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Abstract. This report will describe in detail the proof of Linnik’s theorem re-
garding the least prime in an arithmetic progression. Some background information
is included, and references are given to fill in any omitted details. This report also
surveys both the conjectured and computed results for Linnik’s constant as well as
a brief discussion of the more recent improvements.

1.. Introduction

A classical theorem of Dirichlet says that the primes are evenly distributed amongst
the equivalence class modulo q. This naturally leads to many questions about the
distribution. For example, one may ask how large is the least prime congruent to
a modulo q, denoted p(a, q). We can first approach this question using the Prime
Number Theorem for arithmetic progressions. Define

θ(x; q, a) :=
∑
p≤x

p prime
p≡a mod q

log p.

Then the theorem tells us that for x < (log q)A there exists a c such that

θ(x; q, a) =
x

φ(q)
+O

(
x exp(−c

√
log x)

)
.

Notice that close to 0, θ(x; q, a) = 0 and that as x increases θ(x; q, a) remains zero
until x is greater than the first prime congruent to a modulo q. Thus if we can find a
value of x such that θ(x; q, a) > 0 then it must be the case that p(a, q) ≤ x. We set
θ(x; q, a) > 0 and using a specific positive O-constant D we solve for x. We have that

Dx exp
(
−c
√

log x
)
<

x

φ(q)√
log x <

1

c
log(Dφ(q)).

1
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As φ(q) < q, we may simplify the above to read√
log x <

1

c
log(Dq))

x > exp

(
1

c2
log2Dq

)
x > (Dq)

1
c2

logDq

x� qC log q,

for a computable constant C. So we obtain that p(a, q)� qC log q. Notice however that
this bound is super-polynomial in q. However, if we assume the Riemann Hypothesis,
then we can improve the error term in the Prime Number Theorem to

θ(x; q, a) =
x

φ(q)
+O

(
x1/2 log2 x)

)
.

A similar calculation with this expression yields

p(a, q)� φ(q)2 log2 q.

So under the Riemann Hypothesis we get a result polynomial in q of order q2+ε. But
an even stronger result of q1+ε is conjectured. Therefore, before Linnik, the best
unconditional lower bounds on p(a, q) were extremely distant from the conditional
ones. That was how the problem stood until Linnik’s works [Lin44a] and [Lin44b] in
1944 where he proves

Linnik’s Theorem: There exists an effectively computable constant L > 0 such that

min {p : p prime, p ≡ a mod q} =: p(a, q)� qL.

Linnik himself never computed an explicit value for L but since his work many
people have. An overview of these results is included in Table 1.

L Name Ref.
10000 Pan [Pan57]
777 Chen [J.65]
80 Jutila [Jut77]
20 Graham [Gra81]
16 Wang [Wan86]
5.5 Heath-Brown [HB92]
5.2 Xylouris [Xyl09]

Table 1. Estimates For Linnik’s Constant

In this paper we will prove the statement of Linnik’s theorem as written above with
no attempt to explicitly compute the constant. The next section contains some re-
quired background information and motivation for the approach of the proof. Section
3 contains a few key propositions, the proofs of which are covered in [IK04]. With
these results we prove Linnik’s Theorem in Section 4. We close with a brief discussion
of some of the more recent improvements mainly due to Heath-Brown.
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2.. Preliminaries

The proof of Linnik’s theorem relies on a few key ideas. First we need to derive
an arithmetic function that has support on primes congruent to a modulo q. We
will find this function while constructing a summatory function related to certain
L-functions. We will eventually derive bounds from an investigation of the zeros of
these L-functions. Finally, these bounds are manipulated to give bounds on the least
prime in an arithmetic progression.

We begin by investigating the Dirichlet series of a character modulo q. Specifically,
we consider

L(s, χ) =
∞∑
n=1

χ(n)

ns

which we rewrite as an Euler product

L(s, χ) =
∏

p prime

(1− χ(p)p−s)−1.

The Euler product and Dirichlet series can be shown to converge absolutely for
<(s) > 1. Using the Euler product, we derive a formula for the logarithmic derivative
of L(s, χ). Taking the logarithm, we see that

log (L(s, χ)) = log

( ∏
p prime

(1− χ(p)p−s)−1

)
=
∑
p prime

− log
(
(1− χ(p)p−s)

)
.

