Zeros on the Critical Line

Eric Naslund
April 8, 2011

Abstract

The purpose of this report is to exhibit the proofs of two major results re-
garding the zeros of ¢ on the critical line. First, we present a proof of Hardy’s
1914 result, namely that there are infinitely many zeros of ¢ on the critical line.
Next we show Selbergs proof that the proportion of zeros of ¢ on the critical line
is positive.
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Part 1
Hardy’s Result

1 Introduction

We begin with some basic definitions. For T" > 0, if there are no zeros of ((s) with
imaginary part equal to T let

N(T)=[{B+iv: ((B+i7)=0,0< <1, 0<y<T}]
and if ((s) has a zero with imaginary part T let

N(T*)+ N(T7)
5 :
This is the zero counting function for {(s), and we can show that (Corollary 14.3 of [2])

T T
N(T) = — log — + O(log T').
(T) 5 logo—+ (logT')

N(T) =

Since it is believed that all the zeros of ((s) lie on the line g = %, it is natural to
consider the related function

NO(T) =

{5+i7: (B +ivy) =0, ﬁ:%, O<7<T}‘



which is defined with similar considerations as above when T is the ordinate of a zero
of ((s). No(T') counts the zeros on the critical line, and we see that upon assuming the
Riemann Hypothesis we must have

T T

(This can actually be improved to No(T') = L log 7-- 4+ O <101;igT) when the Riemann

Hypothesis is assumed.)
Our goal is to examine some of the major results regarding lower bounds on the size
of No(T'). We will make use of the familiar function £ which is defined by

g@)::%s@-—1yxsn“(g)w-§. (1.1)

¢ satisfies the functional equation &(s) = {(1—s) (Corollary 10.3 of [2]) and hence is real
on the line 0 = % Most importantly, notice that inside the critical strip, (5 +iy) =0
if and only if {(5 + iy) = 0, so we may focus our attention on the zeros of £. Since we
are trying to count zeros on only the critical line it is natural to introduce the single
variable function = : R — R defined by

ﬂﬂz&(%+ﬁ).

Again, the zeros of = correspond exactly to the zeros of ¢ on the critical line.

1.1 Brief History of Current Results

In 1914, Hardy showed that ¢ has infinitely many zeros on the critical line, o = % In
1921 Hardy and Littlewood showed that No(7') > T. Later, in 1942, Selberg proved
that No(T) > T'logT, and hence that a positive proportion of the zeros lie on the
critical line. In 1974, Levinson showed that the proportion is at least %, and in 1989,
Conrey increased this to % by using Levinsons method.

2 Preliminaries
Let

U(x) = Z e T
n=1

The function ¢ (z) will play a major role in the proofs regarding the zeros of the zeta
function. This is because ﬁﬁ(?s) = ((2s)I' (s) 7% is the Mellin transform of i(z).

Proposition 1. For o > % we have the identity

(@)L (5) 7 = / "



Proof. By Euler’s formula for the Gamma function we have

I (s) :/ e ‘57 dt.
0

Making the substitution ¢ = n?rz we find
[(s)7m*n "2 = / e
0

Hence if 0 > L

5> summing over n and switching the order of the sum and the integral
yields

[(s)7n > = / Y(x)z* dx
0
as desired. [

Corollary 2. The function ((2s)I'(s)7~° is the Mellin transform of ¢ (x). Conse-
quently for o > % we have the inverse transform

1 o+1i00
() = 5 /U_ioo C(2s)I" (s) 7 *z~%ds,
or equivalently for ¢ > 1 we have
w0 = [ qor (3) wyia 2.1
Yy) = i ) S 5 T 2Y S. .

The following functional equation for ¢(z) we be used throughout the proof of
Hardy’s result.

Lemma 3. ¢(x) obeys the functional equation

Np(z)+1=a"2 (w (i) + 1) . (2.2)

Proof. This follows from the functional equation for the Jacobi theta function

It is well known that

- ().

and this also follows from the Poisson summation formula. Then, since 2¢(z)+1 = 6(z)

we see that )
2p(x) +1=2a"2 (sz (5) + 1)

as desired. O



Proposition 4. For all s € C\{0,1} we have

1

C(s)T (§s> ns = oot /100 (xés—l + x—%s—%) o(z)dz.

Proof. By 1 we have

L\ e [l taty()
C(s)T (55) T —/1 . dI—i—/O . dx.

Then by 3 the second integral becomes

2 T

% il ) et N [ ()
0 0

_ / Gy, L1
0 x s — s
Substituting x = %, dr = —# this becomes
1 1
1 * 2%t
_ N / w Y (w)
s(s—1) 1 u

Substituting this into 2.3 we find

as desired.

3 Infinitely Many Zeros on the Critical Line

(2.3)

In this section we show a proof of Hardy’s theorem that there are infinitely many zeros

on the critical line.

