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ABSTRACT. We describe the analytic continuation of Dirichlet L-functions L(s, χ) arising from
primitive characters of modulus q > 1 by taking the Mellin transform of a theta function. This is
preluded by a recount of the analytic continuation of the Riemann zeta function in a similar manner.
After proving the analytic continuation of these Dirichlet series, we give a short discussion on the
underlying technique of taking the Mellin transform of a theta function and discuss the case of
L-functions corresponding to integral weight modular forms.

1. THE ζ -FUNCTION & HISTORICAL REMARKS

The Riemann zeta function ζ(s) is the Dirichlet series defined as

ζ(s) =
∑
n≥1

1

ns
.

The zeta function is intimately connected to the distribution of primes (see [1, 2]) and has been one
of the cornerstones of analytic number theory since its birth. It arose from Euler’s study of sums
of the form ∑

n≥1

1

nk
= 1 +

1

2k
+

1

3k
+ · · · ,

where k ≥ 2 is an integer (see [3] for more). By standard series tests, ζ(s) is absolutely uniformly
convergent in the half-plane ℜ(s) > 1 and hence defines a holomorphic function there. While it
has a singularity at s = 1 by Landau’s theorem, in 1859 Riemann analytically continued ζ(s) to all
of C with a simple pole at s = 1 of residue 1 (see [4]). This was achieved by deriving the integral
representation for ℜ(s) > 1:

ζ(s) =
πs/2

Γ (s/2)

[
− 1

s(1− s)
+

ˆ ∞

1

θ(x)x(1−s)/2 dx

x
+

ˆ ∞

1

θ(x)xs/2 dx

x

]
, (1.1)

where θ(x) =
∑

n≥1 e
−πn2x. This is “essentially” Jacobi’s theta function ϑ(x) as

ϑ(x) =
∑
n∈Z

e−πn2x = 1 + 2
∑
n≥1

e−πn2x = 1 + 2θ(x).

One derives 1.1 from the preliminary integral representation

ζ(s) =
πs/2

Γ (s/2)

ˆ ∞

0

θ(x)xs/2 dx

x
. (1.2)

This preliminary integral representation is achieved by taking the Mellin transform of the theta
function θ(x). Unfortunately, while θ(x) admits exponential decay as x→∞, it does not converge



as x → 1 and so we cannot conclude that the integral in 1.2 is analytic on C. To turn 1.2 into 1.1,
Riemann used the following result known to Jacobi (see [4]), namely

ϑ(s) =
1√
s
ϑ

(
1

s

)
,

to obtain 1.1. This is necessary because in 1.1, θ(x) converges at s = 1 and so the integrals are
analytic on C. Therefore the right-hand side is naturally defined for all s ∈ C− {1} and at s = 1
the polynomial term has a simple pole of residue 1. So taking the right-hand side as the definition
of ζ(s), we see that ζ(s) is analytic on C with a simple pole at s = 1 of residue 1 as previously
mentioned. Moreover, by the natural symmetry of the two integral terms under s → 1 − s and
invariance of the polynomial term, ζ(s) also possesses the symmetric functional equation

Γ (s/2)

πs/2
ζ(s) =

Γ ((1− s)/2)

π(1−s)/2
ζ(1− s).

This can be viewed as the Mellin transform lifting of the transformation law for ϑ(s) to ζ(s), and
it is with this functional equation that we can use the Dirichlet series representation of ζ(s) for
ℜ(s) > 1 to determine information about ζ(s) in the region ℜ(s) < 0.

2. THE FUNCTIONAL EQUATION FOR DIRICHLET L-FUNCTIONS

The Dirichlet L-function attached to the character χ is the series

L(s, χ) =
∑
n≥1

χ(n)

ns
.

Throughout let q be the conductor of χ. If q = 1 then we recover ζ(s). Since χ(n) ≪ 1, L(s, χ)
converges absolutely uniformly for ℜ(s) > 1. The series does not converge for ℜ(s) ≤ 1, but it
does admit analytic continuation to this region analogous to the case for ζ(s). Precisely, we will
show the following

Theorem 2.1. For a primitive Dirichlet character χ with conductor q > 1, L(s, χ) admits analytic
continuation to C.