Using the Taylor Expansion of log,

− log (L(s, χ)) =
∑
p prime

log
(
(1− χ(p)p−s)

)
=
∑
p prime

∑
k

1

k
χ(p)kp−ks

and since the series is absolutely convergent, differentiating gives

−L
′(s, χ)

L(s, χ)
=
∑
p prime

∑
k

(
pk
)−s

χ(pk) log(p)

=
∑
n

Λ(n)χ(n)n−s

where Λ is defined to be the function that makes the above equality true; specifically

Λ(n) =

{
log(p) n = pk for some k ∈ Z
0 otherwise.
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The Mellin Inversion formula provides an expression for the sum of Λ(n) in terms of
L-functions; ∑

n≤x

Λ(n)χ(n) = − lim
T→∞

1

2πi

∫ 2+iT

2−iT

L′

L
(s, χ)

xs

s
ds.

Next, we use Perron’s Formula to approximate the integral above up to a bound T
and then move the line of integration to arrive at the following expression:

ψ(x, χ) :=
∑
n≤x

Λ(n)χ(n) = δχx−
∑

|Im(ρ)|≤T

xρ

ρ
+O

(
x (log(xq))2

T

)
(1)

where ρ runs over the zeros of L(s, χ), and δχ = 0 unless χ is the principal character
in which case δχ = 1 (see [IK04, Prop. 5.25]).

To demonstrate the idea behind the proof of Linnik’s Theorem, let’s take a closer
look at the function ψ(x, χ) when χ is the principal character, which we will denote
χ0. In this case L(s, χ0) is just the Riemann Zeta function ζ(s). Similar to θ(x, q; a),
for values of x near 0, ψ(x, χ0) = 0. Furthermore, as x increases, ψ(x, χ) remains
zero until we reach the first prime power 2, where it takes the value log(2). So if we
were looking for a bound on how big the smallest prime power is (potentially with the
power 1), one way to do it is to prove that ψ(x, χ0) > 0 for all x greater than some n.
With only a little more work we can describe how small the smallest prime is. That
is, if one knows something about the zeros of ζ(s) they could describe the behavior
of ψ(x, χ0) and consequently the growth of primes. This idea from the proof of the
Prime Number Theorem is essentially the idea behind the proof of Linnik’s theorem
as well. However, we don’t want to examine the function ψ(x, χ), which increments
at all prime powers, but a different function that only increments on prime powers
congruent to a modulo q. With this in mind, we define the following function:

ψ(x; q, a) :=
1

φ(q)

∑
χ mod q

χ̄(a)ψ(x, χ).

Using the orthogonality of characters we see that

ψ(x; q, a) =
1

φ(q)

∑
χ mod q

χ̄(a)ψ(x, χ)

=
1

φ(q)

∑
χ mod q

χ̄(a)
∑
n≤x

Λ(n)χ(n)

=
1

φ(q)

∑
n≤x

Λ(n)
∑

χ mod q

χ(n)χ̄(a)

=
1

φ(q)

∑
n≤x

Λ(n)
∑

χ mod q

χ(na−1)

=
1

φ(q)

∑
n≤x

n≡a mod q

Λ(n).
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Notice that ψ(x; q, a) is positive for all x greater than the first prime congruent to a
modulo q. Furthermore, by substituting equation (1) into the definition of ψ(x; q, a)
we obtain the explicit formula

ψ(x; q, a) =
x

φ(q)
− 1

φ(q)

∑
χ mod q

χ̄(a)
∑
|Imρ|≤T

xρ

ρ
+O

(
x (log(xq))2

T

)
. (2)

Hence we have an expression for ψ(x; q, a) in terms of the zeros of L-functions. So
if we can describe the behavior of the zeros of L(s, χ) for all characters χ modulo q,
then we can describe the number of prime powers congruent to a modulo q. With
this information it is a relatively simple matter to describe all primes congruent to a
modulo q.

3. Required Results

The proof of Linnik’s Theorem is in essence an effort to describe the growth of
ψ(x; q, a) via the explicit formula. As such, we need to make use of results about the
distribution and density of the zeros of L(s, χ) for all characters χ. We therefore turn
our attention to their product. We denote

Lq(s) :=
∏

χ mod q

L(s, χ).

