
OSCILLATION OF ERROR TERMS ; LITTLEWOOD’S RESULT.

TATCHAI TITICHETRAKUN

ABSTRACT. This is a note for MATH 613 E (Topics in Number theory) class on Littlewood’s result
on error terms of prime number theorem where he proves that π(x) − li(x) can take both positive
and negative values for infinitely many times. Here we follow closely chapter 15 of [14] .

1. INTRODUCTION

The problem of counting the number of primes has been fascinated people from the ancient time.
In 1791, Gauss conjectured that the number of primes ≤ x (denoted by π(x)) is approximated by
x/ log x. In a letter to Encke in 1849, Gauss gave a better guess given by the logarithmic integral.

π(x) ≈ li(x) =

∫ x

2

1

log t
dt

This statement were proved precisely in 1896 (The Prime Number Theorem). After Gauss, Rie-
mann (see [3, Chapter 1]) gave an even better estimate. First, we begin with

Π(x) := π(x) +
1

2
π(x1/2) +

1

3
π(x1/3) + ...

Using Möbius Inversion Formula [14, Section 10.9], we can solve for π(x).

π(x) =
∞∑
m=1

µ(m)

m
Π(x1/m).

Now Riemann replaced Π(x) in the formula above by the function Li(x). Here

Li(x) = lim
ε↘0

(

∫ 1−ε

0

dt

log t
+

∫ x

1+ε

dt

log t
).

To do this, Riemann gave a heuristic proof (the formal proofs are given later by many people) of
the following analytic formula.

Π(x) = Li(x)−
∑
ρ

Li(xρ)− log 2 +

∫ ∞
x

dt

t(t2 − 1) log t
, x > 1. (1)

Here the sum over ρ is the sum over nontrivial zero of Riemann zeta function. Note that Li(x) is
the main term, the sum over ρ is an oscillation term, the remaining are neglectable error terms that
does not grow with x. We see that, for a suitable N ,

π(x)−
N∑
n=1

µ(n)

n
Li(x1/n) =

N∑
n=1

∑
ρ

Li(xρ/n) + lesser terms. (2)

If we ignore the oscillation and the constant terms, we get an approximation

π(x) ≈ Li(x)− 1

2
Li(x1/2)− 1

3
Li(x1/3)− 1

5
Li(x1/5) +

1

6
Li(x1/6)− ... (3)
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Notice that the first term is Gauss’s approximation. Emperically, (3) turns out to be a very good
approximation to π(x). This means the oscillation error terms are small. This may be surprising
to the fact that

∑
ρ[Li(xρ) + Li(x1−ρ)] is only conditionally convergent and hence the smallness of

this sum depends on cancellation. Also, each term Li(xρ) grows in magnitude like xρ/ log(xρ) =
xRe(ρ)/ρ log x so many of them grow at least as fast as x1/2/ log x ∼ 2 Li(x1/2) > Li(x1/3). Thus
this is expected to be as significant as −(1/2) Li(x1/2) term and more significant than other terms.

Gauss observed that Li(x) always exceeds the actual number of primes where he calculated
up to x = 3, 000, 000. People began to believe that this may be always the case as we may see
from (3) that Li(x)− (1/2) Li(x1/2) should be a better approximation (see also Table 6 in [5] that
π(x) − [Li(x) − (1/2) Li(x1/2)] has no bias in sign.) and the reason that π(x) < Li(x) comes
from the term −Li(x1/2). However it turns out that it is actually not true that π(x) < Li(x).
E.Schmidt [12] proved in 1903 by elementary mean that ψ(x)− x changes sign infinitely often. A
hard part would be to deduce results on π(x)− Li(x) from this. E.Schmidt could do this under the
assumption that the Riemann Hypothesis (RH) is false. Littlewood [12] proved in 1914 that this is
also the case that RH is true:

Li(x)− π(x) = Ω±(x1/2 log log log x) (4)

Here the Ω± means the error achieves the given order of magnitude infinitely often in both positive
and negative signs. We see from (4) that actually the formula (3) is not much better approximation
for π(x) than Li(x) since the term−(1/2) Li(x1/2)− (1/3) Li(x1/3)− ... = O(x1/2/ log x) have no
influence on (4); each approximation will deviate as widely as the other for some arbitrarily large
x.(However, Li(x)− 1

2
Li(x1/2) is better than Li(x) on average, see discusion in [9, p.106]).

In this note we will present the proof of this Ω result of Schmidt and Littlewood following
[14]. In section we briefly review some backgrounds and briefly mention some theorems needed
in the proof. We present the result of Schmidt in section 2 and of Littlewood in section 3. We
briefly discuss the problem of finding explicit x such that π(x) > Li(x) and some related (similar)
problems in the final section.

