits.

It was shown recently by Harpy? that 5(¢) has an infinity of real zeros.
The method of proof depended on the use of (i) the CAHEN-MELLIN integral and
(ii) a lemma relating to the behaviour of the series

9(0,7) =1+2 Q¢

when ¢ tends in a certain manner to the point — 1 on the circle of convergence.
The proof given by HARDY was materially simplified by LaNDAU,* who showed
that no property of the 9-function was needed for the purpose of the proof
except the obvious one expressed by the equation

9,(0,9)= 0 I/I—_‘Tﬂ

1 See GraM, Acta Mathematica, vol. 27, 1903, pp. 289—304; LixvELOF, Acta Societatis Fennice,
vol. 31, 1913, no. 3; BackLuwp, Oversigt af Finska Vetenskap-Societetens Forhandlingar, vol. 54,
1911—12, A, no-. 3; and further entries under these names in Laxpau’s bibliography.

* Comptes Rendus, 6 April, 1914.

8 Math. Annalen, vol. 76, 1915, pp. 212—243.
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LANDAU also extended the proof so as to apply to the functions defined by the
series

()
ns

where yx(n) is a ’character to modulus %’,' and in particular to the function
(1. 21). He also proved that there is a zero of = (f) between 7T and 7'+9, for all
positive values of d and all sufficiently large values of 7. From this it follows
that the number N (T') of zeros between 1 and T is of the form 2 (log log T).?2

The original proof given by Harpy made use of two parameters o« and p;
and our first idea, for obtaining a more precise result, was to treat « and p as
functions of one another. The result indicated by our investigations was that

1
of the existence of a zero between T and T+ T2 for any positive ¢ and all
sufficiently large values of 7. This would prove that

N,(T) = Q(T;—d).

But this proof bas never been completed, as we are now able to prove, by an
1
entirely different method, that there is a zero between 7 and T* " for any

positive 0 and all sufficiently large values of 7. This shows that

(1. 41) N(T) = Q(T’i‘"").

Our proof of this result is now free from any reference either to the CanEN-
MEeLLiN integral or to the theory of elliptic functions.
We have entertained hopes of showing, by a modification of our argument, that

N (T) = Q(T'—9).

But our attempis in this direction have so far been unsuccessful.

1.5. Finally, Section 5 contains a full demonstration of a result given still
more recently, with an outline of the proof, by LirtLEwoop.® It follows from
the investigations of Scumipt, already referred to in 1. 1, that the inequalities
(1. 143), or the substantially equivalent inequalities

! See Laxpav, Handbuch, pp. 401 et seq.

* For an explanation of this notation see our paper ‘Some Problems of Diophantine Ap-
proximation (II), Aeta Mathematica, vol. 37, pp. 193—238 (p. 225).

¢ Comptes Rendus, 22 June 1914,
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, () — Liz+=~LiVz > KLx ,
2 log

Vz
log «

(1. 51) H(x)—Lix+§LiV5<~—K

are each satisfied by values of z which surpass all limit. It is shown here that
these last inequalities may be replaced by

Vz log log log =
log «

Vz log log log z
log

(1.52) II{x)—Liz<—K y IH(z)— Lix> K

From the second of these inequalities it follows, in particular, that the relation
(1.53) I (z)< Lz,

which has been regarded, for empirical reasons, as probably true, is cer-
tainly false.

The supposed inequality (1.53) is, as has been shown by Gauss, GoLp-
scHMIDT, GRAM, PHRAGMEN and MEisseL,! supported by evidence drawn from
the distribution of the prime numbers less than 1,000,000,000. The difference

II(x)— Ltz contains (to put the matter roughly) a term —ELinv_ and an

Vz log log log
log z
higher order than the former term. But the increase of log log log « is exceedingly

oscillating term of order not less than » which is of course of

slow; thus
log log log 10,000,000,000=1-143-"";

and it is not surprising, therefore, that the term of constant sign should exert
a preponderating influence throughout the limits within which calculation is
feasible.

The question arises as to whether the function log log log = can be replaced
by any more rapidly increasing function, The method which we use, depending
as it does on KRONECKER’s theorems concerning Diophantine Approximation, has
a certain analogy with that by which Bour proved that [(r+#¢) is not bounded
for t>1.2 In that case the conclusion is that {(1+ ¢7) is sometimes of order as
great as log log #; and LITTLEW00D?® has shown that (on the RIEMANN hypothesis)

C(x + t2) = O (log log ¢ log log log )

! S8ee the references in Laxpauv's bibliography, and Lemmer's List of prime numbers from
1 {9 10,006,721 {(Washingtcn, 1914).

* Borr and Laxpav, Géttinger Nachrichlen, 1910, pp. 303—330.

® Comptes Rendus, 29 Jan. 1912.
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so that the conclusion is certainly very nearly the best possible of its kind. It
is quite possible that this may be true also of the inequalities (1.52); but we
are naturally not prepared to express any very definite opinion on the point.
It may be remarked in this connexion that Bour and LaANDAU?! have shown that,
on the RiEMANN hypothesis, the true maximum order of

§'(x +4)

§(x + ta)

is exactly log log t.
The method used in this section is capable of application to other import-
ant problems. It may be used, for example, to show that if
mp=1)
Y () = Q(—1) ¥ logp

M<
then sequences of values of x exist for which ,(x) tends either to  or to —w,
and indeed as rapidly as

Vz log log log z;
and that, if II,(x) denotes the excess of primes not greater than z and of the

form 47 4 3 over those not greater than x and of the form 4% +1, then sequences
of x exist for which IT,(x) tends either to o or to — «, and indeed as rapidly as

Vz log log log o
log z

This result is of particular interest when considered in connection with those of
2.3. It is known that (to put the matter roughly) the distribution of primes
4n+ 3 is in some senses denser than that of primes 4n +1. Our results confirm
and elucidate this vague statement, and show in what senses it is true and in
what senses false.?

2.

Some applications of the integral of Cahen and Mellin.

2. 1.
The prime number theorem and allied theorems.

2.11. The investigations of this part of the paper will be based upon cer-
tain known results which we state in the form of lemmas.

! Math. Annalen, vol. 74, 1913, pp. 3—30.
? Compare Lanpav, Math. Annalen, vol. 61, 1905, pp. 527—550.
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Lemma 2. 111. If >0, R(y) >0, and y—* has ils principal value, then

x+ iw

~v=2 (rs)y-
e y—zni] r(s)y—*ds.

This is the CAHEN-MELLIN integral.
Lemma 2.112. If (i) F(0+t1) i3 a continuous function of the real variable ¢
and (ii) the integral

j|F(0+ti)|dt

18 convergent, then

o

fx“F(a-}- ti)dt—o

'
as r—o or x—c0.
This result is due to WEYL; it is a generalized form of a theorem of Lanpau.!
Lemma 2.113. Let o be a positive number (or zero), and (i) an increasing

sequence such that A, — o —1; and suppose that

’
ln—l

(i) an is real and satisfies one or other of the inequalities
2> — Kl (A —In—1), @Gn < K47 (A — An—1),
or is complex and of the form

O™ (e — A1)}
(i1) the series
fly) = Zane_l"v

is convergent for y > o, and

Hy)eoAy—=
as y—o. Then

Ap=a,ta,+------ +ap oo

as n— o,

! See Lanpav, Prace Matematyczno-Figyczne, vol. 21, p. 170.
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This lemma is equivalent to Theorems D, E, and F of our paper ’Some
theorems concerning DIRICHLET’s series’, recently published in the Messenger of
Mathematics.t

2.12. Theorem 2.12. Suppose that

(i) the series Sank, * is absolutely convergent for ¢ >a,> o,
(ii) the function F(s) defined by the series is regular for ¢ > ¢, where 0 <c <a,,
and continuous for ¢ >c,

(iii) F(s) =0(eCl?),
where C < ;—ﬂ, uniformly for 0 >c. Then the series
fly) = Dane—'nv

s convergent for all positive values of y, and

fy)=o(y—°)
as y—o.
We have
x+io
"‘;'ny=_1_ —s

(2. 121) e 27”.]. T(s)(A,y)—*ds
if y>o0, x>0, and so

x-{:i:n

1 . s

(2.122) 19 = _I ()y—*F(s)ds

! Vol. 43, 1914, pp. 134—147. If an satisfies the second form of condition (i), the series
J(y) is necessarily convergent (absolutely) for ¥ > 0, so that the first clause of condition (ii) is
tnen unnecessary.

There are more general forms of this theorem, involving functions such as

y—a{log (i)}{lo log (;)} ....... ,

which we have not troubled to work out in detail.

The relation f(y) > Ay—¢c in condition (ii) must be interpreted, in the special case when
A =0, as meaning f(y)=o(y—a); and a corresponding change must be made in the con-
clusion.

Acte mathematica. 41. Imprimé le ¢ juin 1917. 17
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if ¥>o0, x>0, the term by term integration presenting no difficulty. In virtue
of the conditions (ii) and (iii) we may replace (2.122) by

c+io

(2. 1221) fly) =2%if[‘(s)y—‘F(s)ds.‘

The result of the theorem now follows at once from Lemma 2. 1r2.
Theorem 2.121. If the conditions (i), (ii), and (ili) of Theorem 2. 12
are satisfied, (iv) l—l"—-—-x, and (v) a, is real, and satisfies one or other of the

n—1
tnequalities

an > — Klfl—’l(ln_‘ln—l), an < Kl:l—](]-ﬂ_}'n-l)9
or is complex and of the form

O™ (A — An—1));
then
An=a‘+a2+ ....... +a”=0(1¢:‘).
This theorem is obviously a direct corollary of Theorem 2.12 and Lemma

2.113.
Suppose in particular that 1, —=n, a, =p(n), and ¢=1. Then

P = 25F = gy

and all the conditions of Theorem 2.121 are satisfied. Hence we obtain the
well-known formula

Qu(v)=o(n),
v_gn

which is (1.122).

! The argument i8 so much like that of Laxpavu (Prace Matematyczno Fizyczne, vol. 21,
Pp. 173 et seq.) that it is hardly worth while to set it out in detail. We apply Cavcny's
Theorem to the rectangle

¢e—iT, x—iT, x +iT, c+iT,

and then .suppose that T'— .
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2.13. The theoreme of 2.12 do not furnish a direct proof of (r.121) or
(1.123). In order to obtain such a proof of (1.123) we must frame analogues
of Theorems 2.12 and 2.121 which are applicable when ¢ =o.

Theorem 2.13. Suppose that (i) the conditions ({), (ii), and (iii) of Theorem
2.12, and the conditions (iv) and (v) of Theorem 2,121, are satisfied, with ¢ = o;
(ii) that the function F(s) is regular for s =o0. Then the series Za, is convergent
and has the sum F (o).

The proof differs but slightly from that of Theorem 2.121. Instead of
(2.1221) we have the equation

(2. 131) 1) = Flo) + % f»r(sm—'F(s)ds,

where the path of integration consists of (a) the imaginary axis from —iw to
—1d, (b) a semicircle described to the left on the segment of the axis from — ¢4
to ¢d, and (c¢) the axis from 70 to io. That the rectilinear part of the integral
tends to zero follows substantially as before. Also

fr(s)y—sp(s)d8=y—iar(id)F(iﬁ)fyli:F(—ia)F(_ia)
4 log (?—;)

I

_—— —xi — I = .
log(i)yfy Ja L8 F(s)}ds Ollog(}/)} o(1)

Thus f(y) — F(o) as y—o, and so, by Lemma 2. 113, Sa,= F(o).
The conditions of the theorem are satisfied, for example, when

t(n I

An=m, a,.==‘l—(n—)’ c=o, F(s) ACETI
Hence the equation (1.123) follows as a corollary.