For 1/2 ≤ α ≤ 1 and T ≥ 1 we define N(α, T, χ) to be the number of zeros ρ = β+ iγ
of L(s, χ) counted with multiplicity in the rectangle α < σ ≤ 1, |t| ≤ T . And we
write

Nq(α, T ) :=
∑

χ mod q

N(α, T, χ)

for the number of zeros of Lq(s) counted with multiplicity in the rectangle.

Following the approach of [IK04] we will make use of the following three results.

Theorem 3.1 - The Zero-Free Region: Let σ := <(s). There is a positive constant
c1, effectively computable, such that Lq(s) has at most one zero in the region

σ ≤ 1− c1/ log(qT ),

If such a zero exists, then it is simple and the zero of L(s, χ1) where χ1 is real, and
non-principal.

Theorem 3.2 - The Log-Free Density Theorem: There are effectively computable
constants c1, c2 > 0 such that for any 1/2 < α < 1, T ≥ 1,

Nq(α, T ) ≤ c(qT )c2(1−α)

Theorem 3.3 - The Deuring-Heilbron Phenomenon: There is a constant c3
such that if there does exist an exceptional zero ρ1 = β1 with L(ρ, χ1) = 0 and
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1 − c1/ log(qT ) ≤ β1 ≤ 1, then for all characters χ modulo q, L(s, χ) has no other
zeros in the region

σ ≥ 1− c3
| log(1− β1) log(qT )|

log(qT )
, |t| ≤ T.

Notice that Theorem 3.3 is about how the zeros of all characters modulo q are
repelled by the presence of an exceptional zero of one character. The proofs of these
theorems will not be discussed in this paper. However we note that the zero-free
region is due to Landau and the proof can be found in [IK04, Thm 5.26]. Theorems
3.2 and 3.3 are due to Linnik in [Lin44a] and [Lin44b] respectively, however the proofs
of these results are also the subjects of Sections 18.2 and 18.3 in [IK04].

4. Proof of Linnik’s Theorem

We present the proof as demonstrated by Nick Harland. He followed the approach
used in [IK04], which borrows heavily from [Gra81].

Recall that we aim to prove the following.

Linnik’s Theorem: There exists an effectively computable constant L > 0 such that

min {p : p prime, p ≡ a mod q} =: p(a, q)� qL.

We begin by establishing some notation. Let c, c1, c2, c3, c4, ρ, β1 be as in Theorems
3.1,3.2, and 3.3. Assume without loss of generality that 0 < c1, c3 < 1 and c, c2 > 1.
To keep the calculations clean, we set R = x1/(2c2).

We will prove Linnik’s theorem through a series of propositions regarding the be-
havior of ψ(x; q, a), beginning with the following.

Proposition 4.1 Let x ≥ q4c2. Then

ψ(x; q, a) =
x

φ(q)

(
1− χ1(a)

xβ1−1

β1
+ θcxη/2 +O

(
log q

q

))
where θ is some function with |θ| < 4, and

η :=

{
c3|log(2(1−β1) log q)|

2 log q
if β1 exists

c1
2 log q

otherwise

Proof. We begin with the explicit formula for primes in arithmetic progression; Equa-
tion 2.

ψ(x; q, a) =
x

φ(q)
− 1

φ(q)

∑
χ mod q

χ̄(a)
∑
|Imρ|≤R

xρ

ρ
+O

(
x (log(xq))2

T

)
.
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Let 0 < T ≤ R and consider the magnitude of a portion of the summation above:∣∣∣∣∣∣
∑
χ

χ̄(a)
∑

1
2
T≤|γ|≤T

xρ

ρ

∣∣∣∣∣∣ ≤
∑
χ

∑
|γ|≤T

xβ

|ρ|
≤
∑
χ

∑
|γ|≤T

xβ

T/2

by bringing the absolute values inside and bounding ρ. Notice that this sum can be
represented by a Riemann-Stieltjes integral. Namely,∑

χ

∑
|γ|≤T

xβ

T/2
= − 2

T

∫ 1

1
2

xαd (Nq(α, T ))

= − 2

T
xNq(1, T ) + x

1
2

2

T
Nq

(
1

2
, T

)
+− 2

T

∫ 1

1
2

xα log(x)Nq(α, T )dα.

