A CONCISE SURVEY OF THE SELBERG CLASS OF L-FUNCTIONS

LI ZHENG

ABSTRACT. In this survey paper, I first present some classical L-functions and its basic properties. Then I
give the introduction of Selberg class of L-functions, and present some basic properties, important conjec-
tures and consequences, and the relation with prime number theorem.

Ever since Riemann'’s revolutionary paper [1], the Riemann zeta function and its various generaliza-
tions have been extensively studied by mathematicians for over a century. These functions are generally
referred to as L-functions. Deep connections have been established between the properties of the L-
functions and other theories (for example, prime number theory). Later in 1992, in attempt to capture
the core properties of classical L-functions, Selberg gave an axiomatic characterization of what would be
called general L-functions. This is paper is a concise survey for Selberg class of L-functions.

1. CLASSICAL L-FUNCTIONS

In this section we will recall some common properties shared by a lot of classical L-functions. Proofs
and details will be avoided; references will be provided. Also, we take the convention to write the variable
saso+it.

Example 1. Talking about L-functions, the first one to come to mind is of course Riemann’s { function,
which is defined, foro > 1,
(=) n=[la-p™"
n=1 p

It has a meromorphic continuation to the complex plane C, having a unique pole at s = 1. Setting
D(s) = 7~ *T(s/2)¢ (s),
we have the functional equation ®(s) = ®(1 - s). For the theory of Riemann ¢ function, see e.g. [2], [3].

Example 2. The most basic generalization of { function is Dirichlet L-function L(s, y), which is defined
by
Lis, =) xmn*=]]a —y(pp 97, foro>1,
n=1 p
where y is a Dirichlet character modulo g, say. It has a meromorphic continuation to C with only a
possible pole at s = 1. (This occurs precisely when jy is principal.) It also satisfies a function equation
under the assumption that y is primitive: Setting

T —(s+a)l2 Ss+a
A0 = () (=)L,
where a=(1-yx(-1))/2, then
i“Vk
A1 - ’_ = A ’ ’
I-s) 00 (s, 1)

k .
where 7(y) = Y y(n)e®""¥ is the Gauss sum. (Notice that |7(y)| = V’k.)

n=1
For detailed discussion, see e.g. [4], [20].



Example 3. Dedekind ¢ function. Let K be a number field of degree n = r1 + 2r,, where r; is the number
of real embeddings K — R, and r is the number of pairs of complex embeddings K — C. The Dedekind
{ function is defined by

(k=Y ND*=[]Ja-N@p ™, foro>1,
I p

where, in the sum, I runs over all non-zero ideals of K (by which we really mean the ideals of Og); in
the product, p runs over all non-zero prime ideals, and N = Nk/q is the norm. {x has a meromorphic
continuation to C, with a unique pole at s = 1. If we set

d
Sk(s) = (irziln

where dg is the discriminant of K, then {x(s) = {x(1 —s). See e.g. Ch. VII of Neukirch [13], Ch. 10 of
Cohen [7].

) T (s/2)T2 () (5),

Example 4. Hecke L-function. Let K be a number field and y a Hecke character. Then Hecke defined an
L-function

Lx(s, ) =Y x(ON() " =[Ja-xmNE 7!,  foro>1.
1 p

This is a far reaching generalization of both Dirichlet L-function (as K = Q) and Dedekind ¢ function (as
x is the trivial character). It has a meromorphic continuation to C, with only a possible pole at s = 1,
which occurs precisely when y is principle. Multiplying L (s, x) by a complicated gamma factor, one can
achieve a functional equation. For details, see Ch. VII of [13].

Example 5. Artin L-function. Let K/k be a Galois extension of number fields and let (p, V) be a repre-
sentation of the Galois Group G = G(K/k). For each prime ideal p of k, pick a prime ideal 3 of K over
p. Let Dy = {t € G | t(P) = P} be the decomposition group of P. By passage to the quotient, there is a
natural homomorphism Dy — G(K/k), where K = K/ T, k = k/p. This homomorphism is surjective. The
kernal Iy is called the inertial group of B. Then by passage to the quotient, D3/ Iyz acts on V¥, the fixed
subspace of Ly. Since D/ Iy = G(K/ I_c), and K/k is an extension of finite fields, there is a natural notion
of Frobenius element s(J3/p) in Dy / Iy, which is the inverse image of the Frobenius element of G. Then
we can define the Euler factor at p to be

Ly(s,p;K/k) = det™ (I - N(p)~*p| V¥ (s(B/p))).

