Zeros on the Critical Line

Eric Naslund

April 8, 2011

Abstract

The purpose of this report is to exhibit the proofs of two major results regarding the zeros of ζ on the critical line. First, we present a proof of Hardy's 1914 result, namely that there are infinitely many zeros of ζ on the critical line. Next we show Selbergs proof that the proportion of zeros of ζ on the critical line is positive.

Part I

Hardy's Result

1 Introduction

We begin with some basic definitions. For $T>0$, if there are no zeros of $\zeta(s)$ with imaginary part equal to T let

$$
N(T)=|\{\beta+i \gamma: \zeta(\beta+i \gamma)=0,0<\beta<1,0<\gamma<T\}|
$$

and if $\zeta(s)$ has a zero with imaginary part T let

$$
N(T)=\frac{N\left(T^{+}\right)+N\left(T^{-}\right)}{2} .
$$

This is the zero counting function for $\zeta(s)$, and we can show that (Corollary 14.3 of [2])

$$
N(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi e}+O(\log T) .
$$

Since it is believed that all the zeros of $\zeta(s)$ lie on the line $\beta=\frac{1}{2}$, it is natural to consider the related function

$$
N_{0}(T)=\left|\left\{\beta+i \gamma: \quad \zeta(\beta+i \gamma)=0, \beta=\frac{1}{2}, 0<\gamma<T\right\}\right|
$$

which is defined with similar considerations as above when T is the ordinate of a zero of $\zeta(s) . N_{0}(T)$ counts the zeros on the critical line, and we see that upon assuming the Riemann Hypothesis we must have

$$
N_{0}(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi e}+O(\log T)
$$

(This can actually be improved to $N_{0}(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi e}+O\left(\frac{\log T}{\log \log T}\right)$ when the Riemann Hypothesis is assumed.)

Our goal is to examine some of the major results regarding lower bounds on the size of $N_{0}(T)$. We will make use of the familiar function ξ which is defined by

$$
\begin{equation*}
\xi(s)=\frac{1}{2} s(s-1) \zeta(s) \Gamma\left(\frac{s}{2}\right) \pi^{-\frac{s}{2}} \tag{1.1}
\end{equation*}
$$

ξ satisfies the functional equation $\xi(s)=\xi(1-s)$ (Corollary 10.3 of [2]) and hence is real on the line $\sigma=\frac{1}{2}$. Most importantly, notice that inside the critical strip, $\xi(\beta+i \gamma)=0$ if and only if $\zeta(\beta+i \gamma)=0$, so we may focus our attention on the zeros of ξ. Since we are trying to count zeros on only the critical line it is natural to introduce the single variable function $\Xi: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\Xi(t)=\xi\left(\frac{1}{2}+i t\right)
$$

Again, the zeros of Ξ correspond exactly to the zeros of ζ on the critical line.

1.1 Brief History of Current Results

In 1914, Hardy showed that ζ has infinitely many zeros on the critical line, $\sigma=\frac{1}{2}$. In 1921 Hardy and Littlewood showed that $N_{0}(T) \gg T$. Later, in 1942, Selberg proved that $N_{0}(T) \gg T \log T$, and hence that a positive proportion of the zeros lie on the critical line. In 1974, Levinson showed that the proportion is at least $\frac{1}{3}$, and in 1989, Conrey increased this to $\frac{2}{5}$ by using Levinsons method.

2 Preliminaries

Let

$$
\psi(x)=\sum_{n=1}^{\infty} e^{-n^{2} \pi x}
$$

The function $\psi(x)$ will play a major role in the proofs regarding the zeros of the zeta function. This is because $\frac{1}{s(2 s-1)} \xi(2 s)=\zeta(2 s) \Gamma(s) \pi^{-s}$ is the Mellin transform of $\psi(x)$.
Proposition 1. For $\sigma>\frac{1}{2}$ we have the identity

$$
\zeta(2 s) \Gamma(s) \pi^{-s}=\int_{0}^{\infty} x^{s} \psi(x) \frac{d x}{x}
$$

Proof. By Euler's formula for the Gamma function we have

$$
\Gamma(s)=\int_{0}^{\infty} e^{-t} t^{s-1} d t
$$

Making the substitution $t=n^{2} \pi x$ we find

$$
\Gamma(s) \pi^{-s} n^{-2 s}=\int_{0}^{\infty} e^{-n^{2} \pi x} x^{s-1} d x
$$

Hence if $\sigma>\frac{1}{2}$, summing over n and switching the order of the sum and the integral yields

$$
\Gamma(s) \pi^{-s} n^{-2 s}=\int_{0}^{\infty} \psi(x) x^{s-1} d x
$$

as desired.
Corollary 2. The function $\zeta(2 s) \Gamma(s) \pi^{-s}$ is the Mellin transform of $\psi(x)$. Consequently for $\sigma>\frac{1}{2}$ we have the inverse transform

$$
\psi(x)=\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} \zeta(2 s) \Gamma(s) \pi^{-s} x^{-s} d s
$$

or equivalently for $\sigma>1$ we have

$$
\begin{equation*}
\psi(y)=\frac{1}{4 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} \zeta(s) \Gamma\left(\frac{s}{2}\right) \pi^{-\frac{s}{2}} y^{-\frac{s}{2}} d s \tag{2.1}
\end{equation*}
$$

The following functional equation for $\psi(x)$ we be used throughout the proof of Hardy's result.

Lemma 3. $\psi(x)$ obeys the functional equation

$$
\begin{equation*}
2 \psi(x)+1=x^{-\frac{1}{2}}\left(2 \psi\left(\frac{1}{x}\right)+1\right) . \tag{2.2}
\end{equation*}
$$

Proof. This follows from the functional equation for the Jacobi theta function

$$
\theta(x)=\sum_{-\infty}^{\infty} e^{-n^{2} \pi x}
$$

It is well known that

$$
\theta(x)=\frac{1}{\sqrt{x}} \theta\left(\frac{1}{x}\right)
$$

and this also follows from the Poisson summation formula. Then, since $2 \psi(x)+1=\theta(x)$ we see that

$$
2 \psi(x)+1=x^{-\frac{1}{2}}\left(2 \psi\left(\frac{1}{x}\right)+1\right)
$$

as desired.

Proposition 4. For all $s \in \mathbb{C} \backslash\{0,1\}$ we have

$$
\zeta(s) \Gamma\left(\frac{1}{2} s\right) \pi^{-\frac{1}{2} s}=\frac{1}{s(s-1)}+\int_{1}^{\infty}\left(x^{\frac{1}{2} s-1}+x^{-\frac{1}{2} s-\frac{1}{2}}\right) \psi(x) d x
$$

Proof. By 1 we have

$$
\begin{align*}
\psi(x) & =\frac{x^{-\frac{1}{2}}\left(2 \psi\left(\frac{1}{x}\right)+1\right)-1}{2} \\
\zeta(s) \Gamma\left(\frac{1}{2} s\right) \pi^{-\frac{1}{2} s} & =\int_{1}^{\infty} \frac{x^{\frac{1}{2} s} \psi(x)}{x} d x+\int_{0}^{1} \frac{x^{\frac{1}{2} s} \psi(x)}{x} d x . \tag{2.3}
\end{align*}
$$

Then by 3 the second integral becomes

$$
\begin{gathered}
\frac{1}{2} \int_{0}^{1} \frac{x^{\frac{1}{2} s} x^{-\frac{1}{2}}\left(2 \psi\left(\frac{1}{x}\right)+1\right)}{x}-x^{\frac{1}{2} s-1} d x=\int_{0}^{1} \frac{x^{\frac{1}{2} s-\frac{1}{2}} \psi\left(\frac{1}{x}\right)}{x}+\frac{1}{2} \int_{0}^{1} x^{\frac{1}{2} s-\frac{3}{2}}-x^{\frac{1}{2} s-1} d x \\
=\int_{0}^{1} \frac{x^{\frac{1}{2} s-\frac{1}{2}} \psi\left(\frac{1}{x}\right)}{x} d x+\frac{1}{s-1}-\frac{1}{s}
\end{gathered}
$$

Substituting $x=\frac{1}{u}, d x=-\frac{1}{u^{2}}$ this becomes

$$
=\frac{1}{s(s-1)}+\int_{1}^{\infty} \frac{u^{-\frac{1}{2} s+\frac{1}{2}} \psi(u)}{u} d u
$$

Substituting this into 2.3 we find

$$
\zeta(s) \Gamma\left(\frac{1}{2} s\right) \pi^{-\frac{1}{2} s}=\frac{1}{s(s-1)}+\int_{1}^{\infty} x^{\frac{1}{2} s-1} \psi(x)+x^{-\frac{1}{2} s-\frac{1}{2}} \psi(x) d x
$$

as desired.

3 Infinitely Many Zeros on the Critical Line

In this section we show a proof of Hardy's theorem that there are infinitely many zeros on the critical line.

The following Lemma relates an integral of the function $\Xi(t)$ to $\psi\left(e^{-2 x}\right)$. This identity will be at the center of the proof of Hardy's result.

Lemma 5. We have that

$$
\begin{equation*}
\int_{0}^{\infty}\left(t^{2}+\frac{1}{4}\right)^{-1} \Xi(t) \cos (x t) d t=\frac{1}{2} \pi\left(e^{\frac{1}{2} x}-2 e^{-\frac{1}{2} x} \psi\left(e^{-2 x}\right)\right) \tag{3.1}
\end{equation*}
$$

Proof. Let

$$
Q(x)=\int_{0}^{\infty}\left(t^{2}+\frac{1}{4}\right)^{-1} \Xi(t) \cos (x t) d t
$$

Then since $\left(t^{2}+\frac{1}{4}\right)^{-1} \Xi(t) \cos (x t)$ is an even function of t we see that

$$
Q(x)=\frac{1}{2} \int_{-\infty}^{\infty}\left(t^{2}+\frac{1}{4}\right)^{-1} \Xi(t) \cos (x t) d t
$$

Now, as $\left(t^{2}+\frac{1}{4}\right)^{-1} \Xi(t) \sin (x t)$ is an odd function of t, its integral over the real line is zero, and hence

$$
Q(x)=\frac{1}{2} \int_{-\infty}^{\infty}\left(t^{2}+\frac{1}{4}\right)^{-1} \Xi(t) e^{i x t} d t
$$

Let $s=\frac{1}{2}+i t$. Then

$$
Q(x)=\frac{e^{-\frac{1}{2} x t}}{2 i} \int_{\frac{1}{2}-\infty}^{\frac{1}{2}+\infty} \frac{1}{s(1-s)} \Xi(s) e^{x s} d s
$$

By 1.1, the definition of $\xi(s)$, we have

$$
Q(x)=-\frac{e^{-\frac{1}{2} x t}}{4 i} \int_{\frac{1}{2}-\infty}^{\frac{1}{2}+\infty} \zeta(s) \Gamma\left(\frac{s}{2}\right) \pi^{-\frac{s}{2}} e^{x s} d s
$$