The following Lemma relates an integral of the function Z(t) to (e 2%).

identity will be at the center of the proof of Hardy’s result.

Lemma 5. We have that

°° 1\ 1 /. 1
/0 (t2 + Z) =(t) cos(xt)dt = 57 (eiz — 2e73%) (€f2m)) _

This

(3.1)



Proof. Let
00 1 -1
Q(x) :/ (t2 + Z) =(t) cos(zt)dt.
0
Then since (¢ + 1_11)—1 Z(t) cos(zt) is an even function of ¢ we see that
1=/, 1\ '_
Qx) = 5 t°+ 1 =(t) cos(zt)dt.
Now, as (t* + %L)_l E(t) sin(zt) is an odd function of ¢, its integral over the real line is

zero, and hence
=3[ (#+; REn
) =3 ) 1 =(t)e .

o)

Let s = % +4t. Then

By 1.1, the definition of £(s), we have

Q(z) = —ﬁm / i ¢(s)T (g) T3 e ds.

43 1o

The function ¢(s)I' (£) 7~ %€ is meromorphic on C with poles at s = 0, s = 1. Hence
if we move the line integral to the right of the line o = 1, the change will be accounted
for by substracting the residue at s = 1. That is, for ¢ > 1 we have

6_%$ o+00 r s s de 6_%7/‘ 9iR T S _5 4e 1
= — — 2 . - 2
Q(z) p¥ /U_OO C(s) (2)77 e™ds + 5 2miRes (g(s) (2>7T e, )
The residue at s = 1 is computed to be e” since ((s) has a simple pole with residue 1.
Thus
e~3T [OF0 S s T 1
Qz) = ¥ /U_OO C(s)T (§> 7w 2e"ds + 56536.

By applying 2.1 with y = e72* we see that
Q) = —me 3 (e + Zebt
as desired. O

Lemma 6. For a every integer n we have

lim i {eém (% + (6210))] = 0.

a%iﬂ""‘ da?n




Proof. First, notice that

w(z + 5) — Ze—nQW(i—f—&) — Z(_l)ne—n%r(s
n=1 n=1
and hence
Wi+ ) = 2¢(40) — (0). (3.2)
As 1 1 1
U(x) = x 21 (E) + 51’_1 D)

by 2.2, we see that 3.2 becomes

1 1 1 1 1
[ +0)=—4¢ | —=|——=0|=]|—=.
w0 =5y (45> Vo (5) 2
By expanding the series definition for ¢(z) it follows that $ + (i + 6) and all of its

derivatives tend to zero as 0 — 0 with 6 € R*. Hence they also go to zero along any
route with angle | arg(d)| < %7T since for any ¢ with R(J) > 0 we have that

R(S)

I E I

Now, as @ — I implies that e*® — i along any route with |arg(e*® — )| < im, the
lemma is proven. O

771'7’7,

2l

Theorem 7. =(t) has infinitely many zeros.

Proof. Substituting r = —ia in 3.1 we find

e 1\ y
/ <t2 + —) =(t) cosh(at)dt = T <e’§“" — 2e7iy) (e 2“))
; 4 2
— T Cos = — me3ic 1—i—lﬂ(ezm)
2 2 '

In 1908 Lindelof proved that ¢ (1 + it) + O (t%) 3]. By Stirlings formula, I' (1 + 4£) =
O (e‘i”t), so that

2 1 - 2nm—= lion —inta

t* + 1 t*"=(t) cosh(at) = O <t4 e 4 ) .

Consequently, we can take the derivative with respect to o and move this underneath
the integration sign provided a < 217?- Taking the derivative 2n times we see

00 -1 n n
/0 (t2 + %1) t*"=(t) cosh(at)dt = W<2_2i) cos% —Wdcf;n [ 2 < +¢( 2”))]




Taking the limit as & — 17+ and applying 6 yields

5% 1 -1
lim <t2 + —) t*"=(t) cosh(at)dt = W(—n cos —. (3.3)

a—irt Jo 4

Suppose to get a contradiction that =(¢) had only finitely many zero, and hence
never changes sign for ¢t > T for some large 7. Assume without loss of generality that
Z(t) > 0. (The other case is handled identically) Let L be defined by

0o 1 -1
lim <t2 + —) t*"=(t) cosh(at)dt = L.

oc—>i7r+ T 4
Then since cosh is monotonically increasing on [0,00), T° > T implies
T 1\ !
/ <t2 + Z) t*Z(t) cosh(at)dt < L
T

where we can truncate the integral since the integrand is non-negative on [T, 00). As
this holds for every 7" > T and for every a € [0, 7) we see that