Notice that this definition is independent of the choice of ‘3 because choosing a different ‘3 over p only
changes s(J3/p) to a conjugate element, thus does not change the determinant. Artin L-function is de-
fined to be the product of Ly (s, p; K/k) as p runs over non-zero prime ideals of k. For properties of Artin
L-function, see Ch. VII of [13], M.R. Murty, V.K. Murty [14].

Example 6. L-function associated to a modular form. The group SL,(Z) is called the modular group; the

Hecke groupT'g(N) of level N is the subgroup of SL,(Z) consisting all matrices a

b] with N | c. SLy(Z)

d
acts on the upper half-plane H = {z | Im z = 0} by M&bius transformation:
a b] az+b
1z .
c d cz+d
Fory = [Z Z € SLy(Z), define j(y,z) = cz+d. Let k = 0 be an integer. Define an operator [y]; on the

space of meromorphic functions on H by

(f0@ = j, 2  fy2).
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The function g = e***# transforms H to the unit disk devoid of the origin. We introduce the infinity point
oo which corresponds to 0 via the above transformation. If f is holomorphic H, we can expand it at the
infinity:

o0

f(z)= Z anq", called the g-expansion.

n=—oo

A holomorphic function f: H— Cis called a modular form of weight k and level N if (i) f is invariant
under the operation [y] for all y € T'g(NV); (ii) flalx is holomorphic at oo for all a € SL,(Z). The second
condition says that the coefficients a,, n <0, of f[a]j are all zero. If in addition f[a]; vanishes at co for
all @ € SLy(Z), then f called a cusp form of weight k and level N.

Let f be a modular form of weight k = 1. Let

f@=Y amq", q=é""7
n=0
be the g-expansion of f at the infinity. Then one can define an L-function
L(f,9)=)_ amn".
n=1

It can be extended to a meromorphic function on C, which is entire if f is a cusp form, or has a pole at
s = k otherwise. For details, see Iwaniec, Kowalski [16].

We mention that there are also L-functions associated to general automorphic forms. (Loc. cit.)

Example 7. L-function associated to elliptic curves. Let E/Q be an elliptic curve, with conductor N.
Then E has stable reduction at all primes p away from divisors of N. It has a semistable reduction at
primes p with p || N, and unstable reduction at primes p with p? | N. The local zeta function of E is given
by

(I-a(p)p™s+p'29, if ptN;
Ly(s,E) =3 A -a(p)p™), if p || N;
1, it p> N,

where a(p) = p + 1 in the case where p{ N, a(p) = +1 when p | N depending whether E has a split or
non-split semistable reduction at p. Then the L-function associated to E is defined by

L(s,E) = [Lp(s, E).
p

See Silverman [17].

We mention that this is a special case of Hasse-Weil L-function, which is attached to an algebraic
variety over a number field.

2. SELBERG CLASS OF L-FUNCTION

In the first section, We have given several examples of what are classically called L-functions, which
are of different nature: Examples 1, 2 are arthmetic; 3-5 are algebraic; 7 is geometric. It is natural to ask,
what is an L-function? Are all L-functions already known? Of course, the answer to the second question
depends on the answer to the first. Selberg, in attempt to study the properties of various L-functions in
a unified way, introduced the Selberg class S in [5]. Before giving the definition, let’s recall that the order
of an entire function f is defined to be

loglog M
r—00 logr
where M(r) = | |axlf(z)l. Thus, f is of finite order if there exists « such that |f(z)| < exp(|z]*). If fi, f>
zl=r
are two entire functions with orders x; < x; say, then the order of f; f, is no more than k3. The order of a

polynomial is 0.
3



In what follows, We take the convention to write f(s) = f(3).