The function $\zeta(s) \Gamma\left(\frac{s}{2}\right) \pi^{-\frac{s}{2}} e^{x s}$ is meromorphic on \mathbb{C} with poles at $s=0, s=1$. Hence if we move the line integral to the right of the line $\sigma=1$, the change will be accounted for by substracting the residue at $s=1$. That is, for $\sigma>1$ we have

$$
Q(x)=-\frac{e^{-\frac{1}{2} x}}{4 i} \int_{\sigma-\infty}^{\sigma+\infty} \zeta(s) \Gamma\left(\frac{s}{2}\right) \pi^{-\frac{s}{2}} e^{x s} d s+\frac{e^{-\frac{1}{2} x}}{4 i} \cdot 2 \pi i \operatorname{Res}\left(\zeta(s) \Gamma\left(\frac{s}{2}\right) \pi^{-\frac{s}{2}} e^{x s}, 1\right)
$$

The residue at $s=1$ is computed to be e^{x} since $\zeta(s)$ has a simple pole with residue 1 . Thus

$$
Q(x)=\frac{e^{-\frac{1}{2} x}}{4 i} \int_{\sigma-\infty}^{\sigma+\infty} \zeta(s) \Gamma\left(\frac{s}{2}\right) \pi^{-\frac{s}{2}} e^{x s} d s+\frac{\pi}{2} e^{\frac{1}{2} x}
$$

By applying 2.1 with $y=e^{-2 x}$ we see that

$$
Q(x)=-\pi e^{-\frac{1}{2} x} \psi\left(e^{-2 x}\right)+\frac{\pi}{2} e^{\frac{1}{2} x}
$$

as desired.
Lemma 6. For a every integer n we have

$$
\lim _{\alpha \rightarrow \frac{1}{4} \pi^{+}} \frac{d^{2 n}}{d \alpha^{2 n}}\left[e^{\frac{1}{2} i \alpha}\left(\frac{1}{2}+\psi\left(e^{2 i \alpha}\right)\right)\right]=0 .
$$

Proof. First, notice that

$$
\psi(i+\delta)=\sum_{n=1}^{\infty} e^{-n^{2} \pi(i+\delta)}=\sum_{n=1}^{\infty}(-1)^{n} e^{-n^{2} \pi \delta}
$$

and hence

$$
\begin{equation*}
\psi(i+\delta)=2 \psi(4 \delta)-\psi(\delta) \tag{3.2}
\end{equation*}
$$

As

$$
\psi(x)=x^{-\frac{1}{2}} \psi\left(\frac{1}{x}\right)+\frac{1}{2} x^{-\frac{1}{2}}-\frac{1}{2}
$$

by 2.2 , we see that 3.2 becomes

$$
\psi(i+\delta)=\frac{1}{\sqrt{\delta}} \psi\left(\frac{1}{4 \delta}\right)-\frac{1}{\sqrt{\delta}} \psi\left(\frac{1}{\delta}\right)-\frac{1}{2}
$$

By expanding the series definition for $\psi(x)$ it follows that $\frac{1}{2}+\psi(i+\delta)$ and all of its derivatives tend to zero as $\delta \rightarrow 0$ with $\delta \in \mathbb{R}^{+}$. Hence they also go to zero along any route with angle $|\arg (\delta)|<\frac{1}{2} \pi$ since for any δ with $\Re(\delta)>0$ we have that

$$
\left|\sum_{n=1}^{\infty} e^{-\pi n^{2} \frac{1}{\delta}}\right| \leq \sum_{n=1}^{\infty} e^{-\pi n^{2} \frac{2(\delta)}{|\delta|^{2}}} \leq \sum_{n=1}^{\infty} e^{-\pi n^{2} \frac{1}{|\delta|}} .
$$

Now, as $\alpha \rightarrow \frac{\pi^{+}}{4}$ implies that $e^{2 i \alpha} \rightarrow i$ along any route with $\left|\arg \left(e^{2 i \alpha}-i\right)\right|<\frac{1}{2} \pi$, the lemma is proven.

Theorem 7. $\Xi(t)$ has infinitely many zeros.
Proof. Substituting $x=-i \alpha$ in 3.1 we find

$$
\begin{gathered}
\int_{0}^{\infty}\left(t^{2}+\frac{1}{4}\right)^{-1} \Xi(t) \cosh (\alpha t) d t=\frac{\pi}{2}\left(e^{-\frac{1}{2} i \alpha}-2 e^{\frac{1}{2} i \alpha} \psi\left(e^{2 i \alpha}\right)\right) \\
=\pi \cos \frac{\alpha}{2}-\pi e^{\frac{1}{2} i \alpha}\left(\frac{1}{2}+\psi\left(e^{2 i \alpha}\right)\right)
\end{gathered}
$$

In 1908 Lindelof proved that $\zeta\left(\frac{1}{2}+i t\right)+O\left(t^{\frac{1}{4}}\right)$ [3]. By Stirlings formula, $\Gamma\left(\frac{1}{4}+\frac{i t}{2}\right)=$ $O\left(e^{-\frac{1}{4} \pi t}\right)$, so that

$$
\left(t^{2}+\frac{1}{4}\right)^{-1} t^{2 n} \Xi(t) \cosh (\alpha t)=O\left(t^{\frac{1}{4}+2 n} e^{-\frac{1}{4} \pi+\alpha}\right) .
$$

Consequently, we can take the derivative with respect to α and move this underneath the integration sign provided $\alpha<\frac{1}{4} \pi$. Taking the derivative $2 n$ times we see

$$
\int_{0}^{\infty}\left(t^{2}+\frac{1}{4}\right)^{-1} t^{2 n} \Xi(t) \cosh (\alpha t) d t=\frac{\pi(-1)^{n}}{2^{2 n}} \cos \frac{\alpha}{2}-\pi \frac{d^{2 n}}{d \alpha^{2 n}}\left[e^{\frac{1}{2} i \alpha}\left(\frac{1}{2}+\psi\left(e^{2 i \alpha}\right)\right)\right] .
$$

Taking the limit as $\alpha \rightarrow \frac{1}{4} \pi^{+}$and applying 6 yields

$$
\begin{equation*}
\lim _{\alpha \rightarrow \frac{1}{4} \pi^{+}} \int_{0}^{\infty}\left(t^{2}+\frac{1}{4}\right)^{-1} t^{2 n} \Xi(t) \cosh (\alpha t) d t=\frac{\pi(-1)^{n}}{2^{2 n}} \cos \frac{\pi}{8} \tag{3.3}
\end{equation*}
$$

Suppose to get a contradiction that $\Xi(t)$ had only finitely many zero, and hence never changes sign for $t>T$ for some large T. Assume without loss of generality that $\Xi(t)>0$. (The other case is handled identically) Let L be defined by

$$
\lim _{\alpha \rightarrow \frac{1}{4} \pi^{+}} \int_{T}^{\infty}\left(t^{2}+\frac{1}{4}\right)^{-1} t^{2 n} \Xi(t) \cosh (\alpha t) d t=L
$$

Then since cosh is monotonically increasing on $[0, \infty), T^{\prime}>T$ implies

$$
\int_{T}^{T^{\prime}}\left(t^{2}+\frac{1}{4}\right)^{-1} t^{2 n} \Xi(t) \cosh (\alpha t) d t \leq L
$$

where we can truncate the integral since the integrand is non-negative on $[T, \infty)$. As this holds for every $T^{\prime}>T$ and for every $\alpha \in\left[0, \frac{\pi}{4}\right)$ we see that

$$
\int_{T}^{T^{\prime}}\left(t^{2}+\frac{1}{4}\right)^{-1} t^{2 n} \Xi(t) \cosh \left(\frac{1}{4} \pi t\right) d t \leq L
$$

and hence the integral

$$
\int_{0}^{\infty}\left(t^{2}+\frac{1}{4}\right)^{-1} t^{2 n} \Xi(t) \cosh \left(\frac{1}{4} \pi t\right) d t
$$

is absolutely convergent. As cosh is monotonic, $\left(t^{2}+\frac{1}{4}\right)^{-1} t^{2 n} \Xi(t) \cosh \left(\frac{1}{4} \pi t\right)$ dominates $\left(t^{2}+\frac{1}{4}\right)^{-1} t^{2 n} \Xi(t) \cosh (\alpha t)$ for each $\alpha \in\left[0, \frac{\pi}{4}\right)$ so that the dominated convergence theorem allows us to switch the order of the limit and the integral. Hence by 3.3 we have that for every n

$$
\int_{0}^{\infty}\left(t^{2}+\frac{1}{4}\right)^{-1} t^{2 n} \Xi(t) \cosh \left(\frac{1}{4} \pi t\right) d t=\frac{\pi(-1)^{n}}{2^{2 n}} \cos \frac{\pi}{8} .
$$

However this is impossible since the right hand side switches sign infinitely often. Let n be odd. Then the right hand side is strictly less than zero so that

$$
\int_{T}^{\infty}\left(t^{2}+\frac{1}{4}\right)^{-1} t^{2 n} \Xi(t) \cosh \left(\frac{1}{4} \pi t\right) d t<-\int_{0}^{T}\left(t^{2}+\frac{1}{4}\right)^{-1} t^{2 n} \Xi(t) \cosh \left(\frac{1}{4} \pi t\right) d t
$$

Since T is fixed, we have that

$$
\left|\int_{0}^{T}\left(t^{2}+\frac{1}{4}\right)^{-1} t^{2 n} \Xi(t) \cosh \left(\frac{1}{4} \pi t\right) d t\right| \leq T^{2 n} \int_{0}^{T}\left(t^{2}+\frac{1}{4}\right)^{-1}|\Xi(t)| \cosh \frac{1}{4} \pi t d t
$$

and setting $R=\int_{0}^{T}\left(t^{2}+\frac{1}{4}\right)^{-1}|\Xi(t)| \cosh \frac{1}{4} \pi t d t$ we see that

$$
-\int_{0}^{T}\left(t^{2}+\frac{1}{4}\right)^{-1} t^{2 n} \Xi(t) \cosh \left(\frac{1}{4} \pi t\right) d t<R T^{2 n}
$$

where R is independant of n. Now, by assumption there exists $\epsilon>0$ such that $\Xi(t)\left(t^{2}+\frac{1}{4}\right)^{-1}>\epsilon$ for all $2 T<t<2 T+1$ so that

$$
\int_{T}^{\infty}\left(t^{2}+\frac{1}{4}\right)^{-1} t^{2 n} \Xi(t) \cosh \left(\frac{1}{4} \pi t\right) d t \geq \int_{2 T}^{2 T+1} t^{2 n} \epsilon d t \geq \epsilon(2 T)^{2 n}
$$

Thus

$$
\epsilon(2 T)^{2 n}<R T^{2 n}
$$

for all n. However, this is equivalent to

$$
2^{2 n}<\frac{R}{\epsilon}
$$

holding for all n, which is impossible since n can be taken arbitrarily large. Thus we have our contradiction, and the theorem is proven.

Part II

A Positive Proportion of the Zeros Lie on the Critical Line

In this part we show Selbergs proof that a positive proportion of the zeros of ζ lie on the critical line.