1.1. Preliminaries and Some Tools.
Definition 1.1. For a real-valued functions f and positive function g

f(x) � g(x) if there are constants c, C such that cg(x) ≤ |f(x)| ≤ Cg(x).

f(x) = Ω(g(x)) if lim sup |f(x)|
g(x)

> 0.

f(x) = Ω+(g(x)) if lim sup f(x)
g(x)

> 0.

f(x) = Ω−(g(x)) if , lim inf f(x)
g(x)

< 0.

f(x) = Ω±(g(x)) if lim sup f(x)
g(x)

> 0, lim inf f(x)
g(x)

< 0.

Definition 1.2 (Logarithmic Integral).

Li(x) = lim
ε↘0

(

∫ 1−ε

0

dt

log t
+

∫ x

1+ε

dt

log t
).

li(x) =

∫ x

2

1

log t
dt = Li(x)− Li(2). (Li(2) = 1.04...)

Definition 1.3 (Sum Over Primes). Note that p will always denote primes.

ψ(x) =
∑
n≤x

Λ(n), ϑ(x) =
∑
p≤x

log p.
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Π(x) :=
∑
n≤x

Λ(n)

log n
= π(x) +

1

2
π(x1/2) +

1

3
π(x1/3) + ...

Note that the following are equivalent form of Prime Number Theorem.

ψ(x) = x+O(
x

exp(c
√

log x)
)

ϑ(x) = x+O(
x

exp(c
√

log x)
)

π(x) = li(x) +O(
x

exp(c
√

log x)
)

Theorem 1.4. [14, Section 10.2]We will denote the nontrivial zeros of ζ by ρ = σ + iγ. N(T ) is
the number of zeros of ζ with 0 < γ ≤ T .

T ≥ 4, N(T ) =
T

2π
(log

T

2π
)− T

2π
+O(log T )

N(T + h)−N(T ) � h log T

From the last inequality with h = 1 ,we have∑
0<γ≤T

1/γ �
∑

0<N≤T

logN

N
� (log T )2

∑
γ>T

1/γ2 �
∞∑
T

logN

N2
� log T

T

For α > 1 ,
∑
γ

1

γα
�
∑
N>1

logN

Nα
<∞.

Theorem 1.5 (Explicit Formula For ψ ). Let ψ0(x) = ψ(x+)+ψ(x−)
2

,then

ψ0(x) =
1

1πi

∫ c+i∞

c−i∞

xs

s

ζ ′

ζ
(s)ds, x > 0, c > 0. (5)

ψ0(x) = x− lim
T→∞

∑
|ρ|≤T

xρ

ρ
− ζ ′

ζ
(0) +

∑
k≥1

x−2k

2k
. (6)

Note that
∑

k≥1 x
−2k/2k = −(1/2) log(1−1/x2). Defineψ1(x) =

∫ x
0
ψ(u)du =

∫ x
0

∑
n≤u Λ(n)du =

1
(k−1)!

∑
n≤x

∫ x
n

Λ(n)du =
∑

n≤x(x− n)Λ(n). In general for k ≥ 1, we define

ψk(x) =
1

(k − 1)!

∫ x

0

∑
n≤u

(u−n)k−1Λ(n)du =
1

(k − 1)!

∑
n≤x

∫ x

n

(u−n)k−1Λ(n)du =
1

k!

∑
n≤x

(x−n)kΛ(n).

(7)
We have for c > 0, x > 0

ψk(x) =
1

2πi

∫ c+i∞

c−i∞

xs+1

s(s+ 1)...(s+ k)

(
ζ ′(s)

ζ(s)

)
ds. (8)
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We have

ψk(x) =
x2

(k + 1)!
− lim
T→∞

∑
|γ|≤T

xρ+1

ρ(ρ+ 1)...(ρ+ k)
− x
k!

ζ ′(0)

ζ
+O(1)−

∞∑
r=1

x−2r+1

(−2r)(−2r + 1)...(−2r +m)

(9)
Here, the O(1) term is the terms arising from the residue of (7) at −1, ...,−k.

The idea of the proof is to integrate the integrand (4) or (7) over large rectangles. The terms in
explicit formula arise from the residue of the integrand and we need some estimate of zeta function
to estimate the integral. See Chapter 4 of [9] for details.

The next theorem is useful for converting convergent dirichlet series to absolutely convergent
integral.

Theorem 1.6. [14, Theorem 1.3] Suppose that α(s) =
∑
αnn

−s has abcissa of convergence σc
(α(s) converges for all s, σ > σc and for no s, σ < σc). Let A(x) =

∑
n≤x an and suppose that

σc ≥ 0, then for σ > σc,
∞∑
n=1

ann
−s = s

∫ ∞
1

A(x)x−s−1dx.