Definition. The Selberg class S consists of functions F satisfying the following axioms:

(1) (Dirichlet series) F(s) = Y_ a(n)n~¢, absolutely convergent for o > 1.
n=1
(2) (Analytic continuation) There exists an integer m such that (s — 1) F(s) is an entire function of

finite order.
(3) (Functional equation) There exist an integer r > 0, positive real numbers Q, A, complex numbers
wj with Reu; = 0 and w with |w| = 1, such that the function ®(s) defined by

®(s) = Q° [[ T(A;s+p)F(s) =y ()F(s),
j=1

satisfies the functional equation
D(s) = wd(1 - s).
We would call the function y(s) the y-factor.
(4) (Ramanujan conjecture) For every € > 0, a(n) = O(n°).
(5) (Euler product) a(1) =1, and log F(s) = ) b(n)n~%, where b(n) = 0 unless n is a prime power, and

n=1

b(n) < n? forsome 6 < 1/2.

By the comment on the order of a function, we can choose m in axiom (2) to be the order of the pole
of F at s = 1. Notice that the functional equation actually implies that (s — 1) F(s) is of order < 1. To see
this, look at

O(s) =s"(1—5)"D(s).

We prove that B(s) is of order < 1. By the functional equation, it suffices to consider the part o = 1/2.
Clearly s Q* has order 1. By Stirling’s formula, |T'(s)| < elsloglsl if || is large. So the product of T' func-
tions in ®(s) is bounded by e"1*11°8!5 Clearly (1 — 5)"*F(s) has polynomial growth on the line o = 2. By
the functional equation and Stirling’s formula, (1 — s)™F(s) has polynomial growth on o = —1. Then
Phragmén-Lindelof principle says that (1 — s)" F(s) is polynomially bounded in the strip -1 < 0 < 2; in
particular, (1 —s)" F(s) is polynomially bounded in the strip 1/2 < o < 2. But thanks to the absolute con-
vergence property, F(s) is uniformly bounded on o = 2. Combining these together we see that © is an
entire function of order < 1. Now our orignial claim follows from the fact that 1/T°(s) is an entire function
of order 1, and our comments on the order. Note that if F is not identically 1, then the y factor in ® can-
not be avoided (see theorems 2.9, 2.10 below). Then letting s — +oo through real axis, one sees that O(s)
is of order exactly 1.

The class S is closed under multiplication and thus form a monoid. Indeed, if F, G € S, then we get
axioms (1), (2), (5) for FG immediately. For the functional equation, set ®rg = ®r®; and wrg = Wrwg.
For Ramanujan conjecture, assume € > 0 and denote d(n) the divisor funcion; then

arc(n) =Y ar(Bac() < Y k°I°=n‘d(n) < n*.
kl=n kl=n
We say F € S is primitiveif it is irreducible in the monoid, i.e., F = F; F, implies either F; =1 or F, = 1.

Of the examples mentioned above, Riemann ¢, Dedekind {x are memebers of S. Dirichlet L(s, y),
Hecke Lk(s,x) are in S provided that y is primitive. Under a suitable normalization, the L-function
associated to a modular form is also in S. Actually, the only thing one needs to worry about is Ramanujan
conjecture. For example, if f =Y a(n)q" is a cusp form of weight k > 1, then instead of considering
Y a(n)n~%, one may as well consider L(f,s) = Y (a(n)/n* D/2)p=5. By Deligne’s bound for a(n), L(s)
satisfies Ramanujan conjecture and is indeed a member of S. For Artin L-function L(s, p; K/ k), if K/ k is
an abelian extension, then it coincides with some suitable Hecke L-function associated to a number field,
and thus a member of S. In general, Artin-Brauer theory on induced characters shows that each Artin
L-function is a product of Hecke L-functions in integer powers, thus it has a meromorphic continuation
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to C, with possibly infinitely many poles. The famous Artin conjecture predicts that in the case when p
is irreducible and non-trivial, L(s, p; K/ k) has an analytic continuation to C. If the conjecture holds true,
then L(s, p; K/ k) is a member of S. The conjeture has been proved when p is one-dimensional, but not
in general.
For any prime p, set F),(s) = Zoa(pm)p‘ms, then F(s) = [[F,(s). The F), are called the Euler p-factors
s

of F. Of course, they determine F. However, it is natural to ask if this could be weakened.