2.14. In order to obtain the equation (1.121), and so the prime number
theorem, we require a slightly different modification of Theorem 2.121.

Theorem 2.14. Suppose that the conditions of Theorems 2.12 and 2.121
‘are satisfied, except that F(s) has a simple pole at the point s=c, and that the
“residue at the pole is g. Then
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The formula (2.131) is in this case replaced by

(2. 147) fy) =gl ()= + = f I'(8)y-*F(s)ds,

where the path of integration is of a kind similar to that used in the preceding
proof. Practically the same argument gives the result

fy)cogl(c)y—e,

and from this, and Lemma 2. 113, the theorem follows at once.
If we take

5'(s)
An=mn,a,=_.1(n),c=1, F(s)= — KON
we obtain (1.121).
2.15. We add some further remarks in connection with these theorems.
(i) Theorem 2.14 may be regarded as a generalisation of a theorem of Lax-
pAU,! to which it reduces if we suppose that a, > o, that F(s) is regular on the
line 6 —=¢, and that the equation F(s)= O(eCl¢l) is replaced by F(s) = O(|t|X).
In his more recent paper already referred to? LANDAU generalizes the sec-
ond of these hypotheses in the case in which the series for F(s) is an ordinary

DIrICHLET’s series, showing that it is enough to suppose that

lim {F(a+ti)———q—— }

g—c+0 O'+ti_-—c

should exist, uniformly in any finite interval of values of t. This hypothesis is
more general than ours, and our result is naturally capable of a corresponding
generalization, which may be effected without difficulty by any one who compares
LaNDAU’s argument and ours.

(ii) Theorem 2.121 breaks down when the increase of 4, is too rapid, for
example when 1,=e". It is interesting to observe that in this last case the
result is still true but is an obvious corollary of familiar theorems. The series

! Handbuch, p. 874.
* 1 ¢ pp. 128, 130 (pp. 173 et seq.).
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F(s) is now a power-series in e—*; condition (iii) is satisfied ¢pso facto; and the
continuity of F(s) for ¢ > c involves

ane "¢ =0(1), an = o(e"°), s, = 0(e™°)
(iii) It is a natural conjecture that the occurrence, in Theorems 2.121, etc.,

of the condition C < 2” (which seems somewhat artificial), is due merely to some

limitation of the method of proof employed. It is easy to show, by modifying
our argument a little, that this is so.
Theorem 2.15. In Theorems 2.121, 2.13, and 2.14, it is unnecessary to

suppose that C < %n
Choose a so that ina,> C. Then we have instead of equations (2. 121), ete.,

x+4i®

I ""“’nwl/a_ T —s
(2. 151) P = 27”.j‘l‘(as)(,lﬂy) ds,
n-{;im
I "("n?/)”a -1 N —3 —
(2.152) /(y)~a Za,.e —27”.]1 (as)y—2F(s)ds
% —$®
ct+im
1 -
= ;;zfl“(as)y F(s)ds,
c—iw
(2-153) (y) =o(y—°);
or, if yl* =y and 4} = u,,
=£ —HkaM __ —ac
(2.154) O(r) = > Dane ™" = o(n=2).

Now

1 1_
.y',',"'_l (tn — tin—1) = (I;lc_ Ay — Ag—1)-1° !

where 4,_(<_.4<2,. Thus the ratio

.“:c_ ! (ﬂn’_ tn—1)

A (A — An—1)
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lies between fixed positive limits. Thus (e. g.) a,,==0{lf,_‘(l,.—-l,,_1)} implies

an =0 {y',‘,“l(y,.-— ,u,,_l)}. Hence we can deduce from (2.154) that
(2. 155) n=0(us?) =0(27).
It follows that the truth of Theorem 2.121 is independent of the condition in

question; and similar arguments apply to the later theorems.

2. 2.
The function Z{A(n)—x}e“”'/.

z.21. If R(y)>o0 and = > 1, we have

x4 f0
f = Y = - I . —sgi@
(2. 211) ](y)——ZA(n)e V= - 2Tﬂ.\/l‘(&')y C(s)ds'
Let q=—m——12—: where m is a positive integer; and let us apply CaAucHY’s

Theorem to the integral

[ row=-iige

taking the contour of integration to be the rectangle
(q—iT, «— 1T, = +iT, ¢+ T},

T having such a value that no zero of {(s) lies on the contour. When we make
T tend to infinity, we obtain the formula

q+liw ,
(2. 212) f(y)=—2—:r—i] mw*%ﬁds—-ﬁlﬁ
g—io,

where E denotes a residue at a pole inside the contour of integration.!

! The passage from (2.211) to (2. 212) requires in reality a difficult and delicate discussion.
If we suppress this part of the proof, it is because no arguments are required which involve
the slightest novelty of idea. All the materials for the proof are to be found in Laxpau’s
Handbuch (pp. 333—368). But the- problem treated there is considerably more difficult than



The Riemann Zeta-function and the theory of the distribution of primes. 135

If now m—, g——, it is easy to prove that the integral in (2. 212)
tends to zero. For in the first place

o) — 0(log |¢)

uy

Y

uniformly for ¢ <-—1.! On the other hand, if y = reif, where — ;Il’ <h< 275,

we have

r (1 + ti)
2

m+1—ti (m+—1~-—ti)(logr+i0)
2 e 2 —

.I‘(—~m-§+ti)= - -
(-—m——— +tz’) ------- (——+ti)
2 2 !

=o{|%|'!~"e‘(;"—")”'},

g+iw

I [I‘(s)y—s%(%%)dsl =0 {'gt—l?fe—(f”_o)m log |tldt}——-0.

-1

-— D
Hence

(2. 213) fly)=— 2R
where the summation now applies to all the poles of the subject of integration.
These poles are

(i) a simple pole at s =1, with residue —3

!
(ii) a simple pole at s = o, with residue %g—));
(iii) simple poles at the points s=—g, the residue at s —¢ being I'(g)y —¢;
(iv) simple poles at the points s = —1,— 3,—5,----, the residue at
= —2p—1 being-

. y2r+1 C'(—ZP—I_},
(zp+1)! {(—2p—1)

this one, inasmuch as the integrals and series dealt with are not absolutely convergent. Here
everything is absolutely convergent, since | I'(s + ti)ys+7i|, where R(y) > o, tends to zero like
an exponential when t— o,

! Laxpav, Handbuch, p. 336.
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(v) double poles at the points g==—2,—4,—6,--- - , the residue at
= —2p being
y*? (z) LSRN SRR & Sl Gk 7)1
(zp)!{log y Pttt 4+ §'(—2p)

where 4 is EULER’s constant.
Thus finally

(2. 214) 1) =% — Zriey=c+ o),
where
(2. 2141) O(y) =0, (y) +y* log (;7) ,(y),

and @, (y) and @,(y) are integral functions of y.
2.22. On the other hand we have

e

T e-"”=%,,,;fr<s>y—=c<s)ds
x—dac hie N ( )
I —_ ”
=i | Tow—t@dot + 3 -
g—é

The integral on the right hand side tends to zero, when m — =, if |y| <27. For

r(s)f(s)= 2(2n)’sec§sn f(1—s)= 0{(zn)—me—;—altl}’

and so
q+_iaa m ® ,
/I‘(s)y_’C(S)ds = 0{(%%' ]e_(ﬂ_o)'”dt}-
q—ll'uo %
Thus
(2. 221) Zeﬁm:; + E(ang(_n).l
- !

! This is merely another form of the ordinary formula which defines Berxouii's num-
bers. That

D=+ 0),

where #(y) is a power-series convergent for |y| < 2x, is of course evident.
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Subtracting (2. 221) from (2.214) we obtain

(2. 222) F(y)= 2(A(n)—1)e="¥ = — I @)y~ +¥(y),
where
(2. 2221) Wy) = %)+ 9" log (1) 7.,

and #,(y) and ¥,(y) are power-series convergent for |y|<zn.

2.23. We shall now assume the truth of the RIEMANN hypotbesis, and
apply the formula (2.222) to the study of F(y) when y— o by positive values.
We denote the complex zeros of [(s) whose imaginary part is positive by

§+i71, 2 + Oy, , where y, <y,<----. Tt is known! that
71=I4'I"', y2=ZIA0..., 73—__—25.0.....
We shall require some definite upper limit for
N(T +1)— N(T)

where N(T') is the number of zeros for which <y <7 + 1. It is well-known that
N(T +1)—N(T)=0(log T), and it is easy to replace this relation by a numer-
ical inequality, such as

(2. 2311) N(T+1)—N(T)<2-5log T;

all that is necessary is to introduce numerical values for the constants in the
argument given by LaNpau.? In order to prove the relation (2.2311), however,
comparatively careful numerical calculations are needed; and a much cruder
inequality is sufficient for our purpose. We shall use the inequality

(2. 2312) N(T+1)—N(I)<2T,

in the proof of which only the roughest approximations are necessary.

! Gray, L. c.
* Handbuch, pp. 337 et seq. It is known that, on the Riemaxx hypothesis,

NI+ —NiToo 28T
(Bonr, Lanvau, Lirrr.ewoop, Bulleting de 'Académie Royale de Belgique, 1913, no. 12, pp. 1—35).
" Acta mathematica. 41. Imprimé le 9 juin 1917. 18
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We now write

(2. 232) 21‘(9 (ul +u,"+ R),
where
— I ) A —in L— ‘(3_ ) A ) i —_ ' = __;ﬁ .
Uy P(2+7'/|)?/ » Uy 1 2 Yy, Iull lull cosh 7 70
Then
cosh y,7r YA ﬁ,mie—;r..n
- cosh , xS
2
1. @ 1.
—qe X ¥ et
re=21 ry=<r+4i
1, o 1
< 8e§/xnzre—§rn
21
(2. 233) < 24oe—3'”‘<i

50

2.24. From (2. 222), (2. 232) and (2.233) we can at once deduce

Theorem 2. 24. Suppose that y— o by positive values. Further, suppose the
RieMANN hypothesis true. Then

Fly)= E(A(n) —1)e~"¥ =0 l/;

and there is a conslant K such that each of the inequalities

’ F(y) >‘!'{-

K
F(y)<—
Vy

Vy

is satisfied for an infinily of values of y tending to zero.
We can express this by writing!

(2.241) F(y)——-OI/;’ F(y)=!2L]/5f F(y)=!2n]/§-

From the second assertion in Theorem 2.24 we can of course deduce as a
corollary

' In our paper 'Some Problems of Diophantine Approximation’, dcta Mathematica, vol.

37, p. 225, we defined f= Q(¢) as meaning f» o(y). The notation adopted here is a natural
extension.
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Theorem 2.241. There is a constant K such that each of the inequalities
Yla)y—ax<—KVx, Ylx)—x> KV
ts satisfied for values of x surpassing all limit; that is to say
Y(a)—x =01 Va), ¢(x) —z=0rVz).

This is substantially the well-known result of Scumipt. In Section 5 we
shall show that it is possible to prove more.

It is known that, if the RIEMANN hypothesis js false, then more is true than
is asserted by Theorem 2.241. In fact, if ©® is the upper limit of the real parts
of the zeros of {(s), and d is any positive number, then!

Y(x) — 2 =020 9), Y(x)—x = Qp(x®—%).
It seems to be highly probable that in these circumstances we have also
F(y) = Qp(y—9+2), F(y) = Qr(y—°+9%);

but we have not been able to find a rigorous proof.