The next result will be useful when converting ψ(x)− x to π(x)− li(x).

Theorem 1.7. [14, Theorem13.2 ] Assuming RH , then

ν(x) = ψ(x)− x
1
2 +O(x

1
3 ).

π(x)− li(x) =
ϑ(x)− x

log x
+O(

x
1
2

log2 x
).

2. FIRST Ω-RESULT.

The first oscillation of error term result comes from the work of E.Schmidt in 1903 assuming
RH is false. Our main tool is the following theorem of Landau.

Lemma 2.1 (Landau). Suppose A(x) is bounded and Riemann integrable function on any finite
interval [1, x] and A(x) ≥ 0 for all sufficiently large x. Let σc be the infimum of σ for which∫∞

1
A(x)x−σdx < ∞. Then the function F (s) =

∫∞
1
A(x)x−sdx is analytic on Re(s) > σc but is

not analytic at s = σc.

Proof. It follows from the definition of σc that
∫∞

1
A(x)x−sdx is absolutely convergent for Re(s) >

σc. Hence
∫ N

1
A(x)x−sdx→

∫∞
1
A(x)x−sdx uniformly in {s : Re(s) ≥ σc + ε} for any ε > 0 and

hence
∫∞

1
A(x)x−sdx is analytic on {s : Re(s) > σc}.

Now assume on the contrary that F (s) is analytic at s = σc. Since the integral on finite interval
[1, x] is entire we may assume A(x) ≥ 0 for x ≥ 1 and by replacing A(x) by A(x)xσ, σ ≥ 0, we
may asume σc = 0. Now A(x) would be analytic on a neighborhood of 0 ,say {z ∈ C : |z| < δ}.
Let Ω = {s : σ > 0} ∪ {s : |s| < δ}. Now F is analytic in Ω. Write F (S) =

∑
k≥0 ck(s − 1)k.

Since the nearest points to 1 that are not in Ω are ±iδ, radius of convergence ≥
√

1 + δ2 = 1 + δ′

,say. For s near 1 ,|
∫∞

1
A(x)x−sdx| ≤

∫∞
1
|A(x)|dx <∞, we differentiate under the integral sign,

ck =
1

k!
F (k)(1) =

1

k!

∫ ∞
1

A(x)
dk

dsk
x−s
∣∣∣∣
s=1

dx =
1

k!

∫ ∞
1

A(x)(− log(x)−k)dx.
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So,

F (s) =
∑
k≥0

1

k!

∫ ∞
1

A(x)(− log(x)−k)x−1(s− 1)kdx

Now if −δ′ < s < 1, the integrand is nonnegative, we may switch the order of summation and
integration:

F (s) =

∫ ∞
1

∑
k≥0

1

k!
A(x)(− log(x)−k)x−1(s− 1)kdx

=

∫ ∞
1

exp(log(x)(1− s))A(x)x−1dx

=

∫ ∞
1

A(x)x−sdx.

In particular
∫∞

1
A(x)x−sdx converges at s = −δ′

2
which contradicts the definition of σc. �

Theorem 2.2. Let Θ denotes the supremum of real parts of the zeros of zeta functions. Then for
any ε > 0 ,

ψ(x)− x = Ω±(xΘ−ε), x→∞.

Proof. By theorem 1.6 , we have

−ζ
′

ζ
(s) = s

∫ ∞
1

ψ(x)x−s−1dx, σ > 1

Hence for σ > 1,
1

s−Θ + ε
+
ζ ′(s)

sζ(s)
− 1

s− 1
=

∫ ∞
1

(xΘ−ε + ψ(x)− x)x−s−1dx, σ > 1 (10)

Now assume that ψ(x)− x ≥ −xΘ−ε for x large enough. LHS of (10) has a pole at Θ− ε and ζ(s)
is nonzero for real s ∈ (0, 1), we see that LHS of (10) is analytic for real s > Θ−ε i.e. none o such
point is the abcissa σc. Applying the Landau’s theorem,

∫∞
1

(xΘ−ε +ψ(x)− x)x−s−1dx is analytic
for Re(s) > Θ − ε and hence the equation (10) holds for Re(s) > Θ − ε. This is a contradiction
since ζ′

ζ
has a pole with real part > Θ− ε by definition of Θ. It follows that

ψ(x)− x = Ω−(xΘ−ε)

Similarly , if ψ(x)− x < xΘ−ε for large enough x, we consider the following function.

1

s−Θ + ε
+
ζ ′(s)

sζ(s)
+

1

s− 1
=

∫ ∞
1

(xΘ−ε − ψ(x) + x)x−s−1dx, σ > 1. (11)

Then the same argument as in previous case gives ψ(x)− x = Ω+(xΘ−ε). �

Next we will prove the Ω result of Π to obtain Ω result of π(x).