Theorem 2.1 ([15]). Let F, Ge S. If apart from finitely many p, one has ag(p™) = ag(p™) form =1, 2,
then F = G.

To prove the theorem, we recall some properties of almost periodic funtions (in Bohr’s sense). A con-
tinuous function f : R — Cis called almost periodic (or Bohr almost periodic) if it is the uniform limit of a
sequence of trigonometric polynomials. An equivalent definition: given € >0, one can find T'= T'(¢) > 0
such that in any interval of length T, one can always find ¢ such that

[fx+1)—-f(x)<e, for all x.

The uniform limit of a sequence of almost periodic functions is almost periodic. The quotient f(x)/g(x)
of two almost periodic functions is almost periodic provided that g(x) is bounded away from 0. (This
means inf|g(x)| >0.)

Theorem 2.2 (Bohr [21]). Suppose that f is an almost periodic function which is bounded away from 0.
Then arg f(x) = Ax + ¢(x) with A real and ¢ almost periodic.

Proof of Theorem 2.1. Let T be the exceptional set of primes, which as we assumed, is finite. Then

Op(s)  yr(s) pr)rlfgm)
DG()  ¥G6(S) per Gp(S) per Gp(s)

which, by our assumption, is regular and non-vanishing on o = 1/2. By the functional equation, ®r/®¢
is entire, non-vanishing and of order < 1. It follows from Hadamard theory that

@ _ eas+b YG(s)

Gis)  vr®’
for some constants a, b. By Stirling formula,
F2+it : .
(—l,) = ce® (P elY1081,101 (1 L O(1/1)),
G2+1it)

where a, 8, v, § are real constants and c is complex. The left-hand side is almost periodic, so it follows
that a = f = 0. Bohr’s theorem indicates y = 0, so

_ist F2+1ir1) _
G@2+it)

But the left-hand side is almost periodic, so it has to be a constant. By analytic continuation, we obtain

c+o(1), as t — oo.

2529 @ —c
G(s)

for all complex s. By the uniqueness of generalized Dirichlet series, we see § = 0. Finally, ar(1) = ag(1) =1
gives ¢ = 1. So we are done. U

It would be desirable to remove the restrictions of the squares, so it is suggested that

Conjecture 2.3 (Strong multiplicity one, [15]). Let F, Ge S. If ap(p) = ag(p) for all but finitely many p,
then F = G.
5



2.1. Basic invariants. The y-factor in axiom (3) is not uniquely determined. We are free to alter the I’
function by the two identities:

m-1 H
[1r(s+ é) = @m) MVl 2=msp gy ) )
j=0

[(s+1) =sC(s). 2)

However, there is not much free room the y-factors, for we have

Theorem 2.4. If7y,, y» are two y-factors of F, theny, = ¢y, for some constant c.

Proof. Let h = y,/y». By the functional equation, one has h(s) = wh(l — s). But h is regular on o > 0,

and h(1 - s) is regular on o < 1, hence the formula says that # is entire and non-vanishing. Using Stirling
formula, one sees that 7 is of order < 1. By Hadamard theory, h(s) = e**? for some a, b. Taking it back
to the formula, one sees immediately that a = 0. O

In fact, more is true:

Theorem 2.5. Lety,, Y2 be twoy-factors of F € S, theny, can be transformed into cy, by repeated appli-
cations of (1) and (2).

For proof, see [12].

Using this theorem, we can introduce several invariants of F € S.

The degree. Since the operations (1) and (2) do not change ) 1 j» we define the degree (some authors
use dimension) of F by

dr = 22/1]'.
It is additive: dF,F, = df, + dr,. The degrees of {, L(s,x), {x, Lx(s,x), L(f,s) are 1, 1, [K: Q], [K:Q], 2
respectively.

Conjecture 2.6. The degree is an integer.
The conductor. For a member F € S, we define the conductor of F to be
qr = @m)% QZH)L?" :

It is easy to verify that gr is invariant under the operations (1), (2), thus is an invariant of F. Clearly q is
multiplicative: gr, r, = qF, qF,.