Now we substitute in the bound on Nq(α, T ) from Theorem 3.1, giving that the above
is at most

− 2

T
c(qT )

1
2
c2x

1
2 +

2c

T
x log x

∫ 1

1
2

(
(qT )c2

x

)1−α

dα

≤ − 2

T
c(qT )

1
2
c2x

1
2 +

2c

T
x log x

1

log
(

x
(qT )c2

) [((qT )c2

x

)0

−
(

(qT )c2

x

) 1
2

]
.

Noticing that,

2c

T
(qT )

1
2
c2x

1
2 − 2c

T

x log x

log
(

x
(qT )c2

) ((qT )c2

x

) 1
2

=
2c

T
(qT )

1
2
c2x

1
2

1− x1/2 log x

log
(

x
(qT )c2

)


<
2c

T
(qT )

1
2
c2x

1
2

(
1− x1/2 log x

log x

)
<

2c

T
(qT )

1
2
c2x

1
2

(
1− x1/2

)
< 0

we obtain that ∣∣∣∣∣∣
∑
χ

χ̄(a)
∑

1
2
T≤|γ|≤T

xρ

ρ

∣∣∣∣∣∣ ≤ 2c

T
x log x

1

log
(

x
(qT )c2

) .
Finally, using x ≥ (qT )c2+1/3,∣∣∣∣∣∣

∑
χ

χ̄(a)
∑

1
2
T≤|γ|≤T

xρ

ρ

∣∣∣∣∣∣ ≤ 2cx

T

1

1− c2 log qTlog x

≤ 6c(c2 + 1/3)
x

T
. (3)
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Therefore, looking back at the explicit formula,

ψ(x; q, a) =
x

φ(q)
− 1

φ(q)
+
∑
χ

χ̄(a)
∑
|γ|≤T

xρ

ρ
+O

(
x log x

R
+

error of summing only
to T instead of R

)
.

We can bound the error term using equation 3. In particular, equation 3 give us the
bound on the error for each time we reduce our sum from R to 1

2
R. Repeating, we

have a bound on the error from reducing the sum from 1/2R to 1/4R, and then to
1/8R, etc., until we reach T . Thus, taking an infinite sum, the total error is bounded
by

∞∑
i=1

x

R2i−1
= O

(
∞∑
i=1

x

T2i−1

)
.

Consequently,

ψ(x; q, a) =
x

φ(q)
− 1

φ(q)
+
∑
χ

χ̄(a)
∑
|γ|≤T

xρ

ρ
+O

(
x log x

R
+

1

Tφ(q)

∞∑
i=1

x

2i−1

)

=
x

φ(x)
− 1

φ(q)
+
∑
χ

χ̄(a)
∑
|γ|≤T

xρ

ρ
+O

(
x log x

R
+

1

Tφ(q)

)

and if T = q then

ψ(x; q, a) =
x

φ(q)
− 1

φ(q)
+
∑
χ

χ̄(a)
∑
|γ|≤T

xρ

ρ
+O

(
x log q

qφ(q)

)
.

Now that we have the same error term as the statement of the proposition, we turn
our attention to the sum up to T over the zeros of the Dirichlet characters. If an
exceptional zero exists, we remove it from the sum. Then, using the values of η given
in the statement of the proposition,∣∣∣∣∣∣∣∣

∑
χ

χ̄(a)
∑
|γ|≤T

ρ unexceptional

xρ

ρ

∣∣∣∣∣∣∣∣ ≤
∑
χ

χ̄(a)
∑
|γ|≤T

ρ unexceptional

xβ

= −2

∫ 1−η

1
2

xαdNq(α, T )

= 2x
1
2Nq(1/2, T ) + 2(log x)

∫ 1−η

1
2

xαNq(α, T )dα.
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Appealing to Theorem 3.2 and making a similar calculation to the one above, we
arrive at the bound

2x
1
2Nq(1/2, T ) + 2(log x)

∫ 1−η

1
2

xαNq(α, T )dα

≤ 2cqc2x
1
2 + 2cx(log x)

∫ 1−η

1
2

xα
(
q2c2

x

)1−α

dα

≤ 2cx(log x)

log xq−2c2

(
q2c2

x

)η
≤ 4cx1−η/2,

which gives the desired bound on ψ(x; q, a). �

We have established an estimate for ψ(x; q, a) to work from. The last step in the proof
is to use the estimate from Proposition 4.1 to create lower bounds for ψ(x; q, a). To
do that we proceed in two different ways depending on whether or not an exceptional
zero exists. The simpler situation is when an exceptional zero does not exist. In that
case we have the following result.