4 Outline of the proof

For each T, the goal is to put a lower bound on the number of zeros of $\Xi(t)$ with $t \leq T$. Rather than count the zeros of $\Xi(t)$ themselves, we will choose a small constant h, and put a lower bound on the number of intervals of the form $(n h,(n+1) h) \subset(0, T)$ which contain a zero. With this in mind, it then makes sense to look at

$$
E^{\prime}=\left\{0 \leq t \leq T: \exists t^{\prime} \in(t, t+h) \text { with } \Xi\left(t^{\prime}\right)=0\right\}
$$

and attempt to find $m\left(E^{\prime}\right)$, the size of E^{\prime}. This set however is not desirable, as the method we use here to detect zeros of $\Xi(t)$ is by examining sign changes. A sign change of the function $\Xi(t)$ on the interval $(t, t+h)$ implies there must be a zero, however the converse is not neccesarily true. Hence consider $E \subset E^{\prime}$ defined by

$$
E=\{0 \leq t \leq T: \Xi(t) \text { changes sign on }(t, t+h)\} .
$$

The goal then becomes finding a suitable lower bound on $m(E)$. In particular, we will show that when $h=\frac{c}{\log T}, c>0$, we must have $m(E)>B T, B>0$. Once we prove this, Selbergs result that $N_{0}(T)>A T \log T$ follows. To see why, notice that of the intervals

$$
(0, h),(h, 2 h),(2 h, 3 h) \ldots
$$

at least

$$
\frac{B T}{h}=B c T \log T
$$

must contain a point of E. Since $t \in(n h,(n+1) h)$ and $t \in E$ implies that there is a zero in $(n h,(n+2) h)$, we see that

$$
N_{0}(T)>\frac{1}{2} B c T \log T
$$

where the factor of $\frac{1}{2}$ comes from the fact that each zero could be counted by two different intervals.

Proving this lower bound for $m(E)$ consists of multiple steps. First, notice that

$$
E=\left\{0 \leq t \leq T:\left|\int_{t}^{t+h} \Xi(u) d u\right|<\int_{t}^{t+h}|\Xi(u)| d u\right\} .
$$

As the function $\Xi(t)$ itself can be difficult to deal with, we look instead at $F(t)=$ $\Xi(t) W(t)$ for some suitable function $W(t)>0$. In particular the function $W(t)$ will be chosen so that $\Xi(t) W(t)$ is the fourier transform of some $f(y)$ which we can work with more easily. Since the zeros of $F(t)$ will correspond to zeros of $\Xi(t)$ we see that

$$
E=\left\{0 \leq t \leq T:\left|\int_{t}^{t+h} F(u) d u\right|<\int_{t}^{t+h}|F(u)| d u\right\} .
$$

The rest of the proof is then centered around finding bounds for integrals involving the functions $\int_{t}^{t+h} F(u) d u$ and $\int_{t}^{t+h}|F(u)| d u$. Specifically, we will find a way to bound the integral

$$
\int_{E} \int_{t}^{t+h} F(u) d u d t
$$

from above and below, where the upper bound will introduce $m(E)$ by application of Cauchy-Schwarz. It is then from these upper and lower bounds that we are able to deduce $m(E)>B T$ when $h=\frac{c}{\log T}$.

The proof itself is divided into four major sections In the first section, $W(t)$ will be specified, along with $F(t)$ and its Fourier transform $f(y)$. In the second section the function $J(x, \theta)$ is introduced, which is related to $F(t)$. The purpose of this entire section becomes bounding $J(x, \theta)$ from above. This is by far the longest, and is the most technically difficult section, as many of the sums run over as many as 7 variables. The third section will be a series of corollaries to the preceeding upper bounds on $J(x, \theta)$, and in particular we will place bounds on

$$
\int_{-\infty}^{\infty}|F(t)|^{2} d t
$$

and

$$
\int_{-\infty}^{\infty}\left|\int_{t}^{t+h} F(u) d u\right|^{2} d t
$$

Some important lower bounds for the integrals of $F(t)$ and $|F(t)|$ are also derived. In the fourth section, we will prove the main result using the upper and lower bounds from the third section.

5 Preliminaries, and the function $W(t)$

Recall 2.1 which tells us that

$$
\psi(y)=\frac{1}{4 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} \zeta(s) \Gamma\left(\frac{s}{2}\right) \pi^{-\frac{s}{2}} y^{-\frac{s}{2}} d s
$$

We are going to modify the integrand by multiplying by $\phi(s) \phi(1-s)$ for a suitable function ϕ. The reason we multiply by $\phi(s) \phi(1-s)$ rather that just $\phi(s)$ is to show explicitely that the symmetry around the line $\Re(s)=\frac{1}{2}$ will be preserved.

Define α_{ν} by

$$
\frac{1}{\sqrt{\zeta(s)}}=\sum_{\nu=1}^{\infty} \alpha_{\nu} \nu^{-s}
$$

where $\sigma>1$ and $\alpha_{1}=1$. Notice that from the Euler product we have $\alpha_{\mu} \alpha_{\nu}=\alpha_{\mu \nu}$ if $(\nu, \mu)=1$. Similarly define α_{ν}^{\prime} by

$$
\sqrt{\zeta(s)}=\sum_{\nu=1}^{\infty} \frac{\alpha_{\nu}^{\prime}}{\nu^{s}}
$$

where $\sigma>1$ and $\alpha_{1}^{\prime}=1$. By expanding into Euler products, the fact that the series $(1-z)^{-\frac{1}{2}}$ termwise dominates the series for $(1-z)^{\frac{1}{2}}$ implies

$$
\begin{equation*}
\left|\alpha_{\nu}\right| \leq \alpha_{\nu}^{\prime} \leq 1 \tag{5.1}
\end{equation*}
$$

Fix X and let

$$
\beta_{\nu}=\left\{\begin{array}{cc}
\alpha_{\nu}\left(1-\frac{\log \nu}{\log X}\right) & \text { if } \nu<X \tag{5.2}\\
0 & \nu \geq X
\end{array}\right\}
$$

when $\nu<X$, and $\beta_{\nu}=0$ if $\nu \geq X$. Notice

$$
\left|\beta_{\nu}\right| \leq 1
$$

for all ν. Then let

$$
\phi(s)=\sum_{\nu=1}^{\infty} \beta_{\nu} \nu^{-s} .
$$

With 2.1 in mind, consider the function

$$
\Phi(z)=\frac{1}{4 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} \Gamma\left(\frac{1}{2} s\right) \pi^{-\frac{1}{2} s} \zeta(s) \phi(s) \phi(1-s) z^{s} d s
$$

where $\sigma>1$. Moving the line of integration to $\sigma=\frac{1}{2}$, we see that

$$
\begin{aligned}
\Phi(z) & =\frac{1}{2} z \phi(1) \phi(0)+\frac{1}{4 \pi i} \int_{\frac{1}{2}-i \infty}^{\frac{1}{2}+i \infty} \Gamma\left(\frac{1}{2} s\right) \pi^{-\frac{1}{2} s} \zeta(s) \phi(s) \phi(1-s) z^{s} d s \\
& =\frac{1}{2} z \phi(1) \phi(0)-\frac{z^{\frac{1}{2}}}{2 \pi} \int_{-\infty}^{\infty} \Xi(t)\left(t^{2}+\frac{1}{4}\right)^{-1}\left|\phi\left(\frac{1}{2}+i t\right)\right|^{2} z^{i t} d t .
\end{aligned}
$$

On the other hand,

$$
\Phi(z)=\frac{1}{4 \pi i} \sum_{\mu=1}^{\infty} \sum_{\nu=1}^{\infty} \beta_{\nu} \beta_{\mu} \int_{\sigma-i \infty}^{\sigma+i \infty} \Gamma\left(\frac{1}{2} s\right) \pi^{-\frac{1}{2} s} \zeta(s) \frac{z^{s}}{\mu^{s} \nu^{1-s}} d s
$$

which becomes

$$
=\sum_{n=1}^{\infty} \sum_{\mu=1}^{\infty} \sum_{\nu=1}^{\infty} \frac{\beta_{\nu} \beta_{\mu}}{\nu} \exp \left(-\frac{\pi n^{2} u^{2}}{z^{2} \nu^{2}}\right)
$$

by 2.1. Setting

$$
z=e^{-i\left(\frac{1}{4} \pi-\frac{1}{2} \delta\right)-y}
$$

it follows that the functions

$$
F(t)=\frac{1}{\sqrt{2 \pi}} \Xi(t)\left(t^{2}+\frac{1}{4}\right)^{-1}\left|\phi\left(\frac{1}{2}+i t\right)\right|^{2} e^{\left(\frac{1}{4} \pi-\frac{1}{2} \delta\right) t} d t
$$

and

$$
f(y)=\frac{1}{2} z^{\frac{1}{2}} \phi(1) \phi(0)-z^{-\frac{1}{2}} \sum_{n=1}^{\infty} \sum_{\mu=1}^{\infty} \sum_{\nu=1}^{\infty} \frac{\beta_{\nu} \beta_{\mu}}{\nu} \exp \left(-\frac{\pi n^{2} u^{2}}{z^{2} \nu^{2}}\right)
$$

are Fourier transforms.
This function $F(t)$ will be at the center of the rest of the proof, and refering to the outline, we are making the choice

$$
W(t)=\frac{1}{\sqrt{2 \pi}}\left(t^{2}+\frac{1}{4}\right)^{-1}\left|\phi\left(\frac{1}{2}+i t\right)\right|^{2} z^{i t} d t
$$

6 The functions $g(x)$ and $J(x, \theta)$

The purpose of this section is to define $g(x)$ and $J(x, \theta)$ and then find upper bounds for these two functions. In the next section, we will use the upper bound for $J(x, \theta)$ to bound several integrals of $F(t)$. We start with a lemma regarding Fourier transforms integrated over an interval of length h.

Lemma 8. Suppose $F(u), f(y)$ are functions related by the Fourier formulas

$$
\begin{aligned}
& F(u)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(y) e^{i y u} d y \\
& f(y)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(u) e^{-i y u}
\end{aligned}
$$

If $f(y)$ is even and $F(u)$ is real we have that

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|\int_{t}^{t+h} F(u) d u\right|^{2} \leq 2 h^{2} \int_{0}^{\frac{1}{h}}|f(y)|^{2} d y+8 \int_{\frac{1}{h}}^{\infty} \frac{|f(y)|^{2}}{y^{2}} d y \tag{6.1}
\end{equation*}
$$

Proof. Integrating over $(t, t+h)$ and switching the order we obtain

$$
\begin{gathered}
\int_{t}^{t+h} F(u) d u=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(y) \int_{t}^{t+h} e^{i y u} d u d y \\
=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(y) \frac{e^{i y h}-1}{i y} e^{i y t} d y
\end{gathered}
$$

so that the functions

$$
\int_{t}^{t+h} F(u) d u
$$

and

$$
f(y) \frac{e^{i y h}-1}{i y}
$$

are Fourier transforms. By applying Parseval's formula we see that

$$
\int_{-\infty}^{\infty}\left|\int_{t}^{t+h} F(u) d u\right|^{2}=-\infty|f(y)|^{2} \frac{\left|e^{i y h}-1\right|}{y^{2}} d y
$$

Notice that

$$
\begin{aligned}
& \left|e^{i y h}-1\right|=\sqrt{(\cos (y h)-1)^{2}+\sin ^{2}(y h)} \\
& \quad=\sqrt{4\left(\frac{1-\cos (y h)}{2}\right)}=2 \sin \left(\frac{y h}{2}\right)
\end{aligned}
$$

by the half angle formula, so we have

$$
\int_{-\infty}^{\infty}\left|\int_{t}^{t+h} F(u) d u\right|^{2}=8 \int_{0}^{\infty}|f(y)|^{2} \frac{\sin ^{2}\left(\frac{y h}{2}\right)}{y^{2}} d y
$$

Splitting the integral on the right hand side into two parts, and using the bounds $|\sin (x)| \leq x$ and $|\sin (x)| \leq 1$ yields

$$
\int_{-\infty}^{\infty}\left|\int_{t}^{t+h} F(u) d u\right|^{2} \leq 2 h^{2} \int_{0}^{\frac{1}{h}}|f(y)|^{2} d y+8 \int_{\frac{1}{h}}^{\infty} \frac{|f(y)|^{2}}{y^{2}} d y
$$

as desired.