Conjecture 2.7. The conductor is an integer.

Example 8. ¢q; = 1; q1(s,y) = the modules of y if y is primitive; g, = |dk/, the discriminant of K if y is
a primitive Hecke character, then gy, (s,y) = |dk|N(f), where f is the conductor of y; the conductor of the
L-function associated to a cusp form f is the level of f.

The H-invariants. Let F € S and n be a non-negative integer. Define

" B (/J ")
Hp(n) =2 %
=1 7
where B (x) is the nth Bernoulli polynomial:
Zer Zl’l
et EOB"(X)E' (12 < 27).

It is indeed an invariant of F, however, to verify it is tedious, for details, see [6]. The first few B, (x) are

3 1
Bo(x)=1, Bi(x)=x—-1/2, By(x)=x*>—x+1/86, Bg(x):x3—§x2+§x,
6



whence Hr(0) = dF, the degree. We call

Hp(1)=2) (uj—1/2) £ & =np+i0F
the ¢-invariant of F.
The root number. This is defined by

. ZHF/dF
w;f::we—m(np+1)/2( )

—Zzlmyj
(@m)dr 12

Theorem 2.8 ([10]). IfF, G € S have the same H -invariants, conductor and root number, then they satisfy
the same functional equation.

Theorem 2.9. dr =0 precisely when F = 1.

Proof. Suppose dr = 0. Then the I factors are gone, and we can write the functional equation as

¥ a(n)(Q J =woy 22 aw . 3)

n=1 n=1
We can view F as a power series in the variables p~ as p ranges over all primes. From (3), we see that
if a(n) # 0, then Q?/n must be an intger. Since Q? is fixed, it is immediate that our F is a Dirichlet
polynomial. If Q> = 1, then F = 1. So it suffices to eliminate the possibility that Q> > 1. Since we assumed
a; = 1, comparing the Q?* terms in (3) gives |a(Q?)| = Q. Since a(n) is multiplicative, one can find some
prime power p”||Q? with a(p”) = p"'/?. Writing x = p~%, and consider
r . . r . .
Fp(s)=) aphp™ =) Ajxl,  Aj=a(p)),
j=0 j=0
and . ‘ . ‘
logFu(s)=)_ b(pp™'*=> Bjx/,  Bj=bp)).
j=0 j=0
Writing P(x) = YA j x/ , we can factor

P(x) =[] —-Rex),
k=1
then

|;vx..

, we have maxl |

IV\

r/2

Since the product of the |Ri|is = p p'/?. But

. . . r Rj 1/j
Ib(pHIM = 1B =| Y |
k=1 J

tends to max|R;| as j — co. This contradicts the axiom that b(n) = 0O(n%) with 6 < 1/2. Swe are done. [
Theorem 2.10. There is no function F € S with0 <dp < 1.

Proof. Suppose for contrary that 0 < dp < 1 for some F € S. Consider the identity
i 1 2+io0 F S (9)d
flx) = ’;1 a(n)e =51 i ()x°T'(s)ds.
By Phragmen-Lindel6f principle and the functional equation, we see that F(s) has polynomial growth
in t in any vertical strip. Moving the line of integration to the left and taking into consideration of the
possible pole at s = 1 of F(s), as well as the poles of I'(s) at s=0, -1, —-2,:--, we see

Y a(me ™ = @ + K(x),

n=1



where P is a polynomial, and
(-D"F(-n)x"
K@)=) ——————
n=0 n.
_ Z (-D)*y(n+DF(n+1)x"

n=0 y(=mn!

is an entire function of x since
y(n+1)
y(=n)n!
for some A > 0. Therefore f(x) is analytic on the complex plane with the negative real axis removed. But
f (x) is periodic with period 27 i, hence it has to be entire on the whole C. Now for any x,

2w .
an)e ™ = | fx+iye™dy.