2.25. The equations (2.241) show that, if the RIEMANN hypothesis is true,
the function F(y) behaves, as y —o, preciscly as might be expected, that is to
say with as much regularity as is consistent with the existence of the complex
zeroes of {(s). The results which will be proved in Section 5 will show that this
is not the case with the corresponding ’sum-function’ ¥ (x) — z. It might
reasonably be expected that

Y(@) —a=0Vx), YE)—=x =2 Vz), Y(z)—z=Rr(Ve);

but the first of these equations is untrue. This being so, an interesting question
arises as to the behaviour of the corresponding CEsiro means formed from the
series 3(4(n)—r1). The analogy of the theory of FOURIER’s series suggests that
they are likely to behave with as much regularity as the function F(y); and this
conjecture proves to be correct.

! Scamvr, Math. Annalen, vol. §7, 1903, pp. 195—204; see also Laxpav, Handbuch, pp. 712
et seq. The inequalities are stated by ScEmipt and Laxpav in terms of 1I(x).
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We shall consider not CEsAro’s means but the ’arithmetic means’ intro-
duced by Marcer Riesz.! It has been shown by RiEsz® that these means are in
all substantial respects equivalent to CEsAro’s; and they have many formal
advantages over the latter. If

A(n) = an, f(y) = Dane™"¥,

then Riesz’s mean of order 4 is

n<a
Ands, if x>1,
xio o
(2. 251) o) = — L. } IT((%TI): ‘:’)’ : ((:))w‘ds

If we perform on this integral transformations similar to those of 2.21,* we are
led to the formula

(2. 252) sd(w)sﬁ_zw o+ S(i)

rg+:+e * '

s
(7]

Iy . . . . I .
where S((—) is in general a power-series® in — convergent for o> 1.
0 w

Similarly, if

—b 1 ,_2 —n
1= w1 bpe— "y,

and we denote RiEsz’s mean of order &, formed from the &’s, by t*(w), we have

1 M. Riesz, Comptes Rendus, 5 July and 22 Nov. 1909.

* M. Riesz, Comptes Rendus, 12 June 1911.

® This formula is a special case of a general formula, due to Rizsz and included as
Theorem 40 in the Tract 'The general theory of Dirichlet's series’ (Cambridge Tracts in Math-
ematics, no. 18, 1915) by G. H. Hawoy and M. Rigsz

4 See 2.21 for our justification of the omission of the details of the proof. Here again
the integrals which occur are absolutely convergent.

* If & is an integer, then S(%) is a finite series which may include logarithms. It is in
any case without importance.
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%+ §0
I‘(6+1)I'(s) w (I)
Y - s —_ =1,
(2. 253) o (w) = z.t Fo+1+s) L(s)wsds S 11 + 7T o

% —fw

I . U -
where T(~) also is in general a power-series in — convergent for w.> 1. Finally,
w, w

subtracting (2.253) from (2. 232), we obtain

R T S T T
n<w

) A R U < .
where P((-) is in general a power-series in = convergent for w>1. The series
U w

involving the g¢’s being absolutely convergent, it follows at once that the left
hand side of (2.254) is (on the RIEMANN hypothesis) of the form O(Vw). That
it is of the forms 2.(Vw), Qr(Vw) requires no special proof; for this is a cor-
ollary of Theorem 2.24. We have therefore

Theorem 2.25. All Riesz’s means (and so all CESARO’s means), formed from
the series Z{.(n)— 1}, are, on the RIEMANN hypothesis, of the forms

0(Vw), 2.Vw), 2 Vw).

This theorem is in part deeper, in part less deep, than Theorem 2.24. The
O result of Theorem 2.24 is a corollary from that of Theorem 2.25, and the £
result of Theorem 2.25 a corollary from that of Theorem 2.24, the deduction in
each case being of an ordinary ’Abelian’ type, i. e. of the kind used in the proofs
of ABEL’s fundamental theorem and its extensions.

2. 3.
On an assertion of Tschebyschef.

2.31. It was asserted by TscHEBYSCHEF! that the function

¥l

(2. 311) Fly)=e3% —e=5 4o~ W4 e— W ... P (—1) % e~P¥
p>2

tends to infinity as y —o.

! See 1.2.
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We shall now prove that TSCHEBYSCHEF’s assertion is correct if all the complex
zeros of the function L(s), defined for o > o by the series 1=*—3 "%+ 55—,

have their real part equal to 2-1

We have, if 0> o0,

I
—y— 8 . — 8 =

(___ I)m(p —1)/2
mpmt

’

log L (s) = 2
P,

m

_L’(S) 2(___1;1(?2:‘!—) log

L(s) = p
Hence
N mip--1) " 1 :«+m: L'(s)
(2. 312) fly) = X(—1) 2 logpe? ”=~§7i 1 (s)y"‘L(s) ds,
»nm X—1®
if x>1.

We now transform this integral by CavcHy’s Theorem as in 2.21, and
obtain the formula?®

(2. 313) fly) = DI (e)y—¢+ D(y),

where ¢ is a complex zero of L(s) and @(y) is a function of y of much the same
form as the function @(y) of (2.214).3
2.32. We now require an upper limit for the sum X|I'(¢)]. We could

! The evidence for the truth of this hypothesis is substantially the same as that for the
truth of the RieMaxN hypothesis. Laxpau (Math. Ann., vol. 76, 1915, pp. 212—243) has proved

AT . 1
that there are infinitely many zeros on the line o = 2

* The 'trivial’ zeros of L(s) are s= — 1, —3, —5,----: see Laxpav, Handbuch, p. 498.

Oy)=0,(y) + ylog (é) 0,(y).
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obtain such a limit by an argument similar to that of 2.23: but it is simpler to
proceed as follows.!
The function L(s) satisfies the equation

L{1—8) =2z —*I(s) sin isn L(s).
We write

I

1
. 2’r( :s)L(s)= £(s) =§(§ +u) — E(1).

Then /5 (t) is real when ¢ is real, and an even function of {. And if we write
g=§+i7, then the zeros of = (f) are given by t=y. We are supposing that

all these zeros are real.
We have now

A (1) =5(o)n(1_;),

)l ste=n)

(2.321) £(s) =2 (o) I\ 4~ 11{1 +*il],
] " r

a7

where only the positive y’s occur in the products. Putting s =1 we obtain

£+72
(2. 322) E(o)n(“ > )=§(1)=zﬁ7‘_j)=§v;,

and so

Hil 4 8(8——1)]=2§’£8)=21+an—1§(1+:)[.(1 + 8)L(3);
Vr 2

or, if s=1+2,

' Our argument is modelled on one applied to the Zeta-function by JEensen, Comptes
Rendus, 25 april 1837. :
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I

1
(2. 323) Hil+&+_I)'=22+zn—]—§zl‘(l+§x)L(I+x).
4

Finally, expanding each side of (2. 323) in ascending powers of z, and equat-
ing the coefficients of z, we have

(2. 324) po =10g2—§logn—§A+;ltL’(1),

where A4 is EvULER’s constant. From this it follows easily that, if y, is the
least of the positive ’s, then

(2. 325) Y AN
£+73 £+7:
4 Y4
7 >3.1

2.33. Now, as in 2.23, We have

1. 7
IF(;+1;’),= l/cosh yr'

and the ratio

'l/ T, 1
cosh y7 1.

4

decreases steadily as y increases, for y >3. Moreover, the value of the ratio for
y= 3 is less than

—_—— I
25¢ 2 <~
> 4

! Tt is in fact true that r, > 6: see GrossumaNy, Disgertation, Gottingen, 1913,
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Hence
Zirfen)|< 2t <
7>0 4-,>of+y‘-‘ 4
4
and so
(2.331) 2T (e)y—°| < ]/g-
20 Y

If now we write

) =)+ f.(9) + f,(y),

where f,(y) contains the terms of f(y) for which m =1, {,(y) those for which
m =2, and f,(y) the remainder, we have

(2- 332) ) = Stogp e=rveal 7,
P
mip—1) e
(2. 333) f:(y) = 2(—1) 2 Jogp e~ P"v =0 l/l-
p.m>3 Y

Hence, by (z.331), (2.232), and (2. 333), we have

p—1
flly) = (—1) * logp e—#v

P
— _ s
SR VATRS VEIWS Ve
4V y 20V y Y
11/%
< 6 g’

for all sufficiently small values of y. We bave thus proved
Theorem 2.33. There is a constant K such that

r—1 I
L) =(—1) % logpe-rv< —K ]/;

for all sufficiently small positive values of y.
Acta mathematica. 41. Tmprimé le 10 juin 1917. 19
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Suppose now that
(2- 334) P(y) = Dane"v
is a power-series in e—¥, convergent for ¥ > o0, and that
¢ly) > Ky—*

for o<y <y,. Suppose also that o <s<c«. Then

1
n—Ss —NnY — s—1
En ape—"v [,(S)f(;J(t+y)t dt
o

!‘!I
g ¥ w
=i 3 —1 _L s—1 —
I,(s)f(p(t—}-y)t dt+1.(s)f(p(t+y)l dt=J,+J,,
0 1

2¥

say. The second integral tends to a finite limit as y—o. If o<y;§yo, the
first integral is greater than

1 1

¥ stoly

K =—1di =@ij u’—‘duNKl‘(a—s) s—a
Ir'es))t+y) I'(s) ] (ut1) I (a) ’
0 )

Hence there is a constant H such that
zn—aane—ny > Hys-—a

for all sufficiently small values of y. In particular we have

Theorem 2.331. If 0<s< 2’ there is a constant H such that

= 1

1 —

for all sufficiently small values of y.
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2. 34. In order to prove the actual assertion made by TSCHEBYSCHEF we have

to introduce a convergence factor ﬁ into the series (z.334).

It is not difficult to prove that

I

]Ug—;b ’—“j e""‘l,b(t)dt,
0

where
an

o e~ vidw
lp(t) =e +f”!+ (logw)grl
0

so that

logn

e =fw(t>rp<t+y)dt’
2
0

1
~yo

2 w
=fw(nfp(t+y>dt+fw<z>¢<t+y>dz=J,+J,.
0 1

2

say. As before, J, tends to a finite limit as y—o. It is moreover easy to
see that

0 1f

t
P e widy " dw I
w(t) oo /n’ + (log w)? ~ (log w)? ~ 1\*
% % t(log t—)

as t—o. We can therefore choose 7 so that, if o<y <7y,

1 Cf. W. H. Young, Proc. London Math. Soc., ser. 2, vol. 12, pp. 41—70.
? We suppose that @, =0, @, = 0, as evidently we may do without loss of gener-
ality.



148 G. H. Hardy and J. E. Littlewood.

n
L>K[ ! at

; (‘% t) (¢ +y)

r)+aKf 1(t+J)““

=0()+aKy—° | — = ua+1
,log + log 1(ut1)
y
d d
1 y—e { u
> —u -
2 1 ) (u+1)ett
log?—/ i/
Hy—¢a
> Ay
log£
Yy
Applying this result to Theorem 2.33, we obtain
Theorem 2.34. There is a constant H such that
F(y) 2 L}l H
=V(—1) T eV ——
/ A Vylog (1/y)

for all sufficiently small positive values of y.

We have thus established the truth of TSCHEBYSCHEF's assertion, under the
assumption of the truth of the analogue of the RIEMANN hypothesis. The nat-
ure of the proof makes it seem almost certain that the assertion must be false

if the hypothesis is false, as the term il/;—r of (2.332) must then be over-

whelmed by oscillatory terms of higher order. But, as we explained in 1.2, we
bave been unable to find a rigorous proof.
2.35. We have proved that

Z(— e loop e—PV— —o

as y—o; and, when we remember the results of z.25, we are naturally led to
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enquire whether a similar result holds for the CESARO means formed from the
series

p—1
2(—— 1) 2 log p.
If we denote Riksz’s mean of order ¢, formed from the series

mi{p—1)

2,(—1) T log p,

by s?(w), we have

+f
1 (0 +0)I'(s) L'(s) ,
{(2.351) Sd(tu)—'—zn,fr(6+1+s) L(&) ds

*—1tw

_ rd+1)r) ., (L)
——2F5+I+Q w\+Pw’

I\ . . .
where P(E) is in general' a power-series convergent for w> 1.