6.1 $g(x)$ and its relation to $\int F(t) d t$.

Definition 9. Let

$$
g(x)=\sum_{n=1}^{\infty} \sum_{\mu=1}^{\infty} \sum_{\nu=1}^{\infty} \frac{\beta_{\mu} \beta_{\nu}}{\nu} \exp \left(\frac{-\pi n^{2} \mu^{2}}{\nu^{2}} e^{-i\left(\frac{1}{2} \pi-\delta\right)} x^{2}\right)
$$

so that

$$
f(y)=\frac{1}{2} z^{\frac{1}{2}} \phi(1) \phi(0)-z^{-\frac{1}{2}} g\left(e^{y}\right)
$$

where as before,

$$
z=e^{-i\left(\frac{1}{4} \pi-\frac{1}{2} \delta\right)-y} .
$$

The following proposition gives motivation for considering and bounding $g(x)$, as it arises naturally when we attempt to bound

$$
\int_{-\infty}^{\infty}\left(\int_{t}^{t+h} F(u) d u\right)^{2} d t
$$

Proposition 10. Suppose $h \leq 1$, and let $G=e^{\frac{1}{h}}$. Then we have that

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left(\int_{t}^{t+h} F(u) d u\right)^{2} d t<\frac{h^{2}}{2}|\phi(1) \phi(0)|^{2}\left(1+\frac{1}{G}\right)+2 h^{2} \int_{1}^{G}|g(x)|^{2}+2 \int_{1}^{G} \frac{|g(x)|^{2}}{\log ^{2} x} d x \tag{6.2}
\end{equation*}
$$

Proof. By 6.1

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|\int_{t}^{t+h} F(u) d u\right|^{2}=\leq 2 h^{2} \int_{0}^{\frac{1}{h}}|f(y)|^{2} d y+8 \int_{\frac{1}{h}}^{\infty} \frac{|f(y)|^{2}}{y^{2}} d y \tag{6.3}
\end{equation*}
$$

Setting $y=\log x$ we have that $z=e^{-i\left(\frac{1}{4} \pi-\frac{1}{2} \delta\right)-y}=\frac{1}{y} e^{-i\left(\frac{1}{4} \pi-\frac{1}{2} \delta\right)}$, and in particular $|z|=\frac{1}{y}$. Then if we set $G=e^{\frac{1}{H}}$ the first integral on the right hand side of 6.3 becomes

$$
\int_{0}^{\frac{1}{H}}|f(y)|^{2} d y=\int_{1}^{G}\left|\frac{e^{-i\left(\frac{1}{4} \pi-\frac{1}{2} \delta\right)}}{2 x} \phi(1) \phi(0)-g(x)\right|^{2} d x
$$

Then we have that
$\int_{0}^{\frac{1}{H}}|f(y)|^{2} d y \leq 2 \int_{1}^{G} \frac{|\phi(1) \phi(0)|^{2}}{4 x^{2}} d x+2 \int_{1}^{G}|g(x)|^{2} d x<\frac{1}{2}|\phi(1) \phi(0)|^{2}+2 \int_{1}^{G}|g(x)|^{2} d x$.
We can bound the second integral in a similar manner to find

$$
8 \int_{\frac{1}{h}}^{\infty} \frac{|f(y)|^{2}}{y^{2}} d y<\frac{|\phi(1) \phi(0)|^{2}}{2 G \log ^{2} G}+2 \int_{G}^{\infty} \frac{|g(x)|^{2}}{\log ^{2} x} d x
$$

As $\frac{1}{\log ^{2} G}=h^{2}$, we have the desired result.

6.2 The Function $J(x, \theta)$.

To be able to bound $g(x)$ and its integrals of the form $\int|g(x)|^{2} d x$ as they appear in 10 , we consider

$$
J(x, \theta)=\int_{x}^{\infty}|g(u)|^{2} u^{-\theta} d u
$$

where $0<\theta \leq \frac{1}{2}$, and $x \geq 1$. The goal of this subsection is to show that if $X=\delta^{-c}$ with $0<c \leq \frac{1}{8}$ then

$$
\begin{equation*}
J(x, \theta)=O\left(\frac{1}{\delta^{\frac{1}{2}} \theta x^{\theta} \log X}\right) \tag{6.4}
\end{equation*}
$$

uniformely with respect to θ.
Notice that

$$
J(x, \theta)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{k \lambda \mu \nu} \frac{\beta_{k} \beta_{\lambda} \beta_{\nu} \beta_{\mu}}{\nu \lambda} R
$$

where

$$
R=\int_{x}^{\infty} \exp \left\{-\pi\left(\frac{m^{2} k^{2}}{\lambda^{2}}+\frac{n^{2} \mu^{2}}{\nu^{2}}\right) u^{2} \sin \delta+i \pi\left(\frac{m^{2} k^{2}}{\lambda^{2}}-\frac{n^{2} \mu^{2}}{\nu^{2}}\right) u^{2} \cos \delta\right\} \frac{d u}{u^{\theta}}
$$

from the definition of $g(x)$. Let Σ_{1} denote the sum of those terms in which

$$
\frac{m k}{\lambda}=\frac{n \mu}{\nu}
$$

and Σ_{2} the remainder. That is

$$
\Sigma_{2}=J(x, \theta)-\Sigma_{1}
$$

To prove 6.4 we will bound Σ_{2} and Σ_{1} seperately.

6.2.1 Bounding Σ_{1}.

Here we prove that when $X=\delta^{-c}$ with $0<c \leq \frac{1}{8}$

$$
\Sigma_{1}=O\left(\frac{1}{\delta^{\frac{1}{2}} \theta x^{\theta} \log X}\right)
$$

For each quadruplet k, ν, λ, μ let $q=(k \nu, \lambda \mu)$ so that $k \nu=a q$ and $\lambda \mu=b q$ for some a, b with $(a, b)=1$. When $\frac{m k}{\lambda}=\frac{n \mu}{\nu}$ we have that $m a=n b$ and then $n=r a, m=r b$. This allows us to rewrite the sum of n and m as a single sum over r, and hence

$$
\begin{equation*}
\Sigma_{1}=\sum_{k \lambda \mu \nu} \frac{\beta_{k} \beta_{\lambda} \beta_{\nu} \beta_{\mu}}{\nu \lambda} \sum_{r=1}^{\infty} \int_{x}^{\infty} \exp \left\{-2 \pi\left(\frac{r^{2} k^{2} \mu^{2}}{q^{2}}\right) u^{2} \sin \delta\right\} \frac{d u}{u^{\theta}} \tag{6.5}
\end{equation*}
$$

Definition 11. Let

$$
S(\theta)=\sum_{k \lambda \mu \nu}\left(\frac{q}{k \mu}\right)^{1-\theta} \frac{\beta_{k} \beta_{\lambda} \beta_{\mu} \beta_{\nu}}{\lambda \nu}
$$

where $q=\operatorname{gcd}(k \nu, \lambda \mu)$.
Lemma 12. We have that

$$
\begin{equation*}
\Sigma_{1}=\frac{S(0)}{2(2 \sin \delta)^{\frac{1}{2}} \theta x^{\theta}}+\frac{Q_{1}(\theta)}{\theta}(2 \pi \sin \delta)^{\frac{1}{2} \theta-\frac{1}{2}} S(\theta)+O\left(\frac{x^{1-\theta} \log \left(\frac{X}{\delta}\right)}{\theta} X^{2} \log ^{2} X\right) \tag{6.6}
\end{equation*}
$$

where $Q_{1}(\theta)$ is some bounded function of θ.
Proof. First, we will rewrite the sum over r in 6.5. Notice that

$$
\begin{gathered}
\sum_{r=1}^{\infty} \int_{x}^{\infty} e^{-r^{2} u^{2} \eta} \frac{d u}{u^{\theta}}=\eta^{\frac{1}{2} \theta-\frac{1}{2}} \sum_{r=1}^{\infty} \frac{1}{r^{1-\theta}} \int_{x r \sqrt{\eta}}^{\infty} e^{-y^{2}} \frac{d y}{y^{\theta}} \\
=\eta^{\frac{1}{2} \theta-\frac{1}{2}} \int_{x \sqrt{\eta}}^{\infty} \frac{e^{-y^{2}}}{y^{\theta}}\left(\sum_{r \leq y /(x \sqrt{\eta})} \frac{1}{r^{1-\theta}}\right) d y
\end{gathered}
$$

Since

$$
\sum_{r \leq y /(x \sqrt{\eta})} \frac{1}{r^{1-\theta}}=\frac{1}{\theta}\left(\frac{y}{x \sqrt{\eta}}\right)^{\theta}-\frac{1}{\theta}+Q(\theta)+O\left(\left(\frac{y}{x \sqrt{\eta}}\right)^{\theta-1}\right)
$$

where $Q(\theta)$ is a bounded function of θ, we obtain

$$
\begin{gathered}
\sum_{r=1}^{\infty} \int_{x}^{\infty} e^{-r^{2} u^{2} \eta} \frac{d u}{u^{\theta}}=\frac{1}{\theta x^{\theta} \sqrt{\eta}}\left(\int_{0}^{\infty} e^{-y^{2}} d y+O(x \sqrt{\eta})-\frac{\eta^{\frac{1}{2} \theta-\frac{1}{2}}}{\theta}\left(\int_{0}^{\infty} e^{-y^{2}} y^{-\theta} d y+O\left((x \sqrt{\eta})^{1-\theta}\right)\right.\right. \\
\quad+\eta^{\frac{1}{2} \theta-\frac{1}{2}} Q(\theta)\left(\int_{0}^{\infty} e^{-y^{2}} y^{-\theta} d y+O(x \sqrt{\eta})^{1-\theta}\right)+O\left(x^{1-\theta} \log \left(2+\eta^{-1}\right)\right)
\end{gathered}
$$

$$
=\frac{\sqrt{\pi}}{2 \theta x^{\theta} \eta^{\frac{1}{2}}}+\frac{Q_{1}(\theta) \eta^{\frac{1}{2} \theta-\frac{1}{2}}}{\theta}+O\left(\frac{x^{1-\theta}}{\theta} \log \left(2+\eta^{-1}\right)\right) .
$$