Proposition 4.2 If β1 does not exist, then if x ≥ q4c2 then

ψ(x; q, a) =
x

φ(q)

(
1 + θc exp

(
−c1 log x

4 log q

)(
log q

q

))
.

Proof. Set η = 1
2

log q in Proposition 4.1. �

In the more difficult case where an exceptional zero does exist we have the following.

Proposition 4.3 Suppose β1 exists, and suppose that δ1 := 1 − β1 ≤ c1
2 log q

. Set

ν := max
{

4c2,
4
c1
, 4 log(8c)
c3| log c1|

}
. If x ≥ qν, then

ψ(x; q, a) ≥ x

φ(q)

δ1 log q

3c1

(
1 +O

(
q−

1
2

))
.

Proof. We consider two pieces of the expression for ψ(x; q, a) in Proposition 4.1.
First, using the assumptions on x and δ1 we have

1− χ1(a)
xβ1−1

β1
≥ 1− x−δ1

β1
≥ β1 − x−δ1 ≥ β1 − q−νδ1 = 1− δ1 − q−νδ1 .

Using that 1 − e−x ≥ x/(x + 1), which can be proved via Taylor series, we get that
the above is greater than

νδ1 log q

1 + νδ1 log q
− δ1 ≥

νδ1 log q

1 + νc1/2
− δ1 =

δ1 log q

1/ν + c1/2
− δ1.



10 COLIN WEIR

Finally, substituting in for ν we get that the above is greater than

δ1 log q

c4/4 + c1/2
− δ1 =

4δ1 log q

3c1
− δ1.

Secondly,

xν/2 ≤ q−ν/2 ≤ q
−c3 log(2δ1 log q)|

4 log q ≤ q
− log(8c)| log(2δ1 log q)|

| log c1| log q .

Recalling that c1 > 1, we can can drop the absolute values around log c1. Hence, the
above is equal to

q
− log(8c)| log(2δ1 log q)|

log c1 log q = e
− log(8c)| log(2δ1 log q)|

log c1 = 2δ1 log q(2δ1 log q)
− log 8c

log c1
−1
.

Substituting for δ1 yields

2δ1 log q(2δ1 log q)
− log 8c

log c1
−1 ≤

(
2δ1 log q

c1

)
c
− log 8c

log c1
−1

1

≤ 2δ1 log q

c18c

=
δ1 log q

4cc1
.

Using these inequalities in Proposition 4.1 we find

ψ(x; q, a) ≥ x

φ(q)

(
4δ1 log q

3c1
− δ1 −

δ1 log q

c1
+O

(
log q

q

))
=

x

φ(q)

(
δ1 log q

3c1
− δ1 −O

(
log q

q

))
.

Factoring out δ1 log q/(3c1) gives the result. �

As δ1 log q � q−
1
2 we can combine the results of Propositions 4.3 and 4.2 to conclude

ψ(x; q, a)� x

φ(q)q
1
2

� 1

for x ≥ qν .

Recall that ψ(x; q, a) increments at primes and prime powers. We would like to
infer a bound on

θ(x; q, a) :=
∑
p≤x

p prime
p≡a mod q

log(p),
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which increments only at primes. Comparing ψ(x; q, a) and θ(x; q, a) we find that

ψ(x; q, a)− θ(x; q, a) =
∞∑
i=2

∑
pi≤x
p prime

p≡a mod q

log(p) <
∞∑
i=2

∑
pi≤x
p prime

log(p).

As such, we define θ(x) :=
∑
p<x

p prime

log p and obtain

ψ(x; q, a)− θ(x; q, a) <
∞∑
i=2

θ(x
1
n ) =

log2(x)∑
i=2

θ(x
1
n )

as θ(x) = 0 for x < 2. Hence, to relate ψ(x; q, a) and θ(x; q, a) we need to investigate
the growth of θ(x1/n).

Using Riemann-Stieltjes integration we see that

θ(x1/n) =

∫ x1/n

1

log y d(π(y)) = π(x1/2) log(x1/2)−
∫ x1/n

1

π(y)

y
dy.

Using the trivial bound π(y) > 1 we can simplify the integral yielding

θ(x1/n) < π(x1/n) log(x1/n)−
∫ x1/n

1

1

y
dy =

(
π(x1/n)− 1

)
log(x1/n).