From (2. 351) it follows at once that

(2. 352) % (w) =0(Vw),

a result which says the more the smaller is d.
Let us consider in particular the case in which 6 =1. We have then

(2.353) $(w) = — Zﬁi_ﬂ + P((I;)

But

ws? 1 X
|2‘ e+1) 2Ie(e+1)| 2er = 23 +;<§’
4

! Seo the footnote to p. 140.
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by (2. 325). Hence

(2. 354) Js(w)] < :— Vo

for all sufficiently large values of w.
Let us now write

(2.355) s {w) = s (w) + 8} (w) + 8 (w),

where s'(w), s(w), and s!(w) are formed respectively from the terms. of the
series for which m =1, m =2, and m > 3. Then

L) = ¥ P T Ve

(2. 3561) sHw) = Zlogp (1 w) > Elogp> 3Vw,
r<o 1
p’<§w

if w is Jarge enough. Also

m(p —1) m 8 __
(2.3562) siw) = 2(—1)_!‘2*]ogp (1— %) =0(Jlogp) = olva).

m=3,p" < w m=3,p" < o

From (2. 354), (2-355), (2.3561), and (2. 3562) it follows that

2t I
(2- 3563) sit)= 3 (=) * log (-2 <—ZVe
r<w

for all sufficiently large values of w.

We have thus proved

Theorem 2.35. Rirsz’s or CESARO’s mean of the first order, formed from
the series

. p—1
Y(—1) 2 log p,

tends to — o as w— o, at least as rapidly as a constant multiple of — Vuw.
From this we can deduce without difficulty
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Theorem 2.351. The corresponding means, formed from the series

S0 F

tend to — o at least as rapidly as a constant multiple of —

Vo
log w

151

Theorem 2.33 is a corollary of theorem 2.35, and Theorem 2.34 of Theo-
rem 2.351: the deduction being in either case of the ordinary ’Abelian’ type.

In concluding this sub-section we may repeat that, as has already been point-
ed out in 1.5, the theorems here proved gain greatly in interest when consider-
ed in conjunction with those which may be established by the methods of

Section 5.

The mean value of

S Y
é(z“’)l

2. 41. LaNDAU and ScHNEE! have shown that

T

(2. 411) ]|§(ﬁ+it)|2dtmz7;(2ﬂ)T
-

when ,3>§, and it is an easy deduction? that

T

(2. 4111) ]IC(ﬁ+it)|2dtm(2n)25_"§(.2—-ZP’)

-7

T2—28
2 —2p

when p’<§- We propose now to complete these results by proving

Theorem 2. 41. We have

T

J

2
§(—;~+i8)| dico2TlogT.

! See Laxpav, Handbuch, p. 816.
? Using the functional equation.
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We shall require some preliminary lemmas. We write

K= [ E29% (®(y) > o).

Vut—1
1

Lemma 2. 411. If » and the real part of y are positive, then

x+iw

H) =5 [ @y=ds— 2K e),

®~—~1®

y—* having its principal value.

It is unnecessary to give the details of the proof of this formula which depends
(like that of the ’CAHEN-MELLIN’ formula) merely on a straightforward application
of CaucHY’s Theorem.

Lemma 2. 412. If y=rei?, where |3|§%n~6<%n, and r — o, then

e

untformly in 9.
This is a known result.!
Lemma 2. 413. If f(x) 18 positive and continuous, and

f(z) = 0(e%%)

for all positive values of §; and if
ff(x) e erdrco Ae—e I (é) )
0

where @ >0 and L(x) is a finite product of logarithmic factors

(log )= (log log z)e. . . .. ,
as £ —o0; then
r

: AT L(T)
f1wa s TR

0
This is the analogue for integrals of a theorem first proved by us in the
Proc. London Math. Soc., ser. 2, vol. 13, pp. 180 et seg. This latter theorem redu-

! Wairraker and Warsox, Modern Analysis, ed. 2, pp. 367, 377.
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ces, when o, =, =..... =o0, to a special case of Lemma 2. 1r3. The proofs for
series and for integrals are in all important respects the same.

2. 42. If in Lemma 2. 417 we suppose x > 5, write ny for y, multiply by

d(n), the number of divisors of », and sum, we obtain

x+iw
(2. 421) 2—:5]{1~(s)§(zs)y—s}fds= S d(n)H (ny).
x—t®w 1

We now use CaucHY’s Theorem to replace the integral by one taken along the

line o~—~—z- There is a pole at s=~2 of order 2, and the residue is

T
z_y(A —logy — 2log 2),

where 4 is EUuLER’s constant. Thus

:—+iw

(2. 422) 2—;—1 {{l‘(s)@'(zs)y—s}’ds = Zd(n)H(ny) —%(A—logy—zlog2)=8 + 8,
1% 1

1—1'00
4

say. In this formula we write

F($)5(28) = 5 —ya*§(2e),

S(e0) = (X4 2it) = E20),

and we obtain

@

G (od) \2 [\ 286
VL] ;‘2” (E dt—=8+8.
e, |G| Y

4

Finally we write!

v =r7res,

I
where 0 <a < 27 and we have

! These transformations are the same as those used by Harvy, Comptes Rendus, 6 April 1914.
Acta mathematica. 41. Imprimé le 10 juin 1917. 20



154 G. H. Hardy and J. E. Littlewood.

X

R 3 l'a
(2. 423) %f fu”\f“ﬂ=w“(8+@x
‘ to |5 H 4l
4
where
(2. 4241) S= 2d(n)H(7),7re‘“),
1
(2. 4242) S'=—2e—"“(A—zlogz——logn—id).

2. 43. We now suppose that a=2n—-s and that ¢ —o. In the first place
it is obvious that
(2. 431) S’ '=0(1).
Further, by Lemma 2. 472, we hawe

e-—2nncosa’
»

1 .
. I —=ta~—2nmn(cosa+isina)
H(nmet®) = O(—‘Tnm—

—e 2

Va

and it is plain that the contribution of the last term to § is of the form O(1).
Hence we may write

2 [ E(z20) )2 wd(n) .
fudl - erat ]t — —. g—2n=fcosa tisiva) L (1),
(2. 432) ”_m [[+4t’] % n
4
But
cosa+isine=1+¢+0(?),

e—2nnlcosa +ising) — e—2nae+0(ne)

= g—2nne {[ + néQeO(ne‘Z)}’

and

e X Vnd(n)e—2nxe+Oned) — 0{62 dVn d(n)e—m} =0(1).

We may therefore replace the series on the right hand side of (2. 432) by

"31 d(n) —2nne
%v;e '
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But
id(n) covlogw,
1
Zd(n) ooz Vwlogv;
and so

Hene we have
E(z1) )* elm—20)t l/ I,
(2. 433) jLJr tz] dieo g(s)
4

We may replace the lower limit by o, since the part of the integral for
which ¢ < o is plainly of no importance. Doing this, and putting 2¢= u, we obtain

g o 1/ reg:
(2. 434) f +u2’ e\? ) ducon 2—8108(;)'

2. 44. It follows from (2. 434) and Lemma 2. 477, that

(2. 441) f! =) )? ducoVanTlogT.
+ u®
But
fE u) 2 r’ ——nu . 2
11_ ‘ l/ l ( +1u) )
_+u2
4
so that

T

( +iu | —mzﬁlog’l’.
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And if we write

we have

T
jlg(l—kiu)
2
0

T
du =fl/ﬁ o' (u)du
0

T

fort

%

0

=VTo(T)—

SRR

T
c\ﬂleogT—/Iogudu
0

oo TlogT,

which is equivalent to the result of Theorem 2.41.

2. 5.

The series

Zﬂﬂ e—(alnp?

n
and other similar series.

2. 51. In this sub-section we shall be concerned with some formulae which
were suggested to us by some work of Mr S. RamaNnvsan. We have no satis-
factory proof of the truth of the formulae, though this is highly probable; but
they are so curious that it seems worth while to mention them.

If —1<%<o and ¢>o0, then

x+g®

X J (%)hl’(s)ds.

x—4®

{2. 511) I —e—lalm® —
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Hence
x4 § @
1(n) -(u(n)z_-_mﬂ";)l TR SR I'(s) .
(2-512) % n - 21' n LT ’_znija é(1—°s)d
But
I
I'(s) 28—%£(E—i)
L(x—29) Cfzs) ~’
and so
1
® xt:w 1 “—'S)
(2. 513) Xﬂ@e—(“f"V:—g—_, (5)23 2 ds.
R zinl/n:» a Gl(2s)

If now we assume that we may transform the last integral by moving the
path of integration parallel to itself across the line o=i, and introducing the

obvious correction due to the poles of the subject of integration,' we obtain

A+t ) I_Q)

(2. 514) zu(n) (@fnp — zml/nj( __(53) 2() ( -,

ZV"L’
l—iw

where §< y) <%~ This assumption of counrse includes that of the convergence of

the series last written.

But
24iw sI‘ E—S L+im
[ Sy [
—iw I—iw

if ap=m. Also, transforming the last integral by the substitution

I
——s8=24,
2

! In forming the series of residues we have assumed, for simplicity, that the poles are
all simple.
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we obtain
A+ioo x+t~l> 2S
I * 2s . I —
a3 (ﬁ) '~ B ;
27t | \n \2 27r1,n
A—iw® x—1% ®

where — 1 <% < o0; and the last expression is equal to

B o inr.
n
Hence
I H'iwr 2‘1‘(5—3) < i(n)
2.515) b A N - PO HAR) o3 np,
(2. 515) 27:1’_{ (u) §(zs) ds ﬁ; n ¢
l—iw

Substituting in {z. 514), and multiplying by Ve, we obtain

1‘(*1*9
2

<o)

2

(2. 516) Vea v !'(n)e_(,,/,,)z Va \ (n) —BnR — 1 2
- — Vi — el = -
% " 21‘ " 2Vp

It follows from symmetry that we must have

and this relation wmay be verified without difficulty.
2. 52. In order to obtain a satisfactory proof of (2. 516), it would be enough
to show that

);‘/’TZ“ : ('2:) 8) ds—o

x¥iT

when 7' — o through an appropriately chosen sequence of values. It would cer-
tainly be enough, for example, to show that there is such a sequence (7',) for which

1

(2. 521) |§(s)|>e_(in_d)t

(6>0) t=T1’1xiG_.<_l)‘
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It would even be enough to show that the inequality (2. 521) holds on an appro-
priate sequence of curves each stretching from ¢==x to ¢ =A1. The existence
of such a sequence seems highly probable: it is highly probable, in fact, that the
series on the right hand side of (2. 516) is not merely convergent but very
rapidly convergent. But we are quite unable to prove this, even when we assume
the RiEMANN hypothesis.!

2. 53. Mr RaMaNuUJaN has indicated to us a generalisation of the formula
(2. 516). Suppose that ¢(x) and Y (z) are a pair of ’reciprocal functions’ connected
by the relations

@

(2. 531) f(p(x) cos 2uxd.z:=—;~,l/_7; W(u), jnt,b(x)(-oszuxdx =§V§§(p(u),
v

0

and let us write

[

(2. 532) f 2= p(a)dz = I () Z,(s), ] w1 (2)dz = () 2y (s).
0 0

The simplest case is that in which

Plx) =yY(x) =e—, Z,(s) = Z,(8) = ——=——":

in this case the formulae reduce to those of 2. 51. Then it can be shown that,
if @ and ¥ satisfy certain conditions,?

-1
2

(2.533) Z(1—8)=m 2’I‘(s)sin§sn Z,(s).