Setting

$$
\eta=\frac{2 \pi k^{2} \mu^{2} \sin \delta}{q^{2}}
$$

it follows that
$\Sigma_{1}=\frac{S(0)}{2(2 \sin \delta)^{\frac{1}{2}} \theta x^{\theta}}+\frac{Q_{1}(\theta)}{\theta}(2 \pi \sin \delta)^{\frac{1}{2} \theta-\frac{1}{2}} S(\theta)+O\left(\frac{x^{1-\theta}}{\theta} \sum_{k \lambda \mu \nu} \frac{\left|\beta_{\lambda} \beta_{\mu} \beta_{\nu} \beta_{k}\right|}{\nu \lambda} \log \left(2+\eta^{-1}\right)\right)$.
Since every non-zero term has each of $\lambda, k, \mu, \nu \leq X$, we see that

$$
\log \left(2+\eta^{-1}\right)=\log \left(2+\frac{q^{2}}{2 \pi k^{2} \mu^{2} \sin \delta}\right)=O\left(\log \frac{X}{\delta}\right)
$$

and hence

$$
\sum_{k \lambda \mu \nu} \frac{\left|\beta_{\lambda} \beta_{\mu} \beta_{\nu} \beta_{k}\right|}{\nu \lambda} \log \left(2+\eta^{-1}\right)=O\left(\log \frac{X}{\delta} X^{2} \log ^{2} X\right)
$$

as desired
Given that we can write Σ_{1} as in 6.6 , it is sufficient to find a suitable upper bound of $S(\theta)$.

Define $\phi_{a}(n)$ by

$$
\sum_{n=1}^{\infty} \frac{\phi_{a}(n)}{n^{s}}=\frac{\zeta(s-a-1)}{\zeta(s)}
$$

so that

$$
\begin{equation*}
\phi_{a}(n)=n^{1+a} \sum_{m \mid n} \frac{\mu(m)}{m^{1+a}}=n^{1+a} \prod_{p \mid n}\left(1-\frac{1}{p^{1+a}}\right) . \tag{6.7}
\end{equation*}
$$

Then

$$
q^{1-\theta}=\sum_{\rho \mid q} \phi_{-\theta}(\rho)=\sum_{\rho|k \nu, \rho| \lambda \mu} \phi_{-\theta}(\rho) .
$$

Consequently,

$$
S(\theta)=\sum_{k \nu \mu \lambda} \frac{1}{k^{1-\theta} \mu^{1-\theta}} \sum_{\substack{k, \nu, \lambda, \mu \\ \rho|k \nu, \rho| \lambda \mu}} \phi_{-\theta}(\rho) \frac{\beta_{k} \beta_{\lambda} \beta_{\mu} \beta_{\nu}}{\lambda \nu}
$$

and by rearranging the order of summation we have

$$
\begin{equation*}
S(\theta)=\sum_{\rho<X^{2}} \phi_{-\theta}(\rho)\left(\sum_{\substack{k, \nu \\ \rho \mid k \nu}} \frac{\beta_{k} \beta_{\nu}}{k^{1-\theta} \nu}\right)^{2} \tag{6.8}
\end{equation*}
$$

For each k, ν let d, d_{1} be divisors of ρ that satisfy be $k=d k^{\prime}, \nu=d_{1} v^{\prime}$ where $\operatorname{gcd}\left(k^{\prime}, \rho\right)=1$ and $\left(\nu^{\prime}, \rho\right)=1$. Then

$$
\begin{aligned}
& \sum_{k, \nu} \frac{\beta_{k} \beta_{\nu}}{k^{1-\theta} \nu}=\sum_{\substack{d, d_{1} \\
\rho \mid k \nu}} \frac{1}{d^{1-\theta} d_{1}} \sum_{k^{\prime}} \frac{\beta_{d k^{\prime}}}{\left(k^{\prime}\right)^{1-\theta}} \sum_{\nu^{\prime}} \frac{\beta_{d_{1} \nu^{\prime}}}{\nu^{\prime}} . \\
& \\
& \rho \mid d, d_{1}
\end{aligned}
$$

Now, by 5.2 , when $\left(k^{\prime}, \rho\right)=1$ we have that

$$
\beta_{d k^{\prime}}=\frac{\alpha_{d} \alpha_{k^{\prime}}}{\log X} \log \frac{X}{d k^{\prime}}
$$

so that

$$
\begin{array}{ll}
\sum_{k, \nu} \frac{\beta_{k} \beta_{\nu}}{k^{1-\theta} \nu}=\frac{1}{\log ^{2} X} \sum_{\substack{d, d_{1} \\
\rho \mid k \nu}} \frac{\alpha_{d} \alpha_{d_{1}}}{d^{1-\theta} d_{1}} \sum_{k^{\prime} \leq \frac{X}{d}} \frac{\alpha_{k^{\prime}}}{\left(k^{\prime}\right)^{1-\theta}} \log \frac{X}{d k^{\prime}} \sum_{\nu^{\prime} \leq \frac{X}{d_{1}}} \frac{\alpha_{\nu^{\prime}}}{\nu^{\prime}} \log \frac{X}{d_{1} \nu^{\prime}} . \tag{6.9}
\end{array}
$$

The next three lemma focus on bounding the right hand side of 6.9. By doing so, and combining this upper bound with 6.8 we will find an upper bound for $S(\theta)$, and hence by 6.6 for Σ_{1} as well.

Lemma 13. We have

$$
\begin{equation*}
\sum_{k \leq X / d} \frac{\alpha_{k}}{k^{1-\theta}} \log \frac{X}{k d}=O\left(\left(\frac{X}{d}\right)^{\theta} \log ^{\frac{1}{2}} \frac{X}{d} \prod_{p \mid \rho}\left(1+\frac{1}{p}\right)^{\frac{1}{2}}\right) \tag{6.10}
\end{equation*}
$$

uniformly with respect to θ.
Proof. As, the only pole of

$$
\frac{x^{s}}{s^{2}}=\frac{e^{s \log x}}{s^{2}}
$$

is at $s=0$ with residue $\log x$, it follows from the residue theorem that

$$
\frac{1}{2 \pi i} \int_{1-i \infty}^{1+i \infty} \frac{x^{s}}{s^{2}} d s=\left\{\begin{array}{cc}
0 & 0<x \leq 1 \tag{6.11}\\
\log x & x>1
\end{array}\right\} .
$$

The two different possibilities arise since we close the contour in a direction dependant on the sign of $\log x$. Now, as

$$
\sum_{\substack{\left.k^{\prime} \\ k^{\prime}, \rho\right)=1}} \frac{\alpha_{k^{\prime}}}{\left(k^{\prime}\right)^{1-\theta+s}}=\prod_{\substack{p \\(p, \rho)=1}}\left(1-\frac{1}{p^{1-\theta+s}}\right)^{\frac{1}{2}}=\frac{1}{\sqrt{\zeta(1-\theta+s)}} \prod_{p \mid \rho}\left(1-\frac{1}{p^{1-\theta}}\right)
$$

we can apply 6.11 to find

$$
\sum_{k \leq X / d} \frac{\alpha_{k}}{k^{1-\theta}} \log \frac{X}{k d}=\sum_{k \leq X / d} \frac{\alpha_{k}}{k^{1-\theta}} \frac{1}{2 \pi i} \int_{1-i \infty}^{1+i \infty} \frac{1}{s^{2}}\left(\frac{X}{k d}\right)^{s} d s
$$

and upon switching the order of summation and integration this becomes

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{1-i \infty}^{1+i \infty} \frac{1}{s^{2}}\left(\frac{X}{d}\right)^{s} \frac{1}{\sqrt{\zeta(1-\theta+s)}} \prod_{p \mid \rho}\left(1-\frac{1}{p^{1-\theta}}\right) \frac{x^{s}}{s^{2}} d s \tag{6.12}
\end{equation*}
$$

The integrand has singularities at $s=0$ and $s=\theta$. Now, lets split into cases based on the size of θ.

If $\theta \geq\left(\log \left(\frac{X}{d}\right)\right)^{-1}$, we can move the line of integration to the line $\Re(s)=\theta$, with a small semicircle tending to zero at $s=\theta$. Notice we have that

$$
\left|\frac{1}{\zeta(1+i t)}\right|<A|t|
$$

for all t, as well as

$$
\begin{equation*}
\prod_{p \mid \rho}\left(1-\frac{1}{p^{1-\theta+s}}\right)^{-1}=O\left(\prod_{p \mid \rho}\left(1+\frac{1}{p^{1-\theta+s}}\right)\right)=O\left(\prod_{p \mid \rho}\left(1+\frac{1}{p}\right)\right) . \tag{6.13}
\end{equation*}
$$

Consequently 6.12 is

$$
O\left(\left(\frac{X}{d}\right)^{\theta} \prod_{p \mid \rho}\left(1+\frac{1}{p}\right)^{\frac{1}{2}} \int_{-\infty}^{\infty} \frac{|t|^{\frac{1}{2}}}{\theta^{2}+t^{2}} d t\right)=O\left(\left(\frac{X}{d}\right)^{\theta} \prod_{p \mid \rho}\left(1+\frac{1}{p}\right)^{\frac{1}{2}} \frac{1}{\theta^{\frac{1}{2}}}\right)
$$

and the stated result follows.
If $\theta<\left(\log \left(\frac{X}{d}\right)\right)^{-1}$, we take the same line integral as before, modified by going around the right hand side of the circle $|s|=2\left(\log \left(\frac{X}{d}\right)\right)^{-1}$. On this circle,

$$
\left|\left(\frac{X}{d}\right)^{s}\right| \leq e^{2}
$$

and 6.13 holds as before. As

$$
|\zeta(1-\theta+s)|>A \log \left(\frac{X}{d}\right)
$$

we see that the integral around the circle is

$$
O\left(\log ^{-\frac{1}{2}} \frac{X}{d} \prod_{p \mid \rho}\left(1+\frac{1}{p}\right)^{-\frac{1}{2}} \int\left|\frac{d s}{s^{2}}\right|\right)=O\left(\log ^{\frac{1}{2}} \frac{X}{d} \prod_{p \mid \rho}\left(1+\frac{1}{p}\right)^{\frac{1}{2}}\right)
$$

The integral along the part of the line $\sigma=\theta$ above the circle is

$$
O\left(\left(\frac{X}{d}\right)^{\theta} \prod_{p \mid \rho}\left(1+\frac{1}{p}\right)^{\frac{1}{2}} \int_{A(\log (X / d))^{-1}} \frac{d t}{t^{\frac{3}{2}}}\right)=O\left(\left(\frac{X}{d}\right)^{\theta} \log ^{\frac{1}{2}} \frac{X}{d} \prod_{p \mid \rho}\left(1+\frac{1}{p}\right)^{\frac{1}{2}}\right)
$$

Thus the lemma is proven in all cases.