And so by the Prime Number Theorem we see that θ(x1/n)� x1/n. Therefore,

ψ(x; q, a)− θ(x; q, a)�
∞∑
n=2

x1/n � x1/2.

Finally, we see that

θ(x; q, a) = ψ(x; q, a) +O(x1/2)� x

q1/2φ(q)
+ Cx1/2 � x

q1/2φ(q)

for x� qL for some explicitly computable number L. Recalling that θ(x; q, a) is zero
until x is greater than a prime congruent to amodulo q, we conclude that p(a, q)� qL,
where L is a effectively computable constant. Linnik’s Theorem is proved.

5. Concluding Remarks

One could work through the proof we have provided and compute a numerical
value for L. This was first done by Pan [Pan57] who achieved a value of L = 10000
and later more carefully L = 5448. The more recent result of Heath-Brown achieves
L = 5.5 using essentially similar but considerably better methods. To get a sense of
his improvements, we note that he is able to use c1 = 0.348, which would only give
us a value of ν > 11.5. We conclude this report with a brief discussion on the types
of improvements that Heath-Brown made.
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The proof we provided was an investigation of ψ(x; q, a); essentially a search for a
value of x to which ψ(x; q, a) > 0. Besides making use of modern improvements of
Theorems 3.1, 3.2 and 3.3, Heath-Brown investigates a slightly different function. He
defines

Σ :=
∞∑
n=1

Λ(n)χ(n)n−sf

(
log n

log q

)
,

where f(x) is a continuous function with support on [0, x0). He similarly finds an
explicit formula for Σ involving L-functions and also looks for bounds based on their
zeros.

Heath-Brown also argues using a “zero free region,” but with at most four zeros in
it. He credits the idea for this improvement to Graham, who in [Gra81] proves the
following.

Theorem 5.1 If q is sufficiently large, then Lq(s) =
∏

χ mod q

L(s, χ) has at most two

distinct zeros ρ = σ + it in the region

σ ≥ 1− 0.2069

log q(2 + |t|)
,

and at most four zeros in the region

σ ≥ 1− 0.2769

log q(2 + |t|)
.

However, using his new explicit formula with the function f , Heath-Brown improves
Graham’s bounds and proves the following three theorems.

Theorem 5.2 If q is sufficiently large, then Lq(s) has at most one zero in the region

σ ≥ 1− 0.348

log q
, |t| ≤ 1.

Such a zero, if it exists, is real and simple, and corresponds to a non-principal real
character.

Theorem 5.3 If q is sufficiently large, then Lq(s) has at most two zeros, counted
with multiplicity, in the region

σ ≥ 1− 0.696

log q
, |t| ≤ 1.

Moreover, for large enough q, there exists a character χ1 mod q such that L(s, χ) is
non-vanishing for

σ ≥ 1− 0.702

log q
, |t| ≤ 1,

for all characters χ mod q with χ 6= χ1, χ1.
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Theorem 5.4 If q is sufficiently large, there exist characters χ1, χ2 mod q such that
L(s, χ) is non-vanishing for

σ ≥ 1− 0.857

log q
, |t| ≤ 1.

for all characters χ mod q with χ 6= χ1, χ1, χ2, χ2.

Notice that these three theorems encapsulate statements about both zero-free re-
gions and Deuring-Heilbronn phenomena. In fact, Heath-Brown argues using vari-
ational calculus that the function f was chosen optimally to maximize the bounds
given in these theorems.

One more improvement comes from taking a closer look at the zeros of individual
L-functions. Specifically, Heath-Brown counts the characters χ whose L-function has
a zero in the region 1− λ/ log q. He denotes this N(λ) and shows

N(λ) ≤ (1 + ε)
67

6λ

(
e

73λ
30 − e

16λ
15

)
for λ ≤ 1/3 log log log q. He credits this as following directly from a bound on char-
acter sums given by Burgess [Bur86]

Heath-Brown’s value of L = 5.5 also relies heavily on numerical computations;
and admittedly Heath-Brown made no effort to compute these values to the finest
precision. Indeed, he closes his paper with a list of nine small technical improvements
that could be made to improve his result. This was essentially what gave Xylooris a
value of L = 5.2 in [Xyl09].
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