T 1\ 1
/ (t2 + —) t*"Z(t) cosh (—m&) dt <L
T 4 4

and hence the integral
/OO 2yl B t*"Z(t) cosh Lot at
0 4 4

is absolutely convergent. As cosh is monotonic, (t2 + %)_1 t?"=(t) cosh (im) dominates
(2 + i)_l t*"Z(t) cosh (at) for each o € [0, ) so that the dominated convergence the-
orem allows us to switch the order of the limit and the integral. Hence by 3.3 we have
that for every n

00 1 —1 1 _1 n
/0 (t2 + Z) t*"Z(t) cosh <Z7rt> dt = 7T(22n> cos g

However this is impossible since the right hand side switches sign infinitely often. Let
n be odd. Then the right hand side is strictly less than zero so that

/OO t2+1 71t2””(t) b () dt < /T t2+1 71t2””(t) b (2nt) dr
— = COS —T — — = COS —T .
T 4 4 0 4 4




Since T is fixed, we have that

T AN 1 T IR 1
/ 2+ = | #*Z(t)cosh | ~7t ) dt| < T™" / 2+ =] |=(t)| cosh ~mtdt
0 4 4 0 4 4

and setting R = fOT (2 + i)fl |Z(t)| cosh {tdt we see that

T AN 1
— / (t2 + —> t*"Z(t) cosh (—mﬁ) dt < RT*"
0 4 4

where R is independant of n. Now, by assumption there exists ¢ > 0 such that
2(t) (2 + %)_1 > ¢ for all 2T <t < 2T + 1 so that

o 1\ ! 1 2T+1
/ (tz + Z) t*"Z(t) cosh (Zm> dt > / t*edt > €(27)%".
T 2T

e(2T)* < RT™

Thus

for all n. However, this is equivalent to

R
22 <«
€

holding for all n, which is impossible since n can be taken arbitrarily large. Thus we
have our contradiction, and the theorem is proven.

Part 11
A Positive Proportion of the Zeros Lie
on the Critical Line

In this part we show Selbergs proof that a positive proportion of the zeros of ( lie on
the critical line.

4 Outline of the proof

For each T, the goal is to put a lower bound on the number of zeros of Z(¢) with t <T'.
Rather than count the zeros of Z(t) themselves, we will choose a small constant h, and
put a lower bound on the number of intervals of the form (nh, (n+1)h) C (0,T) which
contain a zero. With this in mind, it then makes sense to look at

B ={0<t<T: 3 € (tr+h) with =) =0},



and attempt to find m(E"), the size of E'. This set however is not desirable, as the
method we use here to detect zeros of Z(t) is by examining sign changes. A sign change
of the function Z(¢) on the interval (¢,¢ + h) implies there must be a zero, however the
converse is not neccesarily true. Hence consider E C E defined by

E={0<t<T: Z(t) changes sign on (t,t+ h)}.

The goal then becomes finding a suitable lower bound on m(E). In particular, we will
show that when h = @7 ¢ > 0, we must have m(F) > BT, B > 0. Once we prove
this, Selbergs result that No(7) > AT logT follows. To see why, notice that of the
intervals

(0,1), (h,2h), (2h,3h) ...

at least BT

T = BTl lOgT
must contain a point of E. Since t € (nh,(n + 1)h) and t € E implies that there is a
zero in (nh, (n + 2)h), we see that

1
No(T') > §BCT10gT

where the factor of % comes from the fact that each zero could be counted by two
different intervals.
Proving this lower bound for m(FE) consists of multiple steps. First, notice that

< /tHh ya<u)ydu}.

As the function Z(t) itself can be difficult to deal with, we look instead at F(t) =
=(t)W(t) for some suitable function W (t) > 0. In particular the function W (t) will be
chosen so that =(t)W (t) is the fourier transform of some f(y) which we can work with
more easily. Since the zeros of F(t) will correspond to zeros of Z(t) we see that

/tHh Flu)du| < /fh yF(u)ydu} |

The rest of the proof is then centered around finding bounds for integrals involving the
functions fﬁh F(u)du and ftHh |F'(u)|du. Specifically, we will find a way to bound the

integral
t+h
/ / F(u)dudt
EJt

from above and below, where the upper bound will introduce m(FE) by application of
Cauchy-Schwarz. It is then from these upper and lower bounds that we are able to
deduce m(E) > BT when h = =

logT"

t+h
E:{Ogth:‘/ E(u)du
t

E:{OStST:




The proof itself is divided into four major sections In the first section, W (t) will
be specified, along with F(t) and its Fourier transform f(y). In the second section
the function J(z,#) is introduced, which is related to F'(t). The purpose of this entire
section becomes bounding J(x,#) from above. This is by far the longest, and is the most
technically difficult section, as many of the sums run over as many as 7 variables. The
third section will be a series of corollaries to the preceeding upper bounds on J(x,0),
and in particular we will place bounds on

| irwpa

—00

/_ Z’ /t " )

Some important lower bounds for the integrals of F(t) and |F(t)| are also derived. In
the fourth section, we will prove the main result using the upper and lower bounds from
the third section.

and

2
dt.