Lemma 14.

$$
\begin{equation*}
\sum_{d, d_{1}} \frac{\left|\alpha_{d} \alpha_{d_{1}}\right|}{d d_{1}}=O\left(\frac{1}{\rho} \prod_{p \mid \rho}\left(\frac{1}{1+p}\right)\right) \tag{6.14}
\end{equation*}
$$

Proof. Let α_{d}^{\prime} be defined as before so that

$$
\sqrt{\zeta(s)}=\sum_{n=1}^{\infty} \alpha_{n}^{\prime} n^{-s} .
$$

Then by 5.1 we have

$$
\sum_{\substack{d, d_{1} \\ \rho \mid d d_{1}}} \frac{\left|\alpha_{d} \alpha_{d_{1}}\right|}{d d_{1}} \leq \sum_{\substack{d, d_{1} \\ \rho \mid d d_{1}}} \frac{\alpha_{d}^{\prime} \alpha_{d_{1}}^{\prime}}{d d_{1}}=\sum_{D} \frac{1}{D} \sum_{d \mid D} \alpha_{d}^{\prime} \alpha_{D / d}^{\prime}
$$

As α_{d}^{\prime} are the coefficients of $\sqrt{\zeta(s)}, \sum_{d \mid D} \alpha_{d}^{\prime} \alpha_{D / d}^{\prime}=1$ so that

$$
\sum_{\substack{d, d_{1} \\ \rho \mid d d_{1}}} \frac{\left|\alpha_{d} \alpha_{d_{1}}\right|}{d d_{1}} \leq \sum_{D} \frac{1}{D}=\frac{1}{\rho} \prod_{p \mid \rho}\left(1-\frac{1}{p}\right)^{-1}=O\left(\frac{1}{\rho} \prod_{p \mid \rho}\left(1+\frac{1}{p}\right)\right)
$$

as desired.
Lemma 15. We have

$$
\begin{equation*}
\sum_{\substack{k, \nu \\ \rho \mid k \nu}} \frac{\beta_{k} \beta_{\nu}}{k^{1-\theta_{\nu}}}=O\left(\frac{X^{\theta}}{\rho \log X} \prod_{p \mid \rho}\left(1+\frac{1}{p}\right)^{2}\right) \tag{6.15}
\end{equation*}
$$

Proof. By 6.10 we see that

$$
\sum_{\nu^{\prime}} \frac{\alpha_{\nu^{\prime}}}{\nu^{\prime}} \log \frac{X}{d_{1} \nu^{\prime}}=O\left(\log ^{\frac{1}{2}} \frac{X}{d_{1}} \prod_{p \mid \rho}\left(1+\frac{1}{p}\right)^{\frac{1}{2}}\right)
$$

and

$$
\sum_{k^{\prime} \leq \frac{X}{d}} \frac{\alpha_{k^{\prime}}}{\left(k^{\prime}\right)^{1-\theta}}=O\left(\left(\frac{X}{d}\right)^{\theta} \log ^{\frac{1}{2}} \frac{X}{d} \prod_{p \mid \rho}\left(1+\frac{1}{p}\right)^{\frac{1}{2}}\right)
$$

so that 6.9 becomes

$$
\sum_{\substack{k, \nu \\ \rho \mid k \nu}} \frac{\beta_{k} \beta_{\nu}}{k^{1-\theta} \nu}=O\left(\frac{1}{\log ^{2} X} \sum_{\substack{d, d_{1} \\ \rho \mid d, d_{1}}} \frac{\left|\alpha_{d} \alpha_{d_{1}}\right|}{d^{1-\theta} d_{1}}\left(\frac{X}{d}\right)^{\theta} \log ^{\frac{1}{2}} \frac{X}{d} \log ^{\frac{1}{2}} \frac{X}{d_{1}} \prod_{p \mid \rho}\left(1+\frac{1}{p}\right)\right) .
$$

This equals

$$
O\left(\frac{X^{\theta}}{\log X} \prod_{p \mid \rho}\left(1+\frac{1}{p}\right) \sum_{\substack{d, d_{1} \\ \rho \mid d, d_{1}}} \frac{\left|\alpha_{d} \alpha_{d_{1}}\right|}{d^{1} d_{1}}\right)
$$

and by 6.14 we conclude

$$
\sum_{\substack{k, \nu \\ \rho \mid k \nu}} \frac{\beta_{k} \beta_{\nu}}{k^{1-\theta_{\nu}}}=O\left(\frac{X^{\theta}}{\rho \log X} \prod_{p \mid \rho}\left(1+\frac{1}{p}\right)^{2}\right)
$$

as desired
Lemma 16.

$$
\begin{equation*}
S(\theta)=O\left(\frac{X^{2 \theta}}{\log X}\right) \tag{6.16}
\end{equation*}
$$

uniformely with respect to θ. In particular

$$
S(0)=O\left(\frac{1}{\log X}\right)
$$

Proof. Combining 6.8 and 6.15 yields

$$
S(\theta)=O\left(\frac{X^{2 \theta}}{\log ^{2} X} \sum_{\rho<X^{2}} \frac{\phi_{-\theta}(\rho)}{\rho^{2}} \prod_{p \mid \rho}\left(1+\frac{1}{p}\right)^{4}\right) .
$$

By applying 6.7 we see that

$$
S(\theta)=O\left(\frac{X^{2 \theta}}{\log ^{2} X} \sum_{\rho<X^{2}} \frac{1}{\rho^{1+\theta}} \prod_{p \mid \rho}\left(1+\frac{1}{p}\right)^{4}\right)
$$

Since

$$
\prod_{p \mid \rho}\left(1+\frac{1}{p}\right)^{4}=O\left(\prod_{p \mid \rho}\left(1+\frac{4}{p}\right)\right)=O\left(\prod_{p \mid \rho}\left(1+\frac{1}{p^{\frac{1}{2}}}\right)\right)=O\left(\sum_{n \mid \rho} \frac{1}{n^{\frac{1}{2}}}\right)
$$

we have

$$
S(\theta)=O\left(\frac{X^{2 \theta}}{\log ^{2} X} \sum_{\rho<X^{2}} \frac{1}{\rho^{1+\theta}} \sum_{n \mid \rho} \frac{1}{n^{\frac{1}{2}}}\right) .
$$

Thus

$$
\begin{gathered}
S(\theta)=O\left(\frac{X^{2 \theta}}{\log ^{2} X} \sum_{n \leq X^{2}} \sum_{\rho \leq \frac{X^{2}}{n}} \frac{1}{(n \rho)^{1+\theta} n^{\frac{1}{2}}}\right) \\
=O\left(\frac{X^{2 \theta}}{\log ^{2} X} \sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}+\theta}} \sum_{\rho \leq \frac{X^{2}}{n}} \frac{1}{\rho^{1+\theta}}\right) \\
=O\left(\frac{X^{2 \theta}}{\log ^{2} X} \sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}} \sum_{\rho \leq \frac{x^{2}}{n}} \frac{1}{\rho^{1}}\right) \\
=O\left(\frac{X^{2 \theta}}{\log X}\right) .
\end{gathered}
$$

In what follows, let $X=\delta^{-c}, h=(a \log X)^{-1}$ where a, c are suitable positive constants. Then $G=X^{a}=\delta^{-a c}$. If $x \leq G$, the last two terms can be ommited in comparison with the first if $G X^{2}=O\left(\delta^{-\frac{1}{4}}\right)$, i.e. if $(a+2) c \leq \frac{1}{4}$.
Lemma 17. Estimation of Σ_{1}. When $X=\delta^{-c}, 0<c \leq \frac{1}{8}$ we have that

$$
\begin{equation*}
\Sigma_{1}=O\left(\frac{1}{\delta^{\frac{1}{2}} \theta x^{\theta} \log X}\right) . \tag{6.17}
\end{equation*}
$$

Proof. By 6.6 along with 6.16 we have that

$$
\Sigma_{1}=O\left(\frac{1}{\delta^{\frac{1}{2}} \theta x^{\theta} \log X}\right)+O\left(\frac{\left(\delta^{\frac{1}{2}} x X^{2}\right)^{\theta}}{\delta^{\frac{1}{2}} \theta x^{\theta} \log X}\right)+O\left(\frac{x^{1-\theta} \log \left(\frac{X}{\delta}\right)}{\theta} X^{2} \log ^{2} X\right)
$$

Since $X=\delta^{-c}$ with $0<c \leq \frac{1}{8}$ this bcomes

$$
\Sigma_{1}=O\left(\frac{1}{\delta^{\frac{1}{2}} \theta x^{\theta} \log X}\right)
$$

6.2.2 Bounding Σ_{2}.

Lemma 18. If P and Q are positive, and $x \geq 1$ we have

$$
\begin{equation*}
\int_{x}^{\infty} e^{-P u^{2}+i Q u^{2}} \frac{d u}{u^{\theta}}=O\left(\frac{e^{-P}}{x^{\theta} Q}\right) \tag{6.18}
\end{equation*}
$$

Proof. Since $\int_{x}^{\infty} e^{-P u^{2}+i Q u^{2}} \frac{d u}{u^{\theta}}=\frac{1}{2} \int_{x^{2}}^{\infty} \frac{e^{-P v}}{v^{\frac{1}{2} \theta+\frac{1}{2}}} e^{i Q v} d v$
Lemma 19. When $X=\delta^{-c}$ with $0<c \leq \frac{1}{8}$ we have that

$$
\begin{equation*}
\Sigma_{2}=O\left(\frac{X^{4}}{x^{\theta}} \log ^{2} \frac{1}{\delta}\right) \tag{6.19}
\end{equation*}
$$

Proof. Letting $P=\pi\left(\frac{m^{2} k^{2}}{\lambda^{2}}+\frac{n^{2} \mu^{2}}{\nu^{2}}\right) \sin \delta$ and $Q=\pi\left(\frac{m^{2} k^{2}}{\lambda^{2}}-\frac{n^{2} \mu^{2}}{\nu^{2}}\right) \cos \delta$ in 6.18 it follows from the definition of Σ_{2} that

$$
\Sigma_{2}=O\left(\frac{1}{x^{\theta}} \sum_{k \lambda \mu \nu} \frac{\left|\beta_{k} \beta_{\lambda} \beta_{\nu} \beta_{\mu}\right|}{\lambda \nu} \sum_{m n}^{*}\left|\frac{m^{2} k^{2}}{\lambda^{2}}-\frac{n^{2} u^{2}}{\nu^{2}}\right|^{-1} \exp \left(-\pi\left(\frac{m^{2} k^{2}}{\lambda^{2}}+\frac{n^{2} \mu^{2}}{\nu^{2}}\right) \sin \delta\right)\right)
$$

where

$$
\sum_{m n}^{*}
$$

denotes the fact that the sum does not range over all m, n. Notice that by symmetry, the cases $\frac{m k}{\lambda}>\frac{n \mu}{\nu}$ and $\frac{m k}{\lambda}<\frac{n \mu}{\nu}$ are identical, so that

$$
\Sigma_{2}=O\left(\frac{1}{x^{\theta}} \sum_{k \lambda \mu \nu} \frac{\left|\beta_{k} \beta_{\lambda} \beta_{\nu} \beta_{\mu}\right|}{\lambda \nu} \sum_{m=1}^{\infty} e^{-\pi m^{2} k^{2} \lambda^{-2} \sin \delta} \sum_{n<m k \nu / \lambda \mu}\left(\frac{m^{2} k^{2}}{\lambda^{2}}-\frac{n^{2} \mu^{2}}{\nu^{2}}\right)^{-1}\right)
$$