Theorem 2.3. Let Θ denote the supremum of real parts of the zeros of zeta functions. Then for any
ε > 0 ,

Π(x)− li(x) = Ω±(xΘ−ε)

and assuming RH is false, then
π(x)− li(x) = Ω±(xΘ−ε)
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Proof. We consider the Mellin’s transform of li(x). Using integration by part and a change of
variable, we have

s

∫ ∞
2

li(x)x−s−1dx = − li(x)

xs

∣∣∣∣∞
2

+

∫ ∞
2

dx

xs log x

=

∫ ∞
2

dx

xs log x
.

=

∫ ∞
(s−1) log 2

e−u

u
du (substitute x = e

u
s−1 ).

=

∫ ∞
1

e−u

u
du+

∫ 1

(s−1) log 2

e−u − 1

u
du+

∫ 1

(s−1) log 2

1

u
du.

= −
∫ (s−1) log 2

0

e−u − 1

u
du− C0 − log(s− 1)− log log 2.

Here C0 =
∫ 1

0
(e−t − 1)/tdt+

∫∞
1

(e−t/t)dt is a finite constant. Then we can write

s

∫ ∞
2

li(x)x−s−1dx = − log(s− 1) + r(s).

Where r(s) =
∫ (s−1) log 2

0
(e−z − 1)/z dz − C0 − log log 2 is an entire function (as (e−z − 1)/z is

continuous on C).
Now for σ > 1,

log ζ(s) = log
∏
p

(1− 1

p−s
) = −

∑
p

log(1− p−s) =
∑
p

(p−s − p−2s

2
+
p−3s

3
+ ...)

=
∑
n

(
Λ(n)

log n
n−s).

Hence, in the view of theorem 1.6, we have for σ > 1

s

∫ ∞
2

Π(x)x−s−1dx = log ζ(s)

So for σ > 1,

1

s−Θ + ε
− 1

s
log(ζ(s)(s− 1)) +

r(s)

s
=

∫ ∞
2

(xΘ−ε − Π(x) + li(x))x−s−1dx. (12)

LHS of (12) is analytic for real s > Θ− ε so if we assume that xΘ−ε − Π(x) + li(x) is eventually
nonnegative then by Landau’s Theorem, both sides are analytic for Re(s) > Θ − ε. This is
a contradiction since ζ has a zero ρ = σ + iγ with ρ > Θ − ε. So there is arbitrarily large
x, xΘ−ε − Π(x) + li(x) < 0 That is

Π(x)− li(x) = Ω−(xΘ−ε)

Now,

Π(x)− π(x) =

O(log x)∑
k=2

1

k
π(x1/k) =

1

2
π(x1/2) +O(x1/3 log x) = O(

x1/2

log x
).
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so if we assume RH is false i.e. Θ > 1/2.Suppose Θ− ε > 1/2, then

π(x)− li(x) = O(
x1/2

log x
) + Ω±(xΘ−ε) = Ω±(xΘ−ε).

�

Remark. In case that RH is true, i.e. Θ = 1
2
. Since Π(x) > π(x) we have π(x) − li(x) =

Ω−(x
1
2
−ε)but the Ω+ result are not obtainable by this method.

Next we show that if we assume that there is a zero of ζ on the line σ = Θ then we can have a
stronger conclusion.

Theorem 2.4. Let Θ denotes the supremum of real parts of the zeros of zeta functions and there is
a zero ρ with Re(ρ) = Θ. Then,

lim sup
x→∞

ψ(x)− x
xΘ

≥ 1

|ρ|
(13)

lim inf
x→∞

ψ(x)− x
xΘ

≤ − 1

|ρ|
(14)

In particular , ψ(x)− x = Ω±(xΘ).

Proof. Let ρ = Θ + iγ be a zero of ζ . Assume ψ(x) ≤ x + cxΘ for x ≥ X0 i.e. c ≥
lim supx→∞(ψ(x)− x)/xΘ, then by Landau’s theorem, for σ > Θ

c

s−Θ
+
ζ ′(s)

sζ(s)
+

1

s− 1
=

∫ ∞
1

(xΘ−ε − ψ(x) + x)x−s−1dx. (15)

and both sides are analytic. Call this function F (s). Then for σ > Θ,

F (s)+
1

2
eiφF (s+ iγ)+

1

2
e−iφF (s− iγ) =

∫ ∞
1

(cxΘ−ε−ψ(x)+x)(1+cos(φ−γ log x))x−s−1dx

(16)
Now integral of RHS of (16) on the finite interval [1, X0] is uniformly bounded while the integrand
on [X0,∞) is nonnegative. We have that lim infs→Θ+ of RHS of (16) is > −∞. On the other hand,
recall that if f is analytic with zero of order m at z0 6= 0 then residue of f ′(z)

zf(z)
at z0 is given by

m/z0. Let m be the multiplicity of ρ then by LHS of (15),

• F (s) has a pole at s = Θ with residue c.