5 Preliminaries, and the function W(t)

Recall 2.1 which tells us that
1 o+1i00 S . s
V() = — C(s)l (5) T2y 2ds.

AT )y ino

We are going to modify the integrand by multiplying by ¢(s)¢(1 — s) for a suitable
function ¢. The reason we multiply by ¢(s)¢(1 — s) rather that just ¢(s) is to show
explicitely that the symmetry around the line R(s) = % will be preserved.

Define «,, by

1 =
S
C(S) v=1
where 0 > 1 and o; = 1. Notice that from the Euler product we have o0, = o, if
(v, ) = 1. Similarly define o, by

YAOED IS

where o > 1 and 0/1 = 1. By expanding into Euler products, the fact that the series
(1 — 2)"2 termwise dominates the series for (1 — z)2 implies

la,| <o, <1. (5.1)

ﬁuz{%(l—%) ifu<X} 5.2

Fix X and let

0 v>X

10



when v < X, and 8, = 0 if v > X. Notice

1B, <1
for all v. Then let

o(s) = Zﬁyl/*s.

With 2.1 in mind, consider the function
2(z) = . / T (L) Ecsats)an - o)z
= — —S J—
Vi), 27"

where 0 > 1. Moving the line of integration to o = 5, we see that

1
2

%—&—ioo L
B) = 5200000) + o [T (Gs) TG00 - 5)2%ds

3 —100 2

1 0o -1
- %zqs(l)gb(()) - ;—W/ =(t) (t2 + i) o (% + z't) 122" dt.

by 2.1. Setting

it follows that the functions

and

are Fourier transforms.
This function F'(t) will be at the center of the rest of the proof, and refering to the
outline, we are making the choice

W(t) = L (t2 + 1)_1 | (1 + z't) 122" dt.
V2 4 2

11



6 The functions g(x) and J(z,0)

The purpose of this section is to define g(x) and J(z, ) and then find upper bounds
for these two functions. In the next section, we will use the upper bound for J(x,#) to
bound several integrals of F'(t). We start with a lemma regarding Fourier transforms

integrated over an interval of length h.

Lemma 8. Suppose F(u), f(y) are functions related by the Fourier formulas

F(u) = \/% /_OO f(y)e™dy

1 OO —iyu
f(y)—\/—z—ﬁ/_ooF(u)e :

If f(y) is even and F(u) is real we have that

Jo| [ Fa] <o / " F) Py + 8 [ Hwr

Proof. Integrating over (¢,t 4+ h) and switching the order we obtain

t+h 1 ) t+h ]
F(u)du = —/ fly / eYdudy
| rwa=—=[ s |
evh — 1

1 OO wyt
:E/_oof(y) iy © W
t+h
/ F(u)du

eh — 1

f() 7

are Fourier transforms. By applying Parseval’s formula we see that

00| ptth
/OO /t F(u)du
et — 1| = \/(cos(yh) —1)* + sin®(yh)

_ \/4 <—1 — C;S(yh)) = 2sin <%>

so that the functions

and

? |2‘ez’yh_1|

= —o0|f(y) " dy.

Notice that

12

dy. (6.1)



by the half angle formula, so we have

/_ Z /t " ()

Splitting the integral on the right hand side into two parts, and using the bounds
|sin(z)| < z and |sin(z)| < 1 yields

[\ F §2h2/0i|f(y)!2dy+8/ VO,

h
as desired. [

2 Z
TQ)dy'

0 sin? (¥
5 / S

6.1 g(x) and its relation to [ F(t)dt
Definition 9. Let

||M8
nMg

so that

where as before,

The following proposition gives motivation for considering and bounding g(x), as it
arises naturally when we attempt to bound

2

/_ : ( /t o F(u)du) dt.

1

Proposition 10. Suppose h < 1, and let G = er. Then we have that

[ ([ o) < Srowan (1 ) 2 [ o2 [ 25

(6.2)

Proof. By 6.1

I o

1

=< 2h2/0h If(y)|2dy+8/ ‘f;yzﬂ dy (63)

==

13



1

Setting y = logx we have that z = emilim=39)-v ie_i(%”_%‘g, and in particular

|z| = i Then if we set G = en the first integral on the right hand side of 6.3 becomes

/ " )y - [

Then we have that

L G 2 G G
[ rwpar <2 [TEOE s sn [ pae < Jleef+2 [ lotoPa.

0 1 42

2

~i(in-49)
SRR da.

S 6(16(0) - g(2)

We can bound the second integral in a similar manner to find

[TUOE,, BOAOE [ lotr,

Loy 2G log® G o log’x

As log+G = h2, we have the desired result. O

6.2 The Function J(z,0).

To be able to bound g(xz) and its integrals of the form [ |g(x)|?dz as they appear in 10,
we consider

J(x,0) = /Oo lg(u)|Pu=du

where 0 < # < 1 and x > 1. The goal of this subsection is to show that if X = §—¢

J(,0) = O (;) (6.4)

with 0 < ¢ < % then
5201 log X

uniformely with respect to 6.