« p~1=dpn gn

Differentiating both sides twice and setting x = 0, we obtain

2n X 2m
n*a(n) =f f'Gye™dy <<f If"Gy)ldy < 1.
0 0

Hence a(n) < n™ 4, and it follows that F(s) is absolutely convergent for 0 > —1. In particular, F(s) is
uniformly bounded in o > —1/2. But

2

Fil—g)= D(s) B v(s)
yd-=s) y(d-s)
for o > 1, and by Stirling formula,
| 7(s) ’ ~ (o)t as t— oo
Y(d-ys)
for some c(o) > 0. In particular, F cannot be bounded on the line o = —1/4. This contradiction completes
the proof. U

From this theorem, if F is not primitive, then every step of proper factorization of F reduces dr by at
least 1. Therefore,

Theorem 2.11. Every F € S can be factored as a product of primitive elements.
However, it is unknown if such factorization is unique:
Conjecture 2.12 (UF conjecture). Factorization into primitives is unique in S.
Theorem 2.13 ([11]). There is no function F € S with1 < dr <5/3.
The following theorem classifies all functions in S with degree 1.

Theorem 2.14 ([6]). Let F € S have degree 1. Then qr is an integer and ng = Rely is either —1 or 0.
If qr = 1, then F(s) = {(s). If qr = 2, then there exists a primitive Dirichlet character y mod qr with
x(=1) =—-@2npr+1) such that F(s) = L(s +i0F, x).

2.2. Zeros. From the Euler product we see that F(s) # 0 for o > 1. By the functional equation, the zeros
of F(s) on the half-plane o < 0 are located at the poles of the y-factor, i.e., s = —(uj + k)/1;, where k =
0,1,2,--- and j = 1,2,---,r. These are called the trivial zeros. The case s = 0 should be treated with
special attention to the pole of F at s = 1. It can be a zero indeed, e.g., s = 0 is a zero of Hecke Lk(s) if
r1 + 1o —1> 0. Other zeros of F all lie in the critical strip {s € C: 0 < ¢ < 1}. Unlike Riemann zeta function,
we cannot exclude the existence of zeros on the boundary o = 1. Inspired by the Riemann hypothesis,
Selberg conjetured that apart from 0, all zeros in the critical strip are actually on the critical lineo = 1/2.
We would call it the Grand Riemann Hypothesis (GRH).
We remark that some of the Selberg’s axioms are necessary for GRH to hold.
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Example 9. Let y be a primitive character with y(—1) = —1, and set
G(s)=L(2s-1/2,y%).

Then G(s) is absolutely convergent on o > 3/4, has an Euler product allowing the choice 8 = 1/4 in axiom
(5), satisfies a functional equation with A =1, u = 1/4. Taking F(s) = G(s — §) G(s + §) with some suitable
6 €(0,1/4), one can check that F(s) satisfies all axioms apart from (4), and has no zero on the critical line.
(We take F(s) = G(s—6)G(s+0) because it then satisfies the good functional equation induced from that
of G(s).) To see the last assertion, if s is a zero of F(s), then s is a zero of L(2(s+ ) —1/2,y). But L(s, })
is a holomorphic function, its zeros are countable and thus their real parts cannot fill the 1nterval 0,1).

Then we can choose § suitably such there is no zero of L(s, y) on the lines o = 2( + 6) — -, that is, the
zeros of F(s) cannot have real part 1/2.

Example 10. The condition 8 < 1/2 is also crucial for the GRH. Consider
f(s)=(1—2“_s)(1—2b_s), a+b=1landa>1/2.

Then f(s) satiesfies all the axioms, except the least § we can choose is a > 1/2. Clearly, the zeros of f do
not lie on the critical line.

Theorem 2.15. Let Nr(T) be the number of zeros, counted with multiplicity, of F in the critical strip with
imaginary part from 0 up to T; each zero on the border has a half-weight. Then
d
Np(T) = 2_F TlogT + cpT + Op(log T),
/2
where cr is a constant depending on F.