We have also (again of course subject to certain restrictions on ¢ and ¥)

%+t % 4 g0
1 . —8 —_— I ! — 8
(2. 534) rp(x)——%‘ rs)Z,(s)x—=sds, w(x)—znij r(s)Z,(s)z—=ds,

for an appropriate value of x.3

! We can prove that some such sequence of curves as is referred to above exists, and
that our series can be rendered convergent by some process of bracketing terms: but we can
prove nothing about the distribution of the curves or the size of the brackets.

* As we do not profess to be able to give rigorous proofs of the main formulae of this
sub-section, it seems hardly worth which to state such conditions in detail.

* MevLin, Acta mathematica, vol. 25, 1902, pp. 139—164, 165—184 (p. 159): see also NIELSEN,
Handbuch der Theorie der Gamma-Funktion, pp. 221 et seq.
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We can use the first formula (2. 534) to express the series

2ol

in the form of a definite integral. Carrying out a series of transformations ana-
logous to those of z. 51, with the aid of (2. 533) and the functional equations
satisfied by the Gamma and Zeta-Functions, we are led finally to the formulae

(2. 535) Ve 38, (4 vz R, (@)

_ 1 yI(1—0)Z,(1— 90’
V&E’ £'(e)

_ I gIr(1—0Z,(1—0)p°
N V‘p'z &' (o)

where af =m.
2. 54. Let us return for a moment to the formula (2. 516). We have

o @® @ [

(2.541)  Fla)= 3™ —wion o 3 (=120 S alm) _ 3 (—1ivatr

= 7 o P! el Spltzpt)
an integral function of «. And
I‘(I_g) 1
(2. 542) — 1 2 o—
VaF(@)—VEF(@E)=—3 2 6

when ¢f =m. If we assume the RiemMaNN hypothesis, and the absolute conver-
gence of

r(5)
2 2
£'(e)
then the right hand side of (2. 542) is of the form

0O(1)

when a—o and f— . Writing y for $*, and observing that F(e)—o as
a—o0 we see that
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N =y !
(2. 543) P(y) ~p%l,p!< (zp“)—O(y 4)

uy

when y— o.
Now it has been proved by MarcerL Rigsz that!

: —s— _ F(—i.
(2. $44) f gt Py = 0
0

This formula certainly holds if o <s< 1. If it could be proved to hold for
—i<s <o, the truth of the RieMaNN hypothesis would follow. The hypothesis

is therefore certainly true if

(2. 545) P =0(y5*?)

for all positive values of 6. The result of our previous analysis is therefore to
suggest that the truth of (2. 545) is a necessary and sufficient conditipn for the
truth of the Riemanny hypothesis. It is not difficult to prove that the result thus
suggested is in fact true. For LirTLEwWooD? has shown that, if the RIEMANN
hypothesis is true, the series

is convergent for all positive values of ¢, so that

(2’ 546) .M('l/,n) =i'—u—§:;n—)=o(«y%+e)

uniformly in =. Hence

v (—1)rgere i (n) , RN
: P(y) = - @It = ¥ 4 Y =P+ P,
(2. 547)  P(y) lep!g(zpﬂ) ; e ;42 +

! See Riesz, Acla mathematica, vol. 40, 1916, pp. 185—~190. The actual formula communi-

cated to us by Riesz (in 1912) was not this one, nor the formula for CE—) contained in his memoir,
s

but the analogous formula for

< I+ 3 All of these formulae may be deduced from MEeLLIN's

s+ 1

inversion formula already referred to in 2.53. The idea of obtaining a necessary and sufficient

condition of this character for the truth of the Riemany hypothesis is of course Rirsz’s and not ours.
* Comptes Rendus, 29 Jan. 1912,

Acta mathematica. 41. Imprimé le 10 juin 1917. 21
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say, where v =[g#1—¢]. Now

[J @ 1 1
(2. 5471) P,— Zﬂ,;ﬁ) e=61m — 3 Y (v, n)ge=FIm" — o(m3te) — o),

where 26=%s—e"; and
1
(2' 5472) Pl = O(ye_ﬂze) = 0({)’— §+20)_
From (2. 547), (2. 5471) and (2. 5472) it follows that
1 1
(2. 548) Pa—ols™2**) =0y 4*°).
3.

The series X, y—@esiriosr0)

3. 1. The results of this section will be stated on the assumption that the
RieMANN hypothesis is true. The truth of the hypothesis is not essential to our
argument, and our results remain significant without it. But their interest de-
pends to a considerable extent on the truth of the hypothesis, and the assump-
tion that it is true enables us to state them in a simpler form than would be
otherwise attainable.

We shall then denote the complex zeros of {(s) by g=§+i7, where y is
real. It has been proved by Laxpavu! that
(3. 111) 27 =0(logT)
0<y<LT
if z is real and not of the form zm, and
T

(3. 112) Dae= — ;- logp +0(log T)

0<7<T -

if z=pm™. If we assume the truth of the RIEMANN hypothesis, these results
may be stated in the form

1 Math. Annalen, vol. 71, 1912, pp. 548—564.
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(3. 121) Eeiylogz = O(logT),
01T
(3. 122) 26‘7““ =— 2—7;;]ogp + O(logT).
0<y< T

In this section we shall apply an argument similar in principle to LANDAUD’s,
but of a rather more intricate character, to the series

Zy—wem'rlog('/ﬂ)

where a,6, and w are real and the first two positive. The principal result is
Theorem 3. 1. If a,0, and w are real, and a and 0 positive, then

ﬂ_m
Zy_meaiylog(re)=0 T 2 )
0y T

if w< 1_42-_(1, and

Z y—@ediriog8) — O(log T)
0Ly T

if w=£—111- If w< L_:—a then the series is convergent when continued to infinity.

These results hold uniformly in any interval 0 <0,<0<0,.

The result is trivial when a>1. We may therefore suppose that a <.

3. 2. Suppose that the theorem has been proved in the special case in
which w=o0. Let

b, = eaiv1og(y4)

and
m(T) = zbi’x
0< '/5 v
so that
ita
lD(r)=0(1 2 ),
Then

N

w( ”n '—Q) ”—
3 o, = 3 2 ) yﬂm(y )
o<y LT 1
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where N is the largest number such that y,, <7. Applying the method of partial
summation, we obtain

N—1 ,
2r0b = X0 (7 = 7 )+ O
1

0<7<T
N—1 n+l
:(UZG)(;/")J wme=du+ Oy vy "
1
“n

_ w} O(nyu=o=1du + Dy 75"

71

T

;e

l4a_ ﬂ_w)
=0J u 2 du+0\7T72
71

and the general result of Theorem 3. 1 follows immediately. It is therefore suffic-
ient to prove the theorem when w = o.

It should be observed that the 0’s which occur in this argument are uni-
form in 6, when o< 0,<0<#,; that is to say, the constants which they imply
are independent of §. This remark applies to the whole discussion which follows.

3. 31. We choose numbers « and d such that

(3. 311) a>%a6>o,a6+a<2;
and we denote by C the rectangle
(1+0+4,1+0+T4, —2p—1+Ti, —2p—1+1),

where p is a large positive integer, and T a large positive number differing from
any y. This being so, we consider the integral

» 1
I M0

aslog(—13¢) s 2 ds’
(3- 312) é/e T8 T T(s)

1
where z =62 and log(—¢s), z® and s %" have their principal values. An applica-
tion of CaucHY’S Theorem gives the formula
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| 140+ Ti —2p—14Ti —2p—1+i  1+9+i
- . —— {
(3. 313) 2nzzeaolog(—w)xee 2% + + f + ’
J .

0<7<7T 140+ 1484 Ti —2p=14Ti —2p=1+i

I, +L+I,+1,,

say. When ¢ is fixed and ¢ — — o, e2*198(—i9) tends to zero like e*olglal Tt fol-
lows that J,—o when p— o, and that I, and J, tend to limits I, and I,, the
latter being independent of 7. Thus

1 I+a
(3.314) 27vi2e“@1°g(—"9)x(’g 2 L +1,+00)=1,+1,+0\T? ),

0Ly< T
where
—w4 Ti -
I ; -qa L'(s
(3. 315) I,= | eslogl=isig—ss 207;‘:(?))%9‘
1404 Ti

3. 32. We shall now prove that the term I, in (3. 314) may be omitted.
We write

(3-321) I:.'= + =Iz,1+12,"

The discussion of i,,l is simple. If s=0+4T¢ and 6 < — 1, we have

1

|e'"1°8(—"-')| ezaalog(aﬁ-}- T+ aTarctan(s| T)

<Tau’
|2#] =2

_1,
s 2 <1,

and

£'(s)
Te) — O(logT),

uniformly for ¢ <—1x1.! Hence

1 Laxpav, Handbuch, p. 336.
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(3. 322) I, = 0{10;; T] (a:T“)"do}

—1

| log T
=0 |xTlog (xT')

:O(T—a)':O(T];a).

Thus the integral I, , is without importance. The discussion of I, is
somewhat more difficult.
3. 33. We may write

C'(s) 1, [Es) r |

( . = Tj‘l‘ {1_—— P :Z1(8)+Zz(s)’
3-331) 5 (5) I'/-—ZTI < ) ¢ 5 (s) l;’—ZTI < ls J

say. Then

(3-332) Z,(s) =O0(logT)

uniformly for ~—-1<o<1+d.2
We now write

—14 73
_ _1, _ ~
(3- 333) 1,,= [ea“og(_is)xss 2 (Z,(s) + Z,(s8))ds= 1, ,+1,,.,,,

1+8+Ti
say. It follows from (3. 332) that

1+4

j 1
(3.334) ja,z,z=O(T—zalogT[T“°do)=O(TPlogT),
1
where
1+a
(3. 335) p=(;+6)a<—2—-

Thus the integral I, , , is of no importance.

! Obgerving that 1 <wi, where x,=69%, and that log (xT8) > alog T+ log x,.
x 0

? Lavnoav, Handbuch, p. 339.
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3. 34. On the other hand

—1+7Ti ; d-

(3' 341) i2’2’| — 2 easlog(—is)xss_fga»s_—_s_b.

r=T1<t  §ers N
We can transform each of these integrals, by Caucay’s Theorem, into an
integral along a semicircle described on the line (— 1+ T4, 1+ d 4+ T'¢), taking
the semicircle above or below the line according as y <7 or y>T.! Each inte-
gral is of the form O (T?) and their number is of the form O(logT). Hence

_ l+a
(3-342) I,,,=0(TrlogT)=O\T ? ).

From (3. 321), (3. 322), (3. 333), (3- 334), (3. 335), and (3. 342) it follows that

1+a
(3-343) I,—0 T%’);
and from (3. 314) and (3. 343) that
—Ja lfa)
(3-344) zri Jeselosi-iogeg 2" — I, + O\T 2 J.

o0y <L
Thas the result of (3. 3) is to reduce the problem to the discussion of I,.

3. 4. The main difficulty in the proof of the theorem lies in the discussion
of the integral

146+ T 1 “'()
. —»ag S

. 41 I, = Jeaslogl—isigsg 2 2 "(s.
(3- 41) 1 Zis)

1+6+3

We observe first that, when o is fixed,

easlog(—is) —_ {A + 0(%)}eaitlogttaa,

where 4 is a constant. The contribution to I, of the term O(It—) is of the form

\ 1+a

T
) (—1»+d a—1 —)
(3- 42) 0/t 27 gt =0(T?)=O\T ?
i

3

! Cf. Laxoav, Math. Annalen, vol. 71, 1912, p. 557.