Notice that
— BrBAB S
J(@,0) =Y >"%" %)\“R
m=1 n=1 k\uv

where

[e'e) 2k2 2,,2 2k,2 2,,2 d
R:/x exp{—w(m/\2 +nyl;)u281n<5—|—i7r (m)\Q —nyl;)u%osé}u—z

from the definition of g(z). Let X; denote the sum of those terms in which

mk  npu

A v
and X, the remainder. That is

Yo =J(x,0) — X.
To prove 6.4 we will bound X5 and ¥, seperately.

14



6.2.1 Bounding ¥;.

Here we prove that when X = 07¢ with 0 < ¢ < %

S =0 (—> .
02029 log X

For each quadruplet k, v, A, u let ¢ = (kv, Au) so that kv = aq and A\ = bq for some
a,b with (a,b) = 1. When %% = 2 we have that ma = nb and then n = ra, m = rb.
This allows us to rewrite the sum of n and m as a single sum over r, and hence

¥, = Z 6’“%6”5“2/ exp{ 27r< 2];2“2) u2sin5} Z—Z. (6.5)

Definition 11. Let -
q\ = BrBrBuB
0-%(5) A

—_

kAuv K
where ¢ = ged(kv, Ap).
Lemma 12. We have that
0 1y 1-0] X
Y= 5(0)1 + Qi )(277 sin 8)29-2.5(0) + O MXQ log” X | (6.6)
2(2sin §)2 020 0 0

where Q1(0) is some bounded function of 6.

Proof. First, we will rewrite the sum over r in 6.5. Notice that

_T2u2du 1100 o gdy
B e W

l\J

Since

2 i) ()

r<y/(z/n)

where Q(0) is a bounded function of 6, we obtain

> _2o du 1 o ) 77% % > 2 —0 1-0
3 reutg WU _ v _ Yy =Pdy + O
£ /z o 9$9\/ﬁ </0 e’ ay+ O(:p\/ﬁ) 0 (/0 eV y dy + O ((zy/1) )

0—

[NIES

+n2

Q) ([~ ey Py 0 o)) 4 0 (e log (2-47)

15



Vi Qe (= )
= -+ +0 log (2 +
202932 0 o " 2+n7)
Setting
2rk? % sin §
=

it follows that

5(0) Q,(9) 7' 1878 Bl 1
T 2(2sino)ioar 0 (2sin8)7 SWHO( 0 % e (247 ))-

Since every non-zero term has each of A\, k, u, v < X, we see that
2
_ q X
log(2 =1 24 ————— 0|1
og(2+n") og( +27rk2,u sm(5> (og 5)
and hence

PP WAB“B”B’“ log (2+77") =0 (log ?XQ log? X)

k\uv

as desired O

Given that we can write >; as in 6.6, it is sufficient to find a suitable upper bound
of S(0).
Define ¢,(n) b

£ (s)
so that (m) )
_ . 14a A _ 14a
¢a(n) =N | W =n H (1 — p1+a) . (67)
m|n pln
Then
¢ = Z¢—0(P) = Z ¢-o(p)
plg plkv, plAp
Consequently,

1 BiBrBuBy
S(Q)ZZW > dolp) )\UM
kVHA k;7 V7 A? M
plkv, plAn

and by rearranging the order of summation we have

= Y 6o(p) LAk (6.8)
p<X? k,v

plkv

16



For each k,v let d,d; be divisors of p that satisfy be k = dk', v = dyv’ where
ged(k',p) =1 and (v, p) = 1. Then

BBy 1 Bk Ba,
K0y 2 d'=0d, 2 (k)'° 2 v
k,v d, dy K v

p‘kl/ p|d7 dl

Now, by 5.2, when (£, p) = 1 we have that

P = 105 x 108 1
so that
BBy 1 g, ay X o X
= log — Y1 . (6.9
k,lfey logZX Z dlfedl ,ZX (k/)l_e 0og dk’ ;{ V/ og le/ ( )
k,v d,dy k<% VST
plkv pld, dy

The next three lemma focus on bounding the right hand side of 6.9. By doing so, and
combining this upper bound with 6.8 we will find an upper bound for S(#), and hence
by 6.6 for ¥, as well.