The presence of the $\left|\beta_{k} \beta_{\lambda} \beta_{\nu} \beta_{\mu}\right|$ term means that each nonzero term has all of $k, \nu, \lambda, \mu \leq$ X. Hence ignore all quadruplets with $k \nu / \lambda \mu \geq X^{2}$ since that implies that one of $k, \nu \geq X$. Then

$$
\sum_{n<m k \nu / \lambda \mu} \frac{1}{m k \nu-n \lambda \mu} \leq 1+\frac{1}{\lambda \mu}+\frac{1}{2 \lambda \mu}+\cdots=1+O\left(\frac{\log m X}{\lambda \mu}\right)
$$

and also

$$
\frac{m^{2} k^{2}}{\lambda^{2}}-\frac{n^{2} \mu^{2}}{\nu^{2}} \geq \frac{m k}{\lambda}\left(\frac{m k}{\lambda}-\frac{n \mu}{\nu}\right)=\frac{m k(m k \nu-n \lambda \mu)}{\lambda^{2} \nu}
$$

Thus we have that

$$
\begin{aligned}
& \sum_{m=1}^{\infty} e^{-\pi m^{2} k^{2} \lambda^{-2} \sin \delta} \sum_{n<m k \nu / \lambda \mu}\left(\frac{m^{2} k^{2}}{\lambda^{2}}-\frac{n^{2} \mu^{2}}{\nu^{2}}\right)^{-1} \\
&= O\left(\frac{\lambda^{2} \nu}{k} \sum_{m=1}^{\infty}\left(\frac{1}{m}+\frac{\log (m X)}{m \lambda u}\right) e^{-\pi m^{2} k^{2} \lambda^{-2} \sin \delta}\right) \\
&= O\left(\frac{\lambda^{2} \nu}{k}\left(1+\frac{\log X}{\lambda \mu}\right) \log \frac{X^{2}}{\delta}+\frac{\lambda \nu}{k \mu} \log ^{2} \frac{X^{2}}{\delta}\right) \\
&=O\left(\frac{\lambda^{2} \nu}{k} \log \frac{1}{\delta}+\frac{\lambda \nu}{k \mu} \log ^{2} \frac{1}{\delta}\right)
\end{aligned}
$$

since $X=\delta^{-c}$ with $0<c<\frac{1}{8}$. Hence

$$
\Sigma_{2}=O\left(\frac{1}{x^{\theta}} \sum_{k \lambda \mu \nu}\left(\frac{\lambda}{k} \log \frac{1}{\delta}+\frac{1}{k \mu} \log ^{2} \frac{1}{\delta}\right)\right)=O\left(\frac{X^{4}}{x^{\theta}} \log ^{2} \frac{1}{\delta}\right)
$$

as desired.
Lemma 20. The upper bound 6.4 holds. That is, we have

$$
J(x, \theta)=O\left(\frac{1}{\delta^{\frac{1}{2}} \theta x^{\theta} \log X}\right) .
$$

Proof. This follows from combining 6.17 and 6.19 along with the fact that $X=\delta^{-c}$ with $0<c<\frac{1}{8}$.

7 Bounding $\int F(t)$ and $\int|F(t)|$.

Similar to the previous section, we assume that $X=\delta^{-c}$ for a positive constant c. Eventually we will choose $h=(a \log X)^{-1}$.
7.0.3 The integrals $\int_{-\infty}^{\infty}\left|\int_{t}^{t+h} F(u) d u\right|^{2} d t$ and $\int_{-\infty}^{\infty}|F(t)|^{2} d t$.

In this subsection we find upper bounds for $\int_{-\infty}^{\infty}|F(t)|^{2} d t$ and $\int_{-\infty}^{\infty}\left|\int_{t}^{t+h} F(u) d u\right|^{2} d t$ by using 6.2 and 6.4.

Lemma 21.

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|\int_{t}^{t+h} F(u) d u\right|^{2} d t=O\left(\frac{h}{\delta^{\frac{1}{2}} \log X}\right) \tag{7.1}
\end{equation*}
$$

Proof.

$$
J(x, \theta)=\int_{x}^{\infty}|g(u)|^{2} u^{-\theta} d u
$$

Since

$$
J(x, \theta)=O\left(\frac{1}{\delta^{\frac{1}{2}} \theta x^{\theta} \log X}\right)
$$

it follows that

$$
\begin{gathered}
\int_{1}^{G}|g(x)|^{2} d x=-\int_{1}^{G} x^{\theta} \frac{\partial T}{\partial x} d x=-\left.x^{\theta} J\right|_{1} ^{G}+\theta \int_{1}^{G} x^{\theta-1} T d x \\
=O\left(\frac{1}{\delta^{\frac{1}{2}} \theta \log X}\right)+O\left(\theta \int_{1}^{G} \frac{d x}{\delta^{\frac{1}{2}} \theta x \log X}\right)
\end{gathered}
$$

Also,

$$
\begin{gathered}
\int_{0}^{\frac{1}{2}} J(G, \theta) d \theta=\int_{G}^{\infty}|g(x)|^{2} d x \int_{0}^{\frac{1}{2}} \theta x^{-\theta} d \theta \\
=\int_{G}^{\infty}|g(x)|^{2}\left(\frac{1}{\log ^{2} x}-\frac{1}{2 x^{\frac{1}{2}} \log x}-\frac{1}{x^{\frac{1}{2}} \log ^{2} x}\right) d x \\
\geq \int_{G}^{\infty} \frac{|g(x)|^{2}}{\log ^{2} x} d x-\frac{3}{2} \int_{G}^{\infty} \frac{|g(x)|^{2}}{x^{\frac{1}{2}}} d x
\end{gathered}
$$

since $G=e^{\frac{1}{h}} \geq e$. (We have been assuming $h \leq 1$ throughout.) Hence

$$
\begin{gathered}
\int_{G}^{\infty} \frac{|g(x)|^{2}}{\log ^{2} x} \leq \int_{0}^{\frac{1}{2}} \theta J(G, \theta) d \theta+\frac{3}{2} J\left(G, \frac{1}{2}\right) \\
=O\left(\int_{0}^{\frac{1}{2}} \frac{d \theta}{\delta^{\frac{1}{2}} G^{\theta} \log X}\right)+O\left(\frac{1}{\delta^{\frac{1}{2}} G^{\frac{1}{2}} \log X}\right)=O\left(\frac{1}{\delta^{\frac{1}{2}} \log G \log X}\right) .
\end{gathered}
$$

By 6.2 we have that
$\int_{-\infty}^{\infty}\left(\int_{t}^{t+h} F(u) d u\right)^{2} d t<\frac{1}{2}|\phi(1) \phi(0)|^{2}\left(1+\frac{1}{G \log ^{2} G}\right)+2 \int_{1}^{G}|g(x)|^{2}+2 \int_{1}^{G} \frac{|g(x)|^{2}}{\log ^{2} x} d x$
Since $\phi(0)=O(x)$ and $\phi(1)=O(\log X)$, we then have that

$$
\int_{-\infty}^{\infty}\left|\int_{t}^{t+h} F(u) d u\right|^{2} d t=O\left(\frac{h}{\delta^{\frac{1}{2}} \log X}\right)
$$

since $X=\delta^{-c}$ with $0<c \leq \frac{1}{8}$.

Lemma 22.

$$
\begin{equation*}
\int_{-\infty}^{\infty}|F(t)|^{2} d t=O\left(\frac{\log (1 / \delta)}{\delta^{\frac{1}{2}} \log X}\right) \tag{7.2}
\end{equation*}
$$

Proof. By Plancherels formula, the left hand side becomes

$$
\begin{gathered}
2 \int_{0}^{\infty}|f(y)|^{2} d y=2 \int_{1}^{\infty}\left|\frac{e^{-i\left(\frac{1}{4} \pi-\frac{1}{2} \delta\right)}}{2 x} \phi(1) \phi(0)-g(x)\right|^{2} d x \\
\leq 4 \int_{1}^{\infty}|g(x)|^{2} d x+O\left(X^{2} \log ^{2} X\right)
\end{gathered}
$$

Taking $x=1, \theta=\frac{1}{\log (1 / \delta)}$ in

$$
J(x, \theta)=O\left(\frac{1}{\delta^{\frac{1}{2}} \theta x^{\theta} \log X}\right)
$$

yields

$$
\int_{1}^{\infty}|g(u)|^{2} e^{\log u / \log \delta} d u=O\left(\frac{\log (1 / \delta)}{\delta^{\frac{1}{2}} \log X}\right)
$$

Hence

$$
\int_{1}^{\delta^{-2}}|g(u)|^{2} d u=O\left(\frac{\log (1 / \delta)}{\delta^{\frac{1}{2}} \log X}\right)
$$

Next,

$$
\begin{gathered}
J\left(\delta^{-2}, 0\right) \\
\leq \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{k \lambda \mu \nu} \frac{\left|\beta_{k} \beta_{\lambda} \beta_{\nu} \beta_{\mu}\right|}{\nu \lambda} \int_{\delta^{-2}}^{\infty} \exp \left\{-\pi\left(\frac{m^{2} k^{2}}{\lambda^{2}}+\frac{n^{2} \mu^{2}}{\nu^{2}}\right) u^{2} \sin \delta\right\} d u
\end{gathered}
$$

Since $X=\delta^{-c}$ with $c<\frac{1}{2}$

$$
k^{2} \lambda^{-2} \sin \delta>A X^{-2} \delta>A \delta^{2}
$$

and

$$
\mu^{2} \nu^{-2} \sin \delta>A X^{-2} \delta>A \delta^{2}
$$

As $\left|\beta_{\nu}\right| \leq 1$,

$$
\sum_{k \lambda \mu \nu} \frac{\left|\beta_{k} \beta_{\lambda} \beta_{\nu} \beta_{\mu}\right|}{\nu \lambda}=O\left(X^{2} \log ^{2} X\right)
$$

so that

$$
J\left(\delta^{-2}, 0\right)=O\left(X^{2} \log ^{2} X \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \int_{\delta^{-2}}^{\infty} \exp \left\{-A\left(m^{2}+n^{2}\right) u^{2} \delta^{2}\right\} d u\right)
$$

$$
\begin{gathered}
=O\left(X^{2} \log ^{2} X \int_{\delta^{-2}}^{\infty} e^{-C u^{2} \delta^{2}} d u\right) \\
=O\left(X^{2} \log ^{2} X e^{-C / \delta^{2}}\right)
\end{gathered}
$$

As $\delta=\frac{1}{X^{1 / c}}$ with $0<c<\frac{1}{8}$, this error term is consumed by the term

$$
O\left(\frac{\log 1 / \delta}{\delta^{\frac{1}{2}} \log X}\right)
$$

so that we may conclude

$$
\int_{-\infty}^{\infty}|F(t)|^{2} d t=O\left(\frac{\log (1 / \delta)}{\delta^{\frac{1}{2}} \log X}\right)
$$

as desired.