• eiφ

2
F (s+ iγ) has a pole at s = Θ with residue meiφ

2ρ
.

• eiφ

2
F (s− iγ) has a pole at s = Θ with residue me−iφ

2ρ
.

Choose ψ so that e
iφ

ρ
= − 1

|ρ| . Then the residue of RHS of (5) at Θ is c − m
|ρ| . Now as lim infs→Θ+

of RHS of (16) is > −∞, c− m
|ρ| ≥ 0 i.e. c ≥ 1

|ρ| . We have (13). (14) is proved similarly. �
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Corollary 2.5. As x→∞,
ψ(x)− x = Ω±(x1/2)

ϑ(x)− x = Ω−(x1/2)

π(x)− li(x) = Ω−(
x1/2

log x
).

Proof. If RH is false then we have theorem 2.3 as a stronger result so we may assume Θ = 1
2

Now
by Theorem 2.4, we have

ψ(x)− x = Ω±(x1/2).

So by Theorem 1.7 we have ϑ(x) − x = ψ(x) − x − x1/2 + O(x1/3) = Ω−(x1/2). Hence by
Theorem 1.7,

π(x)− li(x) =
ϑ(x)− x

log x
+O(

x1/2

log2 x
) = Ω−(

x1/2

log x
).

�

The problem of proving Ω+ results for π(x) − li(x) is more difficult and this is first done by
Littlewood as we discribe in the next section.

3. LITTLEWOOD’S Ω− RESULT.

Our goal in this section is to prove the following theorem of Littlewood. In the view of Theorem
2.3 , we may assume RH throughout this section.

Theorem 3.1 (Littlweeod1914).
ψ(x)− x = Ω±(x1/2 log log log(x)).

π(x)− x = Ω±(
x1/2

log(x)
log log log(x)).

For the rough idea of our aproach, substituting ey for x in the explicit formula for ψ(x) (with
RH), we get

ψ(ey)− ey

ey/2
= −

∑
ρ

eiρy

ρey/2
− C

ey/2
+

1

ey/2

∑
k≥1

e−2ky

2k
= −

∑
ρ

eiγy

ρ
+O(e−y/2)

uniformly for y ≥ 1.
Now since we assume RH then 1/ρ = 1/iγ+O(1/γ2). Since

∑
ρ 1/γ2 <∞. the above expression

becomes
−2
∑
γ>0

sin γy

γ
+O(1)

Now suppose that we could approximate this by the truncated sum

−2
∑

0<γ<T

sin γy

γ
. (17)

The sum of the absolute value of coefficients in (17) is� (log T )2 and the sum will be of this order
of magnitude (of both signs) if we can find y so that the fractional part γy

2π
is ≈ 1/4 for all 0 < γ ≤

T. This problem is a kind of inhomogeneous problem of diophantine approximation. In general,
8



this kind of problem has a solution only if γ above are linearly independent over Q which we don’t
have information about this. Instead , we look at homogeneous diophantine approximation.

Dirichlet’s theorem tells us that there exist large y such that γy
2π

are near integers for all 0 < γ ≤
T . Now observe that the sum (17) is small when γy

2π
are near integers.However if we take y = π/T

then sin(γy) � γ/T and the total sum becomes � N(T )/T � log T which is large enough. Now
choose y0 so that γy0

2π
are small. Then take y = y0 ± π/T so that the sum in (17) is large in both

signs. Now in the next lemma we can form a weighted sum that is similar to (17).

Lemma 3.2. Assume RH then

1

x(e−δ − eδ)

∫ eδx

e−δx

(ψ(u)− u)du = −2x1/2
∑
γ>0

sin(γδ)

γδ

sin(γ log x)

γ
+O(x1/2). (18)

Here 1
2x
≤ δ ≤ 1

2
and O is uniform for x ≥ 4.

Proof. By the explicit formula, we have∫ x

0

(ψ(u)− u)du = −
∑
ρ

xρ

ρ(ρ+ 1)
− cx+O(1)

Take the average, we have

1

(eδ − e−δ)x

∫ eδx

e−δx

(ψ(u)− u)du =
−δ

sinh(δ)

∑
ρ

eδ(ρ+1) − eδ(ρ+1)

2δρ(ρ+ 1)
xρ +O(1) (19)

Now observe that e±δ(ρ+1) = (e±δ(Re(ρ)+1+iγ)) = e±δiγ(1 +O(δ)) = e±δiγ +O(δ).
We have

∑
ρ

1
|ρ(ρ+1)| ≤

∑
γ−2 < ∞, in particular

∑
ρ

1
ρ(ρ+1)

< ∞. Note also that δ
sinh(δ)

=
δ

δ+O(δ3)
= 1 +O(δ2)� 1, δ → 0 .