Lemma 13. We have

1
ap X x\’ X 1\?

uniformly with respect to 6.

k<X/d

Proof. As, the only pole of
s 6slog:c

2 s
is at s = 0 with residue log z, it follows from the residue theorem that

e [0 0<a<l
27 | logz x>1 '

2

(6.11)

270 J1 oo

The two different possibilities arise since we close the contour in a direction dependant
on the sign of logz. Now, as

o e <1‘ﬁ>:mn(“ﬁ)

17



we can apply 6.11 to find
. X a1 /1+i°° 1 /X’
E " log _— = _— — | — dS,
k=02 kd K1=02mi J, .o s% \ kd
k<X/d k<X/d

and upon switching the order of summation and integration this becomes

w0 sl
1—ioco 1—0+s

The integrand has singularities at s = 0 and s = 6. Now, lets split into cases based on
the size of 6.

If 0 > (log (%))_1, we can move the line of integration to the line R(s) = 6, with a
small semicircle tending to zero at s = 6. Notice we have that

) T s, (6.12)

2714 52

< Alt|

1
‘ C(1+it)
for all ¢, as well as

H<1—]ﬁ)_1:0 H(H#) =0 H(1+%) : (6.13)

plp plp plp

Consequently 6.12 is

X\’ 1Nz [ |t X\’ 1\: 1
= 1+ dt | = = 1+-) —
“ (d)H<+p) /m92+t2 “ (d)H<+p) 0z

plp plp

and the stated result follows.
Ifo < (log (%))71, we take the same line integral as before, modified by going

around the right hand side of the circle |s| = 2 (log (%))71. On this circle,

and 6.13 holds as before. As
X
IC(1—60+s)| > Alog <E>

we see that the integral around the circle is

1

ofdmeed)

plp

ds

52
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The integral along the part of the line o = 6 above the circle is

x\’ 1\? dt X\’ X 1\?
O\ T3) [ it) ~0 () o TIL(1 )
d H p Allog(X/d))~1 12 d d p

plp
Thus the lemma is proven in all cases. O

Lemma 14.

\ozdadll 1 1

—_— = — — . .14
> a0 (6.14)
d, dy plp
pldd;

Proof. Let o, be defined as before so that
VI((s) = Z o, ne
n=1

Then by 5.1 we have

|vacug, | 0yt
Z dd, = Z dd, . Z Z adaD/d
d,d, d,d, d‘D
plddy plddy P\D

As «, are the coefficients of 1/((s), >dp a;lo/D/d =1 so that
Z |ozd04d1| Z __H(l__> - -0 1H(1+1>
D p p

d,d, plp
P’ddl P’D

as desired. O

Lemma 15. We have

Biy X° 1)?
Z e = X 1T (1 + 5) . (6.15)
plp

plk‘v

Proof. By 6.10 we see that

1

[0 X 1 X 15

y =0 |logz [ (1+-
v plp
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and

0 1

Q. X 1 X 1\?2

_— _ 1 2 — 1 p—
§:<Mfﬁ X (d) o dII( +p)

X
k<X

so that 6.9 becomes

Br By 1 logog, | (X ‘X X 1

= —= — ] logz —log2 — 1+ -

Z kl=0, 10g2X Z d=9d, d 0g* d 0g* dy H - P
plk‘l/ pld, dy

This equals

and by 6.14 we conclude

, X 1\?
> - I+,
k-9 plog X P
plp
plk‘v
as desired O

Lemma 16.

am:ogii) (6.16)

uniformely with respect to 6. In particular

Proof. Combining 6.8 and 6.15 yields
X260 b0 1\*%
S(0) = 14 =
0= log” X Z H( +p)

By applying 6.7 we see that

20



1 1
plp P plp plp p? nlp ne
we have
X% 1 1
S(0) =0 — > —
+0 1
log X —x2 P P n2

Thus

20
o(i)
log X

In what follows, let X = 6¢, h = (alogX) " where a,c are suitable positive
constants. Then G = X% = §7%. If x < @G, the last two terms can be ommited in
comparison with the first if GX2 = O(671), i.e. if (a + 2)c < .

]

Lemma 17. Estimation of ¥1. When X =6¢, 0<c< %we have that

1
=0 (—) . (6.17)
020x%log X

Proof. By 6.6 along with 6.16 we have that

0
520 X? 1-6 X
21:O<5;>+0 u —i—O(MXﬁogQX).

26029 log X 52029 log X 0
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Since X = “with0 < e < é this bcomes

1
S =0 (—> .
02029 log X

n
6.2.2 Bounding Y.
Lemma 18. If P and Q) are positive, and x > 1 we have
o du e F
—Pu?+iQu?