7.1 Additional bounds on $\int F(t)$ and $\int|F(t)|$

The following bounds are useful consequences of 7.1 and 7.2.
Lemma 23. (10.19)

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left(\int_{t}^{t+h}|F(u)| d u\right)^{2} d t=O\left(\frac{h^{2} \log (1 / \delta)}{\delta^{\frac{1}{2}} \log X}\right) \tag{7.3}
\end{equation*}
$$

Proof. By Cauchy-Schwarz we have that

$$
\int_{-\infty}^{\infty}\left(\int_{t}^{t+h}|F(u)| d u\right)^{2} d t \leq \int_{-\infty}^{\infty} h \int_{t}^{t+h}|F(u)|^{2} d u d t
$$

Changing the order of integration yields

$$
=h \int_{-\infty}^{\infty}|F(u)|^{2} d u \int_{u-h}^{u} d t=h^{2} \int_{-\infty}^{\infty}|F(u)|^{2} d u
$$

so that the result follows from 7.2.
Lemma 24. If $\delta=\frac{1}{T}$, then

$$
\begin{equation*}
\int_{0}^{T}|F(t)| d t>A T^{\frac{3}{4}} \tag{7.4}
\end{equation*}
$$

Proof. Consider the contour integral

$$
\left(\int_{\frac{1}{2}+i}^{2+i T}+\int_{2+i}^{2+i T}+\int_{\frac{1}{2}+i T}^{\frac{1}{2}+i}+\int_{\frac{1}{2}+i T}^{\frac{1}{2}+i}\right) .
$$

Since either $\zeta(s)$ nor $\phi(s)$ have poles in this region, it follows that

$$
\left(\int_{\frac{1}{2}+i}^{2+i}+\int_{2+i}^{2+i T}+\int_{2+i T}^{\frac{1}{2}+i T}+\int_{\frac{1}{2}+i T}^{\frac{1}{2}+i}\right)\left(\zeta(s) \phi^{2}(s)\right)=0
$$

Let a_{n} be given by

$$
\zeta(s) \phi^{2}(s)=1+\sum_{n=2}^{\infty} \frac{a_{n}}{n^{s}} .
$$

Since $\phi(s)=\sum \beta_{\nu} \nu^{-s}$, and $\left|\beta_{\nu}\right| \leq \alpha_{\nu}^{\prime}$ where α_{ν}^{\prime} was defined by $\sqrt{\zeta(s)}=\sum \alpha_{\nu}^{\prime} \nu^{-s}$, we see that

$$
a_{n} \leq d_{2}(n)
$$

Hence

$$
\begin{aligned}
& \int_{2}^{2+i T} \zeta(s) \phi^{2}(s) d s=i(T-1)+\sum_{n=2}^{\infty} a_{n} \int_{2+i}^{2+i T} \frac{d s}{n^{s}} \\
& \quad=i(T-1)+O\left(\sum_{n=2}^{\infty} \frac{d_{2}(n)}{n^{2} \log n}\right)=i T+O(1) .
\end{aligned}
$$

As $\phi(s)=O\left(X^{\frac{1}{2}}\right)$ for $\sigma \geq \frac{1}{2}$, and $\zeta\left(\frac{1}{2}+i T\right)=O\left(T^{\frac{1}{4}}\right)$, we have

$$
\int_{\frac{1}{2}+i}^{2+i} \zeta(s) \phi^{2}(s) d s=O(X)
$$

and

$$
\int_{2+i T}^{\frac{1}{2}+i T} \zeta(s) \phi^{2}(s) d s=O\left(X T^{\frac{1}{4}}\right)
$$

It then follows that

$$
\int_{0}^{T} \zeta\left(\frac{1}{2}+i t\right) \phi^{2}\left(\frac{1}{2}+i t\right) d t \sim T
$$

By definition

$$
\begin{aligned}
& \int_{0}^{T}|F(t)| d t=\int_{0}^{T} \frac{1}{\sqrt{2 \pi}} \Xi(t)\left(t^{2}+\frac{1}{4}\right)^{-1}\left|\phi\left(\frac{1}{2}+i t\right)\right|^{2} e^{\left(\frac{1}{4} \pi-\frac{1}{2} \delta\right) t} d t \\
= & \frac{-1}{2 \sqrt{2 \pi}} \int_{0}^{T} \pi^{-\frac{1}{4}-\frac{1}{2} i t} \Gamma\left(\frac{1}{4}+\frac{1}{2} i t\right) \zeta\left(\frac{1}{2}+i t\right)\left|\phi\left(\frac{1}{2}+i t\right)\right|^{2} e^{\left(\frac{1}{4} \pi-\frac{1}{2} \delta\right) t} d t .
\end{aligned}
$$

By Sterlings estimate

$$
\left|\Gamma\left(\frac{1}{4}+\frac{1}{2} i t\right)\right| \sim t^{-\frac{1}{4}} e^{-\pi \frac{t}{4}}
$$

along with the fact that $\delta=\frac{1}{T}$, it follows that

$$
\int_{0}^{T}|F(t)| d t>C \int_{0}^{T} t^{-\frac{1}{4}}\left|\zeta\left(\frac{1}{2}+i t\right) \phi^{2}\left(\frac{1}{2}+i t\right)\right| d t .
$$

Hence

$$
\begin{aligned}
\left.\int_{0}^{T}|F(t)| d t>C T^{-\frac{1}{4}} \right\rvert\, & \left.\int_{\frac{1}{2} T}^{T} \zeta\left(\frac{1}{2}+i t\right) \phi^{2}\left(\frac{1}{2}+i t\right) d t \right\rvert\, \\
& >A T^{\frac{3}{4}}
\end{aligned}
$$

for some positive constant A.
Lemma 25. We have that

$$
\begin{equation*}
\int_{0}^{T}\left(\int_{t}^{t+h} \mid F(u) d u\right) d t>A h T^{\frac{3}{4}} \tag{7.5}
\end{equation*}
$$

Proof. By switching the order of integration, the left hand side becomes

$$
\int_{0}^{T+h}|F(u)| d u \int_{\max (0, u-h)}^{\min (T, u)} d t \geq \int_{h}^{T}|F(u)| d u \int_{u-h}^{u} d t=h \int_{h}^{T}|F(u)| d u
$$

and the result follows from 7.4.

8 The Proof

Theorem 26. There exists a positive constant A such that

$$
N_{0}(T)>A T \log T
$$

Proof. Let E be the sub-set of $(0, T)$ where

$$
\int_{t}^{t+h}|F(u)| d u>\left|\int_{t}^{t+h} F(u) d u\right|
$$

For such values of $t, F(u)$ must change sign in $(t, t+h)$, and hence so must $\Xi(u)$, implying that $\zeta\left(\frac{1}{2}+i u\right)$ has a zero in this interval.

Since $\int_{t}^{t+h}|F(u)| d u$ and $\left|\int_{t}^{t+h} F(u) d u\right|$ are equal except in E, we have that

$$
\begin{gathered}
\int_{E} \int_{t}^{t+h}|F(u)| d u d t \geq \int_{E}\left(\int_{t}^{t+h}|F(u)| d u-\left|\int_{t}^{t+h} F(u) d u\right|\right) d t \\
\quad=\int_{0}^{T}\left(\int_{t}^{t+h}|F(u)| d u-\left|\int_{t}^{t+h} F(u) d u\right|\right) d t
\end{gathered}
$$

Hence by 7.5 we have that

$$
\int_{E} \int_{t}^{t+h}|F(u)| d u d t>A_{1} h T^{\frac{3}{4}}-\int_{0}^{T}\left|\int_{t}^{t+h} F(u) d u\right| d t
$$

Applying the Cauchy-Schwarz inequality,

$$
\int_{E} \int_{t}^{t+h}|F(u)| d u d t \leq\left((m(E)) \int_{E}\left(\int_{t}^{t+h}|F(u)| d u\right)^{2} d t\right)^{\frac{1}{2}}
$$

so that 7.3 with $\delta=\frac{1}{T}$ implies that

$$
A_{1} h T^{\frac{3}{4}}-\int_{0}^{T}\left|\int_{t}^{t+h} F(u) d u\right| d t<A_{2}\left(m(E)^{\frac{1}{2}}\right) h T^{\frac{1}{4}}\left(\frac{\log T}{\log X}\right)^{\frac{1}{2}}
$$

Again by the Cauchy Schwarz inequality,

$$
\int_{0}^{T}\left|\int_{t}^{t+h} F(u) d u\right| d t \leq\left(T \int_{0}^{T}\left|\int_{t}^{t+h} F(u) d u\right|^{2} d t\right)^{\frac{1}{2}}
$$

so that 7.1 implies

$$
\int_{0}^{T}\left|\int_{t}^{t+h} F(u) d u\right| d t=O\left(\frac{h^{\frac{1}{2}} T^{\frac{3}{4}}}{\log ^{\frac{1}{2}} X}\right)
$$

Consequently, there are positive contants C_{1}, C_{2} such that

$$
C_{1} T^{\frac{1}{2}}\left(\frac{\log X}{\log T}\right)^{\frac{1}{2}}-C_{2} \frac{T^{\frac{1}{2}}}{h^{\frac{1}{2}}(\log T)^{\frac{1}{2}}}<m(E)^{\frac{1}{2}}
$$

Since $X=\delta^{-c}=T^{c}$ and $h=(a \log X)^{-1}=(a c \log T)^{-1}$,

$$
m(E)^{\frac{1}{2}}>C_{1} c^{\frac{1}{2}} T^{\frac{1}{2}}-C_{2}(a c)^{\frac{1}{2}} T^{\frac{1}{2}}
$$

and by taking a small enough we have that

$$
m(E)>C_{3} T
$$

for some constant C_{3}. It then follows that of the intervals

$$
(0, h),(h, 2 h),(2 h, 3 h) \ldots
$$

contained in $(0, T)$ at least

$$
\left[C_{3} T / h\right]
$$

must contain points of E. If $(n h,(n+1) h)$ contains a point t of E there must be a zero of $\zeta\left(\frac{1}{2}+i u\right)$ inside $(t, t+h)$ and so in $(n h,(n+2) h)$. Allowing for the fact that each zero might be counted twice in this way, there must be at least

$$
\frac{1}{2} C_{3} T / h>A T \log T
$$

zeros in $(0, T)$, and the proof is complete.

References

[1] E.C. Titchmarsh, The Theory of the Riemann Zeta Function, Oxford University
[2] H.L. Montgomery and R. C. Vaughan, Multiplicative Number Theory I: Classical Theory, Cambridge University Press (2007).
[3] E Lindelöf, , Quelques remarques sur la croissance de la fonction $\zeta(s)$, Bull. Sci. Math. 32: 341-356 (1908).