168 G. H. Hardy and J. E. Littlewood.

. . , - —2a
and is therefore without importance. For similar reasons we may replace s 2,

1
in I,, by (¢¢) 2%, The problem is then reduced to the study of the integral

T
v A o 1))
— aitlogtpttyp> }
(3-43) J—je ogty tPg(I 5 z't)dt’

1

Replacing {'/{ by the DiRICHLET’s series which represents it, and making an
obvious formal transformation, we obtain

A(n)

(3- 44) Jz—zmj(g),
where
(3- 45) £ l/i
x
and
T
(3- 46) J&) = /lPe““‘°8“l§’dt.
i
We write
A(n) .
(3- 47) J=—(2 +2+2)n1(f,,)7(§)=J,+J2+J3,
1 2 3

say, where J, contains the terms (if any) for which

(3. 481) n+1 <zes,
J, those for which

(3. 482) ze* —1<n<x(el) +1,
and J, those for which

(3. 483) n>x(eT) +1.

3. 51. The discussion of J, and J, is simple, and depends on a lemma which
will be useful to us later in the paper.
Lemma 3. 51. There is a number K, independent of ,, z,, and &, such that

T2

"

} eaitlog ¢/ 674

e
k21

K

<log(er,/§—)
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when o <&<er, <er,, and

2

f‘eait log (¢ &) ¢ < E@I{]_e‘ri)
2

when £>e1,> e,
Suppose, for example, that £ <ezr,. It is plain that we may consider the
real and imaginary parts of the integral separately. If we put
w=tlog(/§),
so that

aw . (e_‘
di — %8 §)

and observe that w increases steadily, say from w, to w,, as ¢ increases from
7, to 7,, we obtain

T2 w2

cosawdt— | cosaw dw_.
log (et/$)

71

But log(et/&) is positive, and increases as ¢ increases. Hence

T2

w3
fcosaw dt=log—(;l/~—§—)fcosaw dw,

(23 w1

where w, <w; <w,. The truth of the lemma follows immediately.

3. 52. We are now in a position to discuss J, and J;. We begin with J,,
which exists only if ze®> 2,

The real part of j(%) is

T T
(3. 52T) ]tl’ cos (at log é) dt = T"fcos (at log é)dt’
i 7
where 1 <T,<T. Since
(3- 522) §=]/g<e<e7',,

Acta mathematica. 41. Imprimé le 11 juin 1917. 22
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the right hand side of (3. 521) is less in absolute value than a constant multiple of

Tr < TP
log(eT, /&) ~log(e/$)

The same argument may be applied to the imaginary part of j(§), so that
we may write

(3 523) g (g)=o{mg{:’/§)}.
Also

e\ ze* w
(3. 524) HIEEEE
g 2 )
where v >n +1. Hence

/ 1+a
(3. 526) T 3 %(*%lo—ﬂzv/n)} ors—olrt).
n<'v

3. 53. The discussion of J, is similar. It will be sufficient to write down
the formulae which correspond to the formulae (3. 522), etc. They are

(3. 532) §=]/£>e’1',
- TP
§ye n n
(3. 534) (ET) x (eiT)" Y,
(3. 535) log (fT) == ’—ilog (:’)

(where » <n—1),

ni+3 log(n/v)

(3 536) T 2

Am) 1 |
n>1/+l [

! Laxoav, Handbuch, p. 8c6.
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3. 61. The discussion of J is accordingly reduced to that of J,. In order
to discuss J, we observe! that vlog(z /&) is stationary when r =& /e. This point
is the critical point in the integral j(§). It falls in the range (1, T) if

e<&<eT
or

zet*<n<z(eT)".

This condition is certainly satisfied by every term of J, except pessibly the first
and last, and no serious modification is required, for these two possibly excep-
tional terms, in the analysis which follows.?

We write
sle T
(3. 611) f(§)=( ’ +j )l”eai"°g“’§’dt=f1(§)+fz(§)-
'l/ 51.3
Then
cptl Eyp41
5\P ' ) S\ 7+ .
(3. 6121) @ = (G furesiserean = (5 k),
ele
. eT|[¢& .
o gip+1 . Sip+1 .
(3. 6122) 7:(5) = (—) lel’e“’>“’/edu = () k, (&),
e e
1
where
(3. 613) w=ulogu—u.

In general e/§<1<eT /&, and we write further

1 1—e¢

(3. 6141) k, = {+f=k1,1+k1,2’
l—¢ efé&
l-t-e eT|E
(3. 6142) k2=/+ {=k2,,+k.,,ﬂ,
I 1%e

! The fundamental idea in the analysis which follows is the same as that of Laxpav's
memoir *Uber die Anzahl der Gitterpunkte in gewissen Bereichen’ (Gittinger Nachrichten, 1912,
pp- 687—771).

? The terms have to be retained in J, because £ /e, though outside the range of integra-
tion, may be very near to one of the limits.
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where
e=T—¢,

« being the number defined at the beginning of 3. 31. If, however, ¢/&> 1 or
eT /%<1, as may happen, each with one term only, we must write

11—5 e{;‘
(3- 6151) kb, =— —‘j =kt k.,
i 14+¢
or
! 1—e¢
{3. 6152) ky=—j— | =k, tk,,.
156 o1

These exceptional cases need not detain us further, as the treatment of k,
in the general case covers a fortiori that of %, in the special case, and wvice versa.
Each of the formulae (3. 6141)—(3. 6152), however, may in certain cases require
to be interpreted in the light of a further convention. It may happen, for
example, that 1 —e<e/E<1. In this case, in the formula (3. 6142), we must
regard k, , as non-existent, and the subject of integration in as having the value
zero for 1—e<u<e/§, and a similar understanding may be necessary in the
other formulae. TIf regard is paid to these conventions, the analysis needed in
every case is included in that which refers explicitly to the normal case in which

eff<i1—e<i<i+eZeT/§.

We may therefore conduct our argument as if these conditions were always
satisfied. And we have

. S\p+1
(3- 616) 7(§) = (Z) (kl.l(§)+kl,2(§)+k2,l(§)+k2,2(§))'

3. 62. The really important terms on the right hand side of (3. 616) are

k,,, and k, ,. We shall discuss k,,, and k,,, first.
The real part of k,,, is

1—¢ 1—¢ l—¢
v

. ‘ € (1 —
(3- 621) u? cos (aaw) du = . cos (M) dw = ——‘I~;~£)L cos (a,é'_w) dw
e . logu e | log (1 —¢) e
ef§ u=e|t u=

A

where e/5<A<1—e¢. A similar argument may be applied to the imaginary
part. Also
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mee = =2 (e
and
2

j'cos (aiw) dw =20 (;) ,

Al

for all values of 2 and A'. It follows that
(3. 622) Icm=0(i.4) :0(7:1)

Similarly, the real part of k,,, is

eT|& - eT|s ) eT|s ) d
P . i’ <
(3. 623) %P cos (a—bw) du= L cos (gg_w) dw = (-e?,)p cos (g__b_zg) et
e log « e s e |logu
: 1+¢ u=.1+s u;l
LNp ;' <
_(eT/spr / o8 (%_}3) dw,
logi e
‘w=1

where

1+e<Ai<i<eT/§,

and a similar argument may be applied to the imaginary part. Hence

Tr Tr+a
(3. 624) k2,2=0(8§p+1)=0(§p+1).

3. 63. We shall now consider %, , and k,,. It is here that we are for
the first time in touch with the real kernel of the problem. The two integrals
are amenable to the same treatment, and we may confine our attention to one
of them, say %, ,.

We write

U=1+u,
so that o <u <e& and
u? =1+ O(p),

w=ulogu—u=—1 +§_u*+ O,

ediiwle — g—(aifle)+(aifp?[2e) + O3

= g—{eiil{e)+(asfu?]2¢) (I + 0(51“3))_
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Then

L
/"

(3. 631) ky,, = e_m-g;e) (1 +O(u) + O(Ep?))enisrizedy

0
—o(s2) 4 06 + 05

—o(572) 4 (-2 + 0T,

Combining (3. 631) with (3. 622) and (3. 624), and substituting in (3. 616),
we obtain

1
(3.652) (&)= O(&"*2) 4 O(Er+1T—20) 4 OLEP+2T—1%) + O(EPT) + O(T2+ v,

3. 64. We can now complete our discussion of J,. We have

An) . .
J,= -2 Tive ()
gef—1<n<zEell+1
An), ., .
FAEED <t

n < O(19)

the symbolism used last implying that the summation is extended to all positive
integers n less than some fixed multiple of 7¢. We have now to estimate the
five sums 8,, S, S;, 8,, 8,, obtained by substituting in turn for |5(&)| the five
terms on the right hand side of (3. 632).

In the first place

1
(3. 641) S, = 2( )‘nll(f} ole 2)
n < O(1e

\ p+1
= OZ A(n)n 2
n < O(T9)

1—9¢

i4+a
ye_,
= 024(7;)11, za

n < 0(T9)

- 0{(5[:;)12#1}

o)
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In the second place

(3. 642) 8, = 2 %(?%0(51’“71_2(1)

=0 {T“'*’“ 2 /l(n)n%‘”l}

n < O(T“)

24a
:O{T-M(Ta)ﬁ}

_ {T%ﬂ—n}

1+a
=0 TT),
since 2a>§>—;‘-
Thirdly
o A(n) - —4a
(3- 643) Se=2 s OEP+2T—4a)
n < 079
2
=0{T—4“2/1(n)n%—1—0}
n < 0(719)

= 0{T‘4024(n)n%2—2}

n < 0(T9)

4i+a

=0 {T—ul(Ta)Wf

_o(p*#-)

~o(r"%)

since 4a> g

175
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Fourthly,

A 4 cp ma
(3. 644) ‘% ’1“‘ 0ErTY

- 0{7‘112/1(n)n";—‘—°}

n < O('I“)

o 1
= O{T"Z/l(n}n_z}

n<0(719)

_o(pa+e)

1+a
=0 T 2 )’
. I
since o < —-
2

Finally

(3. 645) $,— 2 2 oree

1+l)
n<0(Ta)

=0(Tr+e)

a+ a<)+u)

—olz>

=0 Tl—;—a),

since ad +a < _12_ Combining (3. 641)—(3. 645), we sce that

1+a
o 640 )
3. 7. We have thus proved that
1 ita
(3.71) 2e“0‘°¥(-‘9)x99—§a= o\T 2 ),
0<7<T
uniformly in any positive interval of values of z. We now assume the truth of

the RIEMANN hypothesis, and write I;+ 1y for ¢ and 69 for x. We have

1 . 1
. —= aglog(—ig)+aplogd —-alogp
eaolog(—-o)xog 2“=e elog(—+e elos 3%

2
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and
. , 1 I I
aglog(~zg)=az710g7+;alog7+;a + 0(};)
aglogf =aiylogt + 'I;alog(),
I 1 I
—;alogg——-;alogy——a—alm +0(;),
and so

1
eaQIOg(—iQ)xQQ_ia: Aeai'/'mg(}'/)){l + 0(;)},

where A is a constant. It follows from (3. 71) that

1+a
(3' 72) 2 e8ir1og(70) — O T——z_),
0<y<T

and the proof of Theorem 3. 1 is completed.

4.

The zeros of { (s) on the line o=

N

4. 1. In this section we prove that the number N,(T) of zeros of {(s)

3
on the line 0‘=§, between the points g and £'+ T1, is of the form .Q(T4 E)

for all positive values of & As a matter of fact we prove rather more than
this, viz. that there is at least one zero of odd order between T and

1
T+T¢° for all sufficiently large values of T'.!
4. 2. We write

1 1 .
(4. 21) w=te 2T P (28) = f(s) = (i + m‘) = X ().

! See section I for a summary of previous results.
Acta mathematica. 41. Imprimé le 11 juin 1917. 23
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Then

is real when ¢ is real. Let ¢ be any positive number. We shall prove that, if
T >T,(¢), then X (f) changes its sign at least once in the interval (7,7 + H),

1
where H—T:" - We may obviously suppose, without loss of generality, that ¢ <2

There are two stages in the proof. The first consists in showing that

T/-tH
(4. 22) , X(@)dt=0(T?)