Proof. The proofis essentially the same to the one for the analogous result for L(s, ), so we only give an
outline. In the proof, we will denote p =  + iy to be the non-trivial zeros of F, which we assume is not 0.
Similar to theorem 10.13 on [20], we can prove that
Ng(T+1) - Ngp(T)=0(1ogT) 4)
By Hadamard theory, one can write
s
$"(1 - 9" (s) = e ] (1- = e,
0 p
Taking derivatives on both sides, we obtain

F' m m '(Ajs+p;) 11
I = —— 1] - < 4 - 4+ —
F(S) 1 OgQ Z ]r/(l + j) ;(S—p p)
By the estimate I’ (s)/T'(s) = logs+ O(1/]s]), we have
F' m
F(S) —?—S—1+—10g5+;( )+O(l)
Similar to lemma 12.1 on [20], one proves that, for -1 <0 <2,
F' 1
—w=-2- Y 4 0(logT).
F s os=1 ,Sias-p

Suppose now —1 < ¢ <2, and that T is not the ordinate of a zero. Then

2 F/
argF(o+iT) :argF(2+iT)—f Imf(a+iT)da.

o
Clearly arg F(2 + i T) is uniformly bounded. The above argument shows the right-hand side is

2 da
. flm,—+0(logT).
y-Tis1do  a+iT—p

9



Each integral is bounded by 7, and the number of summands is « log T by (4). Therefore we get
argF(o+iT)=0(ogT) 5)

where the implicit constant depends only on F.
Let € > 0 be small and not the ordinate of a zero. We may also assume that T is not the ordinate of a
zero. By the argument principle, the number of zeros with 0 <y < T is
!
i. 3(S)d S,
2ni Jo @
where C is the rectangle with vertices at 2+ ie, 2+ iT, -1+ iT, —1 + ie, oriented counterclockwise. We
cut the rectangle symmetrically at 1/2 + i T, 1/2 + ie. By the functional equation, the integrals on the left
contour and the right contour have opposite real parts, and the same imaginary part. Therefore we look
at the expression
1/2+iT
Im [slogQ + Zlogr(/ljs+pj) +10gF(s)] ‘1/2+ie .
In estimating this expression, we will delibrately suck small terms involving € into our presumed error
term O(log T). The contribution of Im(slog Q) is T'log Q; the contribution of arg F(s) is O(log T) by (5). By
Stirling’s formula,
log2n

logT'(s) =(s—1/2)logs—s+ + O(1/]s]).

We have Im((s — 1/2)1logs) = tlogVo? + t? + (0 — 1/2)args. Substituting s by Aj(Q/2+10T) + uj, we see
that the main contribution of ImI'(A;s+ y;) is A;TlogT + T. Finally, the contribution of ImlogF(s) is
O(log T). Now our theorem is proved by doubling these quantities, adding them together and dividing
by 27. g

2.3. Selberg orthorgonality conjecture and its consequences.
Conjecture 2.16 (Selberg orthorgonality conjecture, SOC). For any two primitive elements F, F’,

ar(p)ar (p)
Z SE\PIAF\P)

=0gploglogx+ O(1).
p=x p

To appreciate the importance of this conjecture, we list sevaral consequences:

Theorem 2.17. LetF = HFfi be a factorization into primitives, and assume SOC.

la(p)|?
>

p=x

= nrloglogx + O(1),

— o2 2
where np = ey +---+e;.

Proof. Since F = ]_[Fl.e", one has ap(p) =) e;ar,(p), and

lap(p)I* =) eflap, (P + Y eiejar, (p)ar, (p).
i#]
Therefore the theorem follows the orthogonality property. U

Theorem 2.18. The following statements holds under the assumption of SOC.
i) UF conjecture (conjecture 2.12).
ii) { is the only primitive function in S with a pole at s = 1.
iii) Strong multiplicity one conjecture (conjecture 2.3).
iv)o4(F) =1 forall F € S— {1}, where o, denote the abscissa of absolute convergence.
v) F does not vanish ono = 1.
vi) Artin conjecture.
10



Proof. i) Assume that factorization into primitives is not unique in S, then one can find F, Gy, G, with F
primitive, F | G1 G, but F1 Gy, F{ G,. Let FG = G, G, and write both sides as products of primitives:

e e C C
FOF - F =GO GO,

Multiplying F”, by theorem 2.17, one sees
(e+1)?+0(1) =r*+0(1).
This is impossible if r is large.
ii) Assume that F = ) a(n)n~* is a primitive function in S having a pole at 1, which is distinct from (.