/m e ~ -0 (m) (6.18)

Proof. Since fxoo e‘Pu?HQ“Qi—’g = % 0 61 :1 Qv dy O
Lemma 19. When X =0 € with 0 < ¢ < % we have that

X+ L1

Yo=0|—1 6.19

=0 (%0 ). (6.19)

Proof. Letting P = 7 (mij 4+ 5 )sm5 and QQ = (”fé“z — ”Z§‘2> cosd in 6.18 it

follows from the definition of ¥, that

0 ( > bbby

kAuv

2 2

)\2 I

-1 27.2 2,2
k
exp (—7r (m}\z + ny/; ) sin (5))

where

*

2.

mn

denotes the fact that the sum does not range over all m,n. Notice that by symmetry,
the cases mTk > & and mTk < £ are identical, so that

-1
20=0 Z |6k5}‘5y/8“| Z —mm?k2A"2sin g Z (mjf2 TLV[; >

kv n<mkv/\p

The presence of the |5;5,5,,| term means that each nonzero term has all of k, v, A\, u <
X. Hence ignore all quadruplets with kv/Au > X? since that implies that one of
k,v > X. Then

> ! cir Ly Ly gyl
mkv —nA\p — Al 2 AL

n<mkv /A
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and also

m2k? n u S mk (mk  npu mk (mkv — np)
A2 2T A2y '
Thus we have that

0 21.2 2,2\ —1
E —7mm2k2X"2sinéd E m k n-u
6 —
A2 v?

m=1 n<mkv/\p

_ )\ IOg mX) —mm2k2A~2sind
B ( k ;( mAu )6

% log X X2 X?
O(T<1+ /\’u)logT—l—k—log 5>

A2y 1 v, 51
_o (2% Ay
O( PR R 5)

since X =40 °with 0 < c< %. Hence

1 X4 1
(92( log +—log 5)>:O(Flog25)
kA uv

as desired. [

Lemma 20. The upper bound 6.4 holds. That is, we have

1
J(x,0) =0 (1—> .
020x%1log X

Proof. This follows from combining 6.17 and 6.19 along with the fact that X = 6~¢
with 0 < ¢ < %. O

7 Bounding [ F(t) and [ |F(t)

Similar to the previous section, we assume that X = 07¢ for a positive constant c.
Eventually we will choose h = (alog X)™"

2

[ F(u)du| dt and [*_|F(t)[2dt.

7.0.3 The integrals [~ | [,

2

t+h dt by

In this subsection we find upper bounds for [ |F(¢)[*dt and [~ (u)du

using 6.2 and 6.4.
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Lemma 21.

(o) t+h 2 h
/ / Fu)du dt:O< : ) (7.1)
—ool| Jt 0z log X
Proof.
J(z,0) :/ lg(u)[Pu™du
Since

om-0(st)
020x%log X

G

it follows that

€ ¢ ar ¢
/ lg(z)|*dx = —/ 2 ——dr = —2%J +0/ 2" Tdx
1 1 Ox 1 1
1 €
:0(—1 )+0(9/ I )

0260 log X 1 020xlog X

/ (G, 0)do = / lg()[2de / " 0r0dg

0 G 0

> 1 1 1
[0 (o - e )
€] logx  2z2logx x2log”x

(o) 2 0 2
2/ lg@)PF, 3 / g(x 1)| i
G log T 2 Ja T3

since G = en > e . (We have been assuming h < 1 throughout.) Hence

/OO l9(x /9JG9)d9+ 2 J(G, ;)

o log’x
_0 /21dQ —|—O(1 11 )IO(I 1 )
0o 02G%log X 02G2log X 02 log G'log X

By 6.2 we have that
1 1 “ “g(2)?
dt < =|o(D)p(0)? [ 1+ ———— +2/ 2+2/ d
5160000 (14 g )42 [Caree [0

[ rem)

Since ¢(0) = O(x) and ¢(1) = O(log X), we then have that

00 t+h 2
LI resf a0 (i)
—ool| Jt 02 log X

since X =0 “with0<c¢< %. O

Also,

2
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Lemma 22. - | /s
/ \F(#)[2dt = O (—Olg( / )>
—o00 02 log X

Proof. By Plancherels formula, the left hand side becomes
o0 0 —’L’(iﬂ'—%é)
e
2 [Ciray =2 [T —
0 1

d
2z ‘
§4/ l9(z)|*dz + O(X?log? X).
1

1)¢(0) = g(z)

Taking v =1, 6 = m in
J(2,0)=0 (;>
02029 log X
yields
/Oo |g<u>|2elogu/log6du -0 <101g (1/5)> )
1 02 log X
Hence -
[ latwpan=o (SELRD)
1 0z log X
Next,
J(672,0)

< ZZ Z |ﬁkﬁ’\ﬂy/6“| e p{ (m;kQ + ni/f) uzsiné} du.

m=1 n=1 k\uv

Since X = ¢ ¢ with ¢ < %

E2A\2sind > AX 20 > A>

and
pPr2siné > AX 26 > A5
As |8, <1,
Z |Bkﬁ)\ﬁuﬁu - O (X2 10g2 X)
kApv
so that

J(672,0) = (XQIOg XZZ/ exp {—A (m* +n?) 252}du>

m=1n=1
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=0 (X2 log X €Cu252du>

5—2
=0 <X2 log? Xe_c/52> .