T

for all positive values of J; and the second in showing that, if §<e&, and 7T is
large enough, then the equation (4. 22) contradicts the assumption that X (¢) is
of constant sign throughout the range of integration. The second stage of the
proof is the easier, and we shall discuss it first.?

Suppose then that (4. 22) is true, with d<e, and that X (¢) is of constant
sign throughout (7,7 + H). Then

T:H
[1X(0)lde =0,
7

T+ H

'T[e%ﬂ,r G+ti)||§(§ +2ti)|dt —0(TY).

Now

at

DD | et

|I‘(i+ti)lc\>l/27re

| -

t

as t—o. Henece

* The general idea used in this part of the proof is identical with that introduced by
Laxpav in his simplification of Harpy's proof of the existence of an infinity of roots (sce
Laxpoav, Math. Annalen, vol. 76, 1915, pp. 212—243).
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T+H
T .
IC(; +2tz)| .
L2 —dgr—0(19),
T 14
T+ H

j

FE |
C(E +zti)|dt=0('.i‘?“>,
2

+2{T+ )i

fle(s las=o{ri*?).

+"’1'1

%+2(T+ B

(4. 23) fC(s)ds=0(T1”)-

y+2Ti

. : . 1 -
Applying CavcHy’s Theorem to the rectangle whose vertices are >t 27,

2+2T4, 2+2(T+H)i. and £+2(T+H)i, we obtain

l .
2+2T% e+ 2T+ Hyi o t2AT+H)i 1
L4d
(4. 24) J+J,+J,= J (s)ds + [g(s)ds—k [é(s)ds— (T4+ )
LY 2+2Ti 2+2(T+ Hyi
2

Now

. I A
uniformly for - <o <2.! Hence

[

(4- 25) J,=0\TI+°), J3:0(T}+°);

and from (4. 24) and {4. 25) it follows that

! Laxvav, Handbuch, p. 868.
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1
4. L)
(4. 20) J2=0(T4 )
But
24+ 2T+ H)i 24+ 2T+ H)i
o I C I
Jom | Sds—zHi+ | Xods
243 Ti 2427
L &pr-eT =z y—2— 2T+ Hyi
=2 Hit X — 2" iogm
2 i 2
=2H7+0(1);

1
which contradicts (4. 26), since H=T*"" and d<e.
4. 3. The problem is therefore reduced to the proof of (4. 22). Using
CaucHY’s Theorem in a manner very similar to that of 4. 2, we obtain

1 .
g+ Ti 0 (THE) (T + B

T+l a*e? ( +
(4- 31) fXU"dt=—i( / + } + J )f(s)ds
T 1 —]—+%‘;)+Ti ;+%~¢)+(T+H)i

Ll

2
=J1+J3+J3’

say. Now!

. I I
uniformly for - <¢ <=, and
A

[¥]

£ (28) = O(logt)

uniformly for t <o <+15. Also
2 2 2

uniformly for

f(s) = O(logt)

! Laxvav, I c. supra.
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. 1
uniformly for 505_5, and

I
\
f(s)zo(t;"’)

. 1 1,1 .
uniformly for = <o < ; + -d; and so
2 2

(4. 32) 1(s)=0(t*)

uniformly for LI; <o _<_§ + 2 d. Tt follows that

(4 33) I, =0(T%), J,~0(T;

and the problem is accordingly reduced to that of proving that

1 1 .
§v+é o+ (T+ H)i

Y

(4 34) [=iJ,— J f(s)ds = O(T).

4. 4. Now, when 0~—-2+§6, we have

1 1 .
(4 41) flo) = nmse 27T (g 3 L

We have also, by a straightforward application of StirLING’s Theorem,

LY SR R 1y 5 1
(4 42) i1 P (s) g0 B ){A N O(Z)}
where 4 is a constant. The term 0(%) in this equation may be neglected, for

its contribution to I is of the form

1
o(ri*g) - o(1).
We have also

1

1 1
g0z’ O(Ti"“ﬂ), (T<t<T+H),
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and the second term’s contribution is of the form
1
0(T5°“Hz)=o(x)l.

1 1
Thus we are at liberty to replace 2° by 72° in (4- 42), and to replace I in our

argument by
T+H . T+H

1
=0 P I 50 1 -
(4- 43)  T7 /e'“%“’”’zm?d‘ — 2 —T¥3 /e""’g“"’""z’dt

T T

=Tl§"2“’—(rf§”¢,—“=ﬁ"s,
say.

The integral @ (ezrn?) belongs to a type considered in 3. 4 and the following
sections;? and its behaviour depends on the position of the point 7= 7 n? with
reference to the interval (7,7 + H). At most one value of n can satisfy the
inequalities

i
Tinn3§T+T‘_+e;

so that wn® can fall inside (T, 7T + H) for at most one value of n. We denote
this value of =, if it exists, by »; if there be no such value, we denote by »
the largest value of n for which #n®<T. And we write

»—2 2v+41 o0
(4- 44) 8=+ +X=8,+8,+8,,
1 v—1 »4+2
say.
! For e < %,45 <1—e¢, and a fortiori 4¢ < 1 — 4. Hence
Yo +2(£ +s) =2e—1(1—6)<o_
2 4 2
? We have
Olenn®)=Jj,,, (exn®, T+ H)—j, o (exn®,T),
where

T

Ja, o, D= j 1223 108U g,
1
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Then, in the first place, we have

1 1

1 1 _
(4. 45) 12° g, — o\ 12’172 2d)=o(1).

Secondly, if n <»—2, we have, by Lemma z. 432,

(4. 46) D(exn®)=0 —[—T—— .
log (/rn”)
But
lo (T)— (Io VT lo n)
S\ oent —2(108 - 108
and
T>n{v—1)2, 100]/—->10g(w—1)
Hence
r—2 1
$,=0)> =00,
1 n1+610g( " )
Ly L
(4. 47) T2 Sl=0(T2°).

Similarly, if 2> » +2, we have

. Denn®)=0| — ! <l
(e

log(—ﬁ) = (logn—— log I/T+H
T+H

T+H<7r(az+1)’,log1/—r—-;£<log(v+x),

8,=0)3 ! = 0(1),
: {vgen”'"log( n )} ‘

Y+1

183

! Laxpav, Handbuch, p. 80b.
? Laxpav, l. ¢. supra.
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(4- 49) T%OS, =0(T“176).

From (4. 45), (4. 47) and (4. 49) it follows that

(4. 491) I=0(T%A)=0(T”)?

and our-proof is therefore completed.
Theorem 4. 41. Let ¢ be any positive number. Then there is a number T, (¢)
such that the segment

Lori! (st

where T > T, (&), contains at least one zero of { (s) of odd order.
As a corollary we have

Theorem 4. 42. The number N,(T) of zeros of L (s), on the line 2,; + T,

18 of the form

a(ri-)

for every positive value of 0.

5.

On the order of ¥ (x)— z and of
I (zx)— Lix.

5. 1. In this section we shall prove that
(5. 111)  Y(2) —2 = Qr(Vxlogloglogz), ¥ (z)— 2z = Q1 (Vzlogloglogz),
1. e. that there exists a constant K such that each of the inequalities
(5. 112) Y(x) —x> K Vzlogloglog x, ¥ (x) —x < — K Vz logloglog z,

is satisfied for arbitrarily large values of z; and from these inequalities we shall
deduce the inequalities (1. 52). It is clear that we may base our proof on the
assumption that the RIiEMANN hypothesis is true. If it is false, then more is
true than our inequalities assert.!

¥ Laxpav, Handbuch, pp. 712 et seq.
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We shall found our proof on the formulae
(5. 121) =g (n)+ O(1),

where { =g (z) is the function inverse to

(5. 122) 2= 1 tlogy— 1H1og2m
CECEE 2
and
— . n
(5. 131) PE =2, 3 o),
z in< T Vn

where 7 = log, uniformly for T > 22, Of these two formulae (5. 121) and (5. 131),
the first is an immediate corollary of Von MaNGoLpT’s formula

N(T) =LTIOgT_lﬂg_ZJ_‘T+0(IO T)1
27 g

27C

and the second is an immediate corollary of known formulae to be found in
Lanpav’s Handbuch.?

If we make 7' tend to infinity in (5. 131), we obtain

(5. 132) M—xz_ziwﬂ_’? +0(1),

Ve ~  n

since the series is known to be convergent.
5. 2. Let z=§&+ 45, and let F(z) be the function of z defined by the series

e Tn? K e—7pltin
(5. 21) F(z)= => ,
A 1 7n

convergent for £>0. We shall consider the behaviour of this function in the
semi-infinite strip defined by the inequalities 0<&<1,7>1. Our object will
be to prove

Theorem 5. 2. If 3 F(2) is the imaginary part of F(z) then

! It has been shown by Bomr, Laxpavu, and LirtLewoop (»Sur la fonction &(s) dans le

voisinage de la droite ¢ = i», Bulletins de 1'Académie Royale de Belgique, 1913, pp. 1144—1175)

that, on the RieEmaNN hypothesis (which we are now assuming), the O in this formula and the
corresponding O in (5. 121) can each be replaced by o.
? See pp. 387, 351.

Acta mathematica. 41, Tmprimé le 12 juin 1017. 24
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—3F(2) = De—rat 5‘%@= Qg (log log n),
1 n

— 3 F (z) = 2L (log log 1),

tn the semi-infinite strip o <& <1,7> 1
We shall consider the first of these relations: the second can of course be
proved in a similar manner. And we shall begin by proving the following lemma.
Lemma 5. 21. We have

e~ 7nf sin y,,§

—SF(E+i5=D° o Flog [g)-

In
as £—o.
Suppose that n <u<n + 1. Then

(5. 22) g ()~ —2"—,

log (;g;)
and so

g() —g(n)=(u—mn)g'(v) (n<v<u)
— o(mi%) —0).

Hence

e:ﬁiﬁmml;e_ﬁ+iSM+oﬁql4<0(@gfw
g (u) Vn n

e— TnlE+id)

S +0(§)+0(l»°—ii‘)}.

n

It should be observed that the constants implied by these O’s, and by those
which ocecur in the argument which follows, are independent of both u (or ») and §.
Let u, be a fixed positive number, and let g, =g (u,). Then

! To write
(m — 3 F{z)= QR (log log),

for a fixed value of &, would be to assert the existence of a positive K such that
(2) — 3 F(2) > Kloglogy

for this value of £ and arbitrarily large values of 7. To assert (1) in the strip 0 <& <1, >1
is to assert the existence of a positive K such that (2) holds for arbitrarily large values of 7
(corresponding in general to different values of £).
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o 0”e—(;‘+z'§)y(u) w'e—s’y(u) . logu
& £y == i — . = y
(5- 23) F(E+148) = 7w dll,i'Oj 7@ (:+ - )du+0(1)
Uo Uo
[e—G+isa dg __fe—sg dg
= |- — + O[5 | —— 2]+ 0(1).
gf 9 9 (,, g g'(u) )
But, by (5. 22),
1 logg—log 2n
9'(u) 27 '
Hence
cRe—i!l dg fe—i‘g logg, 1\*
' g g ° g 'd‘q_o(bg;")’
go go
and
(fe—(s+if
.20 FE+i9=" [ og g—log 20)dg + 0().
90
Thus
(5. 25) —QFE+ i) -1 }e——wi'ﬂlog gdg
27, g
go
_log 27[Je—§fl sin §gdg I
27 g
go
=J,+J,+ 0(1),
say. But
(5. 26) Jo— L [eTHSInSg 0 gdg 1 01)
‘2w g
b
1 [e—%sinw ,
=;J ” — (logw—1log §)dw + O (1)
]
=§log (é) + O(1);
and
(5. 27) J2=—]0g2”]e_wsmwdw=0(r).
27 w

£g,
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From (5. 25), (5. 26), and (5. 27) it follows that

(5. 28) —OF(+i§colog (i)

as £—o.