By orthogonality,
Sx) =) alp)/p=0(Q).

p<x
Let s = 0 approach 1 from the right-hand side. Then F(s) ~ c(o —1)~"", where m is the order of pole of F
at 1, and c is the residue. Hence log F(s) ~ —mlog(o —1). Notice

logF(s)=) b(mn*=) alp)p™*+ O(Z > Ib(pk)lp_k”)
p p k=2
=) alp)p*+0Q) 6)
p

by the bounds on b(n). This says Y a(p)p~* ~ —mlog(o—1), as s = 0 — 17; in partitcular, it is unbounded
near 1. But since we assumed that S(x) is bounded, one has

Za(P)P_S = foo x177dS(x) = (0 - l)wa(x)x_”dx =0(1). 7)
1 1

Contradiction.

iii) Let F, G € S be such that ar(p) = ag(p) except for finitely many primes p; let T be the set of
exceptional primes. Let F = F{' ---F;", G = F{* --- F,;" be the factorization into primitives. Then for p € T,
we have

>_eiag,(p) = )_ciar,(p).
Multiplying by ar, (p), summing over p < x, and noting that T is finite, we obtain
2 — 2 T
e Z lar, (p)| +Zei( Z (lF,-(P)(lFl(P)) ¢ Z lar, (p)] +Zci( Z ﬂF,—(p)aFl(P))+O(l).
p=x p i=2 p=x p p=x p iz2 psx p
By SOC, the above becomes
e1loglogx+ O(1) = c;loglogx + O(1), as x — oo,

whence e; = ¢;. Similarly, one proves e; = ¢; and so F = G.
iv) If 0 4(F) < 1 for some F # 1, then }_|a(n)|n~? < oo for some ¢ < 1, in particular, ) _|a(p)|p~? = O(1).
Choose € > 0 so small that 3e + 0 < 1. Then

> lap)Pp™ <( T lapp=)( T lap)Ppo~?)

p=<x p=<x p=<x
< Z peroTs = 0( Z p_l) =o(loglogx), asx— oo.
p<x p=x

Contradiction with i).
v) Let F(# {) be a primitive function. Then by the proofofii), ) a(p)/p=0Q).If F(+it) =0, then the
psx

same technique in the proof of ii) applies here. One can let s = 0 + it, where o — 1*. Then similar to (6),
one proves that )_a(p) p~° is unbounded at s = 1+ it. Similar to (7), one proves that )} a(p)p~* = 0(1),
thus reaching a contradiction. Now we already know that {(1 + i) # 0, the general result follows by
factorization.
vi) See [14], Chapter 7, Theorem 3.1. U
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Notice that ii) immediately implies the Dedekind conjecture, i.e. { | { ¢ for all number fields K.

2.4. Prime number theorem for S. Define the generalized von Mangoldt function Ar by
—F'(s)/F(s)=)_ Ap(n)n%,
n=1

i.e., Ap(n) = b(n)logn. Letwr(x) = Y Ap(n)be the summatory function. If F = {, then Ar(n) = A(n), the

n=sx

usual von Mangoldt function, v g(x) = ¥ (x), and we know the classical prime number theorem amounts
to say that w(x) ~ x, as x — co. The natural analogue is ¥ (x) ~ mx, where m is the order of the pole of F
at s = 1. This is called the prime number "theorem" (PNT) for F. We put quotation marks because it has
not been proved in general.

It is well known that the classical PNT is equivalent to the non-vanishing of { on the line 1 + iz. Such
equivalence can be established by the classical Wiener-Ikehara theorem, see e.g., Ch. 8 of [20]. This
method does not apply here because in the Wiener-Ikehara theorem, the coefficients are required to be
non-negative. However, Kaczorowski and Perelli successfully proved the following

Theorem 2.19 ([9]). The PNT for F holds if and only if F(1+1it) #0.

As a consequence of theorem 2.18 v), SOC implies the prime number "theorem".
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