As = with 0 < ¢ < 1 , this error term is consumed by the term

0 ( l?g 1/0 )
02 log X

Xl/c

so that we may conclude

as desired.

7.1 Additional bounds on [ F(t) and [ |F(t)

The following bounds are useful consequences of 7.1 and 7.2.

Lemma 23. (10.19)

[ o)

Proof. By Cauchy-Schwarz we have that

/Z(/j | ( |du) dt</ / o) dudt.

Changing the order of integration yields

= h/ |F(u)|2du/ dt = hQ/ |F(u)2du
—00 u—h —00

so that the result follows from 7.2. OJ

2

_ h*log (1/9)
=0 ( 52 log X ) (73)

Lemma 24. If6 = %, then
T
/ [F()[dt > AT, (7.4)
0

Proof. Consider the contour integral

2+ZT 2+iT 5+i i
2+i LT J 3T
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Since either ((s) nor ¢(s) have poles in this region, it follows that

(e Lo ) o o

Let a, be given by

()% (s) =1+ =2
n=2
Since ¢(s) = > B,v 7%, and |3,| < a,, where a;, was defined by \/((s) = Y. a,v™*, we
see that
ap < dy(n).

Hence
2+442T dS

/;HT C(s)¢p*(s)ds =i (T — 1) + i n /M =

—i(T-1)+0 (i d2(n) > —iT + O(1).

. n2logn

As ¢(s) =0 (X%) foro> 1, and ¢ (3 +iT) =0 <Ti>, we have
24
(5)¢°(s)ds = O (X)
i
and

/jHTC(S)ng(S)dS ~0 (XT%) .

+iT

/TC 1Jrfnt »? 1+z’t dt ~ T
0 2 2 '
By definition
T | N\, /1 L1
F(t)|dt = =(t t2+—) (—+z‘t) 20(57=350)t g4
[irena= [* =0 (#+1) 1o (5+)

[ (e (o) ()
= T 2T — 4+ =it — 4+t — 4+t ) [Pe\a™ 290 e,

By Sterlings estimate

It then follows that

PN
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along with the fact that 6 = 7, it follows that

4 1
/0 |F(t)|dt>0/ t—4|§( +zt)¢ (§+z’t) |dt.
T
/C(1+zt)¢2<1+zt)dt‘
1 2

2

Hence

T
/ |F(t)|dt > CT 3
0

e

> AT

for some positive constant A. n

Lemma 25. We have that

/OT </tt+h |F(u)du> dt > ART. (7.5)

Proof. By switching the order of integration, the left hand side becomes

T+h min(7T,u) T u T
/ |F(u)|du/ dt > / |F(u)|du/ dt = h/ |F(u)|du
0 max(0,u—h) h u—h h

and the result follows from 7.4. O

8 The Proof

Theorem 26. There exists a positive constant A such that
No(T) > AT logT.

Proof. Let E be the sub-set of (0,7) where

/t o |F(u)|du > /t o F(u)du).

For such values of ¢, F(u) must change sign in (¢, + h), and hence so must =(u),
implying that ¢ (l + zu) has a zero in this interval.

Since ff (u)|du and | [T" F(u)du

// |dudt>/E(/tt+h\F(u)\du—
L[

28

are equal except in F/, we have that

/t " ) du ) dt
u ) d.




Hence by 7.5 we have that

T
/ / ’dUdt > AlhT4 —/
0

t+h
/ F(u)du
t
Applying the Cauchy-Schwarz inequality,

// w)|dudt < ((m(E))/E(/tt+h]F(u)]du>2dt)

so that 7.3 with 6 = = 1mp11es that

3 T t+h 1 1 logT %
A RT —/0 /t F(u)du|dt < Ay <m(E)2> KT <1ogx)

Again by the Cauchy Schwarz inequality,
t+h 2 %
/ F(u)du| dt
t

[ P < (T [

so that 7.1 implies
T t+h h%Té
/ / Flu)duldt =0 [ 222 ).
0o |Jt logz X

Consequently, there are positive contants C, Cy such that
C\T (IOgX) - CQT—% < m(E)3.
log T hz (logT)
Since X =6 ¢=T¢and h = (alog X)™' = (aclogT) ™"
m(E)% > CyerT? — Cy (ac)2T
and by taking a small enough we have that
m(E) > CsT
for some constant C5. It then follows that of the intervals

(0,h), (h,2h), (2h,3h) ...

dt.

Nl

[N

NI

M\H -

contained in (0,7") at least

[C5T/h]
must contain points of E. If (nh, (n+ 1)h) contains a point ¢ of £ there must be a zero
of ¢ (3 + u) inside (¢,t + h) and so in (nh, (n+ 2)h). Allowing for the fact that each
zero might be counted twice in this way, there must be at least

1

zeros in (0,7"), and the proof is complete. O
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