5. 3. Lemma 5. 3. There is a constant a such that

<L log ()

(5. 31)

'/”>>a

for all sufficiently small values of &.
The number of y’s which lie between » and » + 1 is of the form O (logw).
Hence

ywe ', yeTilogy

5 £
mi>a r>23
s

Ofe “logu

_0) [e*logw () e~ ® .
, —~w dw + log o dw;

a a

and (5. 3r) follows immediately.

5. 4. We shall now make use of a well-known theorem of DIrICHLET, the
fundamental importance of which in the theory of DIRICHLET’s series was first
recognised by BoHR.! Let us denote by z * the number which differs from z by

an integer and satisfies the inequalities — > < x < 2 Then DIRICHLET’s theorem
P

asserts that, given any positive numbers 7z, (large), £ (small), and N (integral),
there exists a r such that

N
(5. 41) 10<r<ru(§+x) ,
S
and
(5 42) Intl<k

! See Bour and Laxpav, Gottinger Nachrickien, 1910, pp. 303—330, and & number of later
papers by Bomg.

* The notation is that of our first paper, '‘Some problems of Diophantine Approximation’,
Acta Mathematica, vol. 37, pp. 155—193.
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for n=r1,2,....N.
Let

Then
|—SFE+ip) +IF(E+ 18]

X . w0 . .
Ssingnn gz Nsingas s
At

1 In 1 /n
NI - . . @ e
P N B R LY T3 Ze“’"’
iy | : T
1 Vn N+1 In

But, by (5. 42),

8INYp 1 =S8IB (Y& + 70 7) = sin (yo§ + w,),

where
loa| <27,
and so
Isinypy—siny, &| <2 é&.
Hence
Y1 I b
(5. 43) |[—3F(E+iny) +3F(E+i&)|<2aé %7,. +’1610g (S)

T I T I
= 1618 () +0() <, log ()

if & is small enough. It follows that the inequality

(5 44) —IFE +in)> (é“fg) log (é) T E)

holds for every sufficiently small value of £ and a corresponding value of 7
Latisfying
(5. 45) ro<n<§+ru(§+1)s‘.

S

5. 5 We are now in a position to prove Theorem 5. 2. Suppose that the
formula

—3F (& +in)=8z(log logn)

is false. Then, given any positive number ¢, we have
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(5. 51) —JF (& +ip)<elog logy,

provided only
n>T, =1, (8)

Let us take v, —z,: then (5. 51) holds for all values of 7 which satisfy (5. 45). We
have therefore

(5- 52) —Q3F(E+in)<elog log{§+r,(§+1)_§}.
But

log log {§ + 1:1(; + I)_f'lm log (é)
S

as £ —o. Thus (5. 52) contradicts (5. 44). Therefore (5. 51) must be false, and
the theorem is proved.
5. 6. Our next object is to prove
Theorem 5. 6. If we denote by S F (i) the limit of IF(§ +in) as §—o,
so that
g F(iq) _ zsu\y}’nn’
1

n

then
— 3 F(in) = Qg(log logy), —SF (in) = 2z (log logy).

If F(z) were regular for £ >o0, or regular for ¥> o and continuous for § > o,
we could deduce Theorem 5. 6 from Theorem 5. 2 by means of a well-known
theorem of LiNDELOF. Our argument would in fact be much the same as that
used by BoHR and LaNpav! in deducing

(1 + <t) = 2(log logt)
from
§(s)=8R(log logt) (6>1).

In the present case, however, F(z) is not continuous for § > 0. We proceed
therefore to frame a modification of LINDELOF’s theorem adapted for our purpose.

Lemma 5. 61. Suppose that

(i) f(z) is regular in the open semi-infinile strip

o<&<1,9>7>0;

(ii) f(& + ¢7) tends to a limit f(in) as £—o, for every such value of n;

and that positive constants A,, A,, and p exist such that

1 Gottinger Nachrichten, 1910, p. 316,
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(iii) given any number y greater than v, we can find a positive number
8 =3 (y) such that

f(E+1m)
l f(en) <4

for
0<E<0, 9, <n<y;!

(iv) /()] < 4.

on the boundary of the sirip,

(v) 17 ()] = 0.¢7)

n the interior.
Then there is a constant A such that

[f(z)<4

1n the interior and on the boundary of the strip.

There is plainly no real loss of generality in supposing that 7, is greater
than any number fixed beforehand. Let us then choose a number g greater
than p, and suppose that

.

garctan (l) < !
Dol "z

If z— Rei®, then

7T

I I I
-7 —arc tan (~) <<=
2 ol — T2

for all points of the strip, so that

cosq (@—;71’) >o0
and

R(—1i2)72>0.
If now

D (2) = f(z)e—¢(—ia9,
where ¢ is positive, then

(5 61) |®(@z)]|< 4,
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at all points of the boundary. Also @(2)—o0 as y— «, uniformly for 0o <& <1.
We can therefore choose a value of y, as large as we please, and such that

|0 +iy)[< A4, (0<E<T1).

The inequality (5. 61) is then satisfied at all points of the boundary of the
rectangle R whose corners are (o,1,), (1,7,), (1,%) and (o,¥).

Now let § be the number §(y) of condition (iii), and let R' be the left-hand,
and R" the right-hand, of the two rectaugles into wlich R is divided by the
line £=4. It follows from condition (iii) that

(5. 62) D(z)< A, 4,

at all points in or on the boundary of R'. It is moreover evident that 4, > 1.
Hence (5. 62) holds also on the boundary of R", and therefore, since @ (z) is
regular in and on the boundary of R", inside R" also. Thus (5. 62) holds inside
and on the boundary of the whole rectangle R. Making ¢ tend to zero, as in
the proof of LINDELOF’s theorem, we see that

I/(Z)ISA=A|A2

inside and on the boundary of R. Thus the lemma is proved, with 4 =4, 4,.

5. 7. We can now prove Theorem 5. 6. Let us suppose that the first
proposition asserted in the theorem is false. Then, given any positive number J,
there is an 7, such that

(5. 71) — 3 F (1) <dloglogy
fOI‘ 1772770.

Let
(5. 72) f(z) =eiF@(logz)— K

where K >4d. We shall show that f(z) satisfies all the conditions of Lemma 3. 61
in the strip o <& <1,7>2. That conditions (i) and (ii) are satisfied is evident,
and (iv) is satisfied in virtue of (5. 71). It remains to verify (iii) and (v).

It follows from (5. 131) that

ESin Ian _ 0(1)
"n>T ™

uniformly for T > x* = e*%. If then we choose N so that y y4+1> %Y, we have
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(5. 73) S'f’;yl’f 0(1)

uniformly for » > N,2<n<y. It follows by partial summation that

(5- 74) Yo gy,
N+l n

uniformly for £>0,2<%<y. Thus

| —3F(+ip)+ 3F (in)]|= lz(l—e—%ﬁ)M'
1 7n

<N&t gsinynq + ie—mfsinyﬂj
7n 7"
N+1 N+1
= N§ + O1),
< K
I_bLi — ¢~ 3IFE+in+3F(@n log(zr
l l 102(3'*'27])

<K eNitke

where K, and K, are constants; so that condition (iii) is satisfied if we take

I
JZN.

We have finally to verify that f(z) satisfies condition (v). It is known that

’f"‘“{”}:x 0 (log 2)*,
and it follows from (5. 131) that
(5 75) 23‘"7" —0(p),
1

uniformly for y, >2%=e27. But, if y, <e??, we have

sinya?y _ o I_oy lgk_,
2 2 02,7k =0

Thus (5. 75) holds uniformly for all values of »; and so, by partial summation
we obtain

Acta mathematica. 41. Imprimé le 28 jnin 1917. 25
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t+lf)—2e ”nSln/"'I 0(",2),

(5. 76) f(z)=eOo(x)=0(e™).

Tbus condition (v) is satisfied with p = 3.
The function f(z) therefore satisfies all the conditions of Lemma 3. 61, and so

f(z)=0(1)

eiF e = 0] (log2)|

and so

(5. 77) —Q3F(z)<z2Kloglogr,

for all sufficiently large values of r. But K, being restricted only to be greater
than ¢, is arbitrarily small; and so (5. 77) is in contradiction with Theorem 5. 2
It follows that (5. #1) is false, and therefore Theorem 5. 6 is true.

5. 8. From (5. 132) and Theorem 5. 6 we can at once deduce the theorem
which it is our main object to prove, viz.,

Theorem 5. 8. We have

Y (x) —x = Qp(Vzlogloglog z), ¥ (x) — 2 — 1. (Vzlog log log z).

All that remains is to deduce from these relations the corresponding rela-
tions which involve IT(x). This deduction presents one point of interest. It
might be anticipated that nothing more than a partial summation would be
needed; and if the one-sided relations involving 2z and £ are replaced, in premiss
and conclusion, by a single relation involving £, this is actually so. But the
argument now required is a little more subtle and involves an appeal to the
results established in 2. 25 concerning the CEsArRo means of ¥ (x)—=z.

We have to show that

Vzlogloglogz

.81) H(x)—Lix=20p Tog =

—
w

Vzlog log log x)

),H(x) sz—.QL( log z

It is plainly enough to establish similar relations for the function

3
(5. 82) F(x)=n(x)+§H(V§)+;H(Vx)+....
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It is of course this function, and not II(x), which can be connected with y ()
by a partial summation. We have in fact

)= SUI Y0

logn

=i I +2{tp(n)—n}—{tp(n—1)—(n-——I)}
logn
2 2

f(@)=Liz +0(1) + O = =¥ —1—(n—1)
2

logn
r—1
=Liz+0 —nyt T
ix (1)+22‘{¢,U(n) n’{logn log(n+1)}+
W) — ()
log{{«] + 1}’
(5. 83) f(x)—Liw—wﬁﬁfg;”=Zf((ﬁ,)g;ﬁ

Let

Then

by Theorem 2. 25. Hence

(5. 84) iw(”)—"___ix(n)—x(n—l)

S n (logn)®
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I L 1 x1z]
_§Z(7b) [n(logn)*—(n + 1) {log (n + I)}z] ([=] + 1) Uog ([a] + 1)}

m._\/&

Ve }
n l‘o_gn)2 0{(]05)—’

= lioger
— lttogayf

From (5. 83) and (5. 84) it follows that

7. Ylx)—=x Ve |.
(5. 85) @) — Diz— " 0{(__logx)2},
and from (5. 85) and Theorem 5. 8 we deduce
Theorem 5. 81. We have

1 (@) — Liz = 0p (V21081081082) p1(4) _ 1iz — 0 (Valoglogloga)

logz -~ logx

We refer in the introduction (1. 5) to the other important applications which
may be made of the method of this section.

Additional Note.

While we have been engaged on the final correction of the proofs of this memoir, which
was presented to the Acta Mathematica in the summer of 19135, two very interesting notes
by M. pE rna Vauuie-PoussiN entitled 'Sur les zéros de {(s) de RIEMANN’ have appeared in
the Comptes Rendus (23 Oct. and 30 Oct. 1916). M. pE La VALLEE-Poussiy obtains, by
methods quite unlike those which we use here, a considerable part of the results of section
4 (18 Nov. 1910).

Erratum

G. H. Haroy and J. E. Lirtiewoop, 'Some problems of Diophantine Approximation’, II, Acta
Mathematica, vol. 37, p. 231, line 1:

for o{l/——} read o{]/I _r}