Thus assuming RH then |xρ| = x1/2. Replacing eδ(ρ+1) by eiδγ in (19) gives

−δ
sinh(δ)

∑
ρ

eδ(ρ+1) − eδ(ρ+1)

2δρ(ρ+ 1)
xρ = −ix1/2 δ

sinh(δ)

∑
ρ

sin(γδ)

δ

xiγ

ρ(ρ+ 1)
+O(x1/2 δ

sinh(δ)

∑
ρ

1

ρ(ρ+ 1)
)

= −ix1/2 δ

sinh(δ)

∑
ρ

sin(γδ)

δ

xiγ

ρ(ρ+ 1)
+O(x1/2).

Now ∑
ρ

sin(γδ)

δ

xiγ

ρ(ρ+ 1)
�
∑
ρ

γ

ρ(ρ+ 1)
�

∑
0<γ<δ−1

1

γ
+ δ−1

∑
γ>δ−1

1

γ2

� log(δ−1)2 + δ−1δ log δ−1

� log2(δ−1).

Substitute δ
sinh(δ)

= 1 +O(δ2), RHS of (19) becomes

−ix1/2
∑
ρ

sin γδ

δ

xiγ

ρ(ρ+ 1)
+O(x1/2).

9



Now if we assume RH, we have 1/ρ = 1/(2γ) + O(1/γ2) and notice that sin γδ
δ
≤ |γ|. Hence if

we replace 1/ρ by 1/iγ then we have the error term� x1/2
∑
γ−2 � x1/2. Similarly, we replace

1/(ρ+ 1) by 1/iγ. Our expression becomes

−x1/2
∑
ρ

sin γδ

γδ

xiγ

iγ
+O(x1/2) = −2x1/2

∑
γ>0

sin γδ

γδ

ei log xγ − ei log xγ

iγ
+O(x1/2)

= −2x1/2
∑
γ>0

sin(γδ)

γδ

sin(γ log x)

γ
+O(x1/2).

�

Lemma 3.3 (Dirichlet). For x ∈ R, define ‖x‖ to be the distance to the nearest integer.Let θ1, ...θK
be real numbers and N be a positive integer. Then there is a positive integer n, 1 ≤ n ≤ NK with
‖θin‖ < 1

N
for all i.

Proof. Partition [0, 1)K into NK equal subcubes then there exist 0 ≤ n1 < n2 ≤ NK such that
(θ1n1, θ2n1...., θKn1), (θ1n2, θ2n2, ..., θkn2) are in the same subcube. Let n = n2 − n1 ∈ [1, NK ].
Then for 1 ≤ i ≤ k

‖nθi‖ = ‖n2θi − n1θi‖ ≤ |n2θi − n1θi| <
1

N
.

�

Now we are ready to give the proof of the result of Littlewood.

Proof of theorem 3.1. Note first that if RH is false then theorem 2.3 gives a stronger result so we
may assume RH. Note also that it we can prove that

ψ(x)− x = Ω±(x1/2 log log log(x)) (20)

Then since ψ(x)− ϑ(x) = O(x1/2), we have

ν(x)− x = Ω±(x1/2 log log log x)

Now under RH, using theorem , we have π(x)− li(x) = ϑ(x)−x
log x

+O( x1/2

log2 x
) Then we have,

π(x)− x = Ω±(
x1/2

log(x)
log log log(x)).

We now prove (20) , let N be a large integer then apply Lemma 3.3 to γ logN
2π

, 0 ≤ γ ≤ T =
N logN Here ,K , the number of elements in that set, is N(T ) � T log T and there exists n, 1 ≤
n ≤ Nk such that ∥∥∥γn

2π
logN

∥∥∥ < 1

N
, 0 < γ ≤ T (21)

Note the inequality
| sin(πx)| ≤ π ‖x‖ . (22)

By periodiity, it is enough to verify this for x ∈ [0, 1] which can be done directly. We have from
(22) that | sin(2πα)− sin(2πβ)| = |2 sin(π(α− β)) cos(π(α + β))| ≤ 2π ‖α− β‖.

10



Take x = Nne±1/n, δ = 1
N

,

| sin(γ log x)∓ sin(
γ

N
)| ≤ 2π

∥∥∥∥γ(log x∓ 1
N

)

2π

∥∥∥∥
= 2π

∥∥∥∥nγ logN

2π

∥∥∥∥
≤ 2π

N
(by the lemma).

Next we have, ∑
γ>N logN

sin(γ/N)

γ/N

sin(γ log x)

γ
� N

∑
γ>N logN

1

γ2

� N(N logN)−1 log(N logN)

� 1.

The RHS of (18) is

−2x1/2
∑
γ>0

sin(γ/N)

γ/N

sin(γ log x)

γ
= ∓2x1/2

∑
γ>0

sin(γ/N)

γ/N

sin(γ/N)

γ
+O(

1

N
x1/2

∑
γ>0

|sin(γ/N)

γ/N

1

γ
|).

= ∓2x1/2

N

∑
γ>0

(
sin(γ/N)

γ/N

)2

∓ 2x1/2N
∑

γ>N logN

(
sin(γ/N)

γ

)2

+O(x1/2).

� ∓2x1/2

N
N logN ∓N 2x1/2 log(N logN)

N logN
+O(x1/2).

= ∓2x1/2 log(N) +O(x1/2).

Since x ≤ NNK
e1/N , K = N(T ) � T log T � N(log2N), we have

log log x ≤ K logN + log logN � N(logN)3.

Then for some constants C,

logN ≥ log log log x− logC − 3 log logN

Since x ≥ Ne±(1/N) � N , we have log logN = o(log log log x) so

logN ≥ (1 + o(1)) log log log x.

Now by lemma 3.2 , the quantity (11) is an average of ψ(u)− u over a neighborhood of x, where
x� N and N can be arbitrarily large. It follows that

ψ(x)− x = Ω±(x1/2 log log log(x))

�

Theorem 3.4. Let Θ denote the supremum of the real parts of zeros of ζ(s). Of ζ has a zero with
real part Θ then there exists a constant C > 0 such that ψ(x) − x changes sign in every interval
[x,Cx] for x ≥ 2.

11



Proof. For each integer k ≥ 0, we define

Rk(y) :=
1

k!

∑
n≤ey

(y − log n)kΛ(n)− ey. (23)

Note, for example,

R1(y) =

∫ y

0

ψ(eu)du =

∫ x

0

∑
n≤eu

Λ(n)du =
∑

logn≤x

∫ x

logn

Λ(n)du =
∑
n≤ex

(x− log n)Λ(n).

We have that R1 is continuous. For k > 1, Rk is differentiable with R′k = Rk−1. By the explicit
formula, we have

Rk(y) = −
∑
ρ

eρy

ρk+1
+O(yk+1). (24)

Suppose that zeros of ζ(s) on the line σ = Θ are given by ρj = Θ + iγj where 0 < γ1 < γ2 < ....
Let mj denote the multiplicity of ρj . Since for α > 1,

∑
ρ ρ
−α <∞ we can rearrange the terms in

the summation. We have that, for k ≥ 1,y →∞,

Rk(y) = −
∑

ρ,Re ρ=Θ

eρy

ρk+1
−

∑
ρ,Re ρ<Θ

eρy

ρk+1
+O(yk+1) (25)

= −
∑

ρ,Re ρ=Θ,γ>0

(
eρy

ρk+1
+

eρy

ρk+1

)
+ o(eΘy) (26)

= −2eΘy Re
∑
j

mje
iρjy

ρk+1
j

+ o(eΘy). (27)

Let K be the least positive integer such that m1 >
∑

j>1mj|ρ1/ρj|k, i.e.
m1

|ρ1|K
>
∑
j>1

mj

|ρ1|K
. (28)

Choose φ such that eiγ1φ/ρk1 > 0, take k = K in (27) then

RK(φ+
πn

γ1

) = −2eΘy Re
m1e

iγ1(φ+πn
γ1

)

ρK+1
1

− 2eΘy
∑
j>1

Re
mje

iγj(φ+πn
γj

)

ρK+1
j

(29)

Then, in view of (28) we have that for n large enough, n is even ,RK(φ + (πn/γ1)) is negative
while if n is odd then RK(φ+ (πn/γ1)) is positive.

Take C = exp(π(K + 2)/γ1). Then any intervals [y0, y0 + logC] contains at least K + 2
points of the form φ + (πn/γ1). Hence if y0 is large enough then the interval contains K + 2
points for which RK(y) alternates in signs. By the Mean Value Theorem, we know that if f is
differentiable on [α, β] with f(α) > 0, f(β) < 0 then ∃ξ, α < ξ < β, f ′(ξ) > 0. (Similarly, if
f(α) < 0, f(β) > 0 then ∃ξ, α < ξ < β, f ′(ξ) < 0.) Hence as Rk−1 = R′k,we can find K + 1
points in [y0, y0 +logC] such thatRk−1 alternates signs. Continue this process until we get 3 points
in ihe interval such that R1(y) alternats signs. Now since R1 is an indefinit integral of R0, if R0

is monotone in any interval then so is R1 but R1 is not monotone in[y0, y0 + logC] so R0 changes
signs in the interval as required.

�
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The same result of this theorem is also true for π(x)− li(x) under the same hypothesis, see [13].
See also Exercise 15.2.4 in [14].

4. CONCLUSION

Note first that the proof of Littlewood’s result in [13] (see also Exercise 15.2.5 in [14]) gives us
more quantitative information :

lim sup
x→∞

ψ(x)− x
x1/2 log log log x

≥ 1

2
, lim inf

x→∞

ψ(x)− x
x1/2 log log log x

≤ −1

2
.

With the same result for π(x)− li(x) in place of ψ(x)− x above.
The proof of Littlewood is ineffective in the sense that it does not give us any information about

the value of c for which π(x) > li(x) for some x < c (which is stil unknown). Now it has
been calculated that π(x) < li(x) to x = 1014(see[7]). Skewes [19], using Littlewood’s proof
assume RH, gave the first c = 10101034 and later[20] he gave c = 101010963 unconditionally. This is
connected with the problem of constructing a function f(x) for which in any interval [x0, f(x0)]
such that the sum of over non trivial zeros is not much cancel.Turan study these power sums and
his power sum method has many applications to oscillation of error terms that srise in analytic
number theory, see [22] .In 1961, Knaposkwi [6],without extensive numerical calculations, used
Turan’s method to gave the upper bound c. Lehmer(1966)[8],using extensive numerical calculation
about zeros ρ, li(x) < π(x) for 10500 consecutive integers between 1.53 × 101165, 1.65 × 101165.
Lehmer also gave a useful theorem that enables us to obtain a lower bound of c unconditionally
(depending on how far you can verify RH). In 1987, H.J.Riele [23] gave c = 7 × 10370. In 2000,
Bays,Hudson [1] gave c = 1.398 × 10316 and they believe this is close to the first c. Note also
recent slight improvements [2], [17]. Note that [23], [1], [2], [17] also use Lehman’s Theorem. In
1941, Winter [24] showed that the proportion that π(x) > Li(x) is positive in logarithmic scale:
lim sup 1

log(x)

∑
x≤X,π(x)>Li(x) 1/x > 0. Rubinstein,Sarnak (1994)[16] showed under Generalized

Riemann Hypotheis and Grand Simplicity Hypothesis (about linearly independence of zeros of L-
functions on the critical line) that the proportion is about 0.00000026. Montogomery and Monach
[10] has the following conjecture concerning linear forms of the zeros:

Conjecture 4.1. For every ε > 0, K > 0, there exists T0(K, ε) such that

|
∑

0<γ≤T

kγγ| > exp(−T 1+ε)

For T ≥ T0. Here kγ are integers, not all zeros, |kγ| < K.

From this conjecture they can show

lim sup
x→∞

ψ(x)− x
x1/2(log log log x)2

≥ 1

2π
. lim inf

x→∞

ψ(x)− x
x1/2(log log log x)2

≤ − 1

2π
.

and they believe that they are actually equal in the view of results in [24] (see also equation 13.48
in [14]).

A similar method can be used to obtain a similar result for the function M(x) =
∑

n≤x µ(n) It
is conjectured by Merten that M(x) ≤ x1/2 (this would imply RH but not vice versa). However,
this is disproved by Odlyzko and te Riele [15] who showed that the size of the sum can be slightly
larger than expected. In fact it has been shown using a similar method to ours (see [14] theorem
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15.7)that if the zeros of ζ are linearly independent over Q and they are all simple (so that ζ ′(ρ) 6= 0
)then

lim sup
x→∞

M(x)

x1/2
=∞, lim inf

x→∞

M(x)

x1/2
= −∞.

Another function that we can obtain Ω result (under some hypothesis,see [4] and Exercise 15.1.8
in [14]) is L(x) =

∑
n≤x λ(n) where λ(n) = (−1)Ω(n) is the Louville Function. Here Ω(n) is the

number of distinct prime factors of n. Pólya conjectured that L(x) ≤ 0 for x ≥ 2 and this has been
verified up to 106. This conjecture is disproved by Haselgrove[4] in 1958. In 1960 Lehmer [11]
found that L(906, 180, 359) = 1. It can be shown [4] that if RH is true and ordinates γ > 0 are
linearly independent over Q then

lim sup
x→∞

L(x)

x1/2
=∞, lim inf

x→∞

L(x)

x1/2
= −∞.

Also, if
∑

n≤x(λ(n)/n) > 0, x ≥ 1 then RH is true.
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