We will derive the analytic continuation of L(s, χ) by expressing the L-functions as integral
which will converge on all of C. Details in the argument depend on if χ is even or odd, so to treat
both cases simultaneously we define δχ ∈ {0, 1} by χ(−1) = (−1)δχ .

Proof sketch. Upon substituting s→ s+ δχ into the definition of the gamma function, we obtain

χ(n)Γ ((s+ δχ)/2) = π(s+δχ)/2ns

ˆ ∞

0

χ(n)nδχe−πn2xx(s+δχ)/2
dx

x
.

Proceeding exactly as for the zeta function (sum over n ≥ 1 and apply some minor algebra), we
arrive at the preliminary integral representation

L(s, χ) =
π(s+δχ)/2

Γ ((s+ δχ)/2)

ˆ ∞

0

θχ(x)x
(s+δχ)/2

dx

x
. (2.1)

where

θχ(x) =
∑
n≥1

χ(n)nδχe−πn2x =
1

2

∑
n∈Z

χ(n)nδχe−πn2x.
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This is essentially a twisted version of Jacobi’s theta function. The key insight is that it is a sum
of Schwarz functions over a lattice and so we can expect that an application of Poisson summation
will give a functional equation of shape s → 1

s
just as for Jacobi’s theta function in the case of

ζ(s). Since our theta function has a character attached, we first sieve out the character:

θχ(x) =
∑

a (mod q)

χ(a)
∑
m∈Z

(mq + a)δχe−π(mq+a)2x.

Now we can genuinely apply Poisson summation to the inner sum. Set f(y) = (yq+a)δχe−π(yq+a)2x.
By applying a change of variable and completing the square of (yq+a)2x+2πity in the exponent,
the Fourier transform of f becomes

f̂(t) =

ˆ ∞

−∞
(yq + a)δχe−π(yq+a)2xe−2πity dx =

e
2πiat

q e
−πt2

q2s

qs
1+δχ

2

ˆ ∞

−∞
xδχe

−π
(
x+ it

q
√
s

)2

dx.

One now complexifies the integral and shifts the line of integration to to ℑ(z) = t
q
√
s
, with no

addition of residues since the integrand is holomorphic, obtaining

e
2πiat

q

q

e
−πt2

q2s

√
s

ˆ ∞

−∞

(
x− it

qs

)δχ

dx =
e

2πiat
q

q

e
−πt2

q2s

√
s

(
it

qs

)δχ

,

where the equality follows by realising the integral as essentially a Gaussian integral. Poisson
summation then yields

θχ(x) =
∑

a (mod q)

χ(a)
∑
m∈Z

(mq + a)δχe−π(mq+a)2x

=
∑

a (mod q)

χ(a)
∑
t∈Z

e
2πiat

q

q

e
−πt2

q2s

√
s

(
it

qs

)δχ

=
1

iδχq1+δχs
1
2
+δχ

∑
t∈Z

tδχe
−πt2

q2s τ(t, χ) evaluation of τ(t, χ)

=
εχ

iδχq1+δχs
1
2
+δχ

θχ

(
1

q2x

)
This is the appropriate transformation law for the twisted theta function. We can now derive the
symmetric integral representation for L(s, χ). Ignoring the gamma factor in 2.1 and splitting the
integral at x = 1/q, the fixed point of the transformation law, we haveˆ ∞

0

θχ(x)x
(s+δχ)/2

dx

x
=

ˆ 1/q

0

θχ(x)x
(s+δχ)/2

dx

x
+

ˆ ∞

1/q

θχ(x)x
(s+δχ)/2

dx

x
. (2.2)

Now change variables x→ 1
q2x

in the first integral and apply the transformation law:
ˆ 1/q

0

θχ(x)x
(s+δχ)/2

dx

x
=

ˆ ∞

1/q

θχ

(
1

q2

)
x−(s+δχ)/2

dx

x
=

εχ
iδχ

ˆ ∞

1/q

θχ(x)x
((1−s)+δχ)/2

dx

x
.

Substituting back into 2.2 and applying 2.1 yields

L(s, χ) =
π(s+δχ)/2

Γ ((s+ δχ)/2)

[
εχ
iδχ

ˆ ∞

1/q

θχ(x)x
((1−s)+δχ)/2

dx

x
+

ˆ ∞

1/q

θχ(x)x
(s+δχ)/2

dx

x

]
(2.3)
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□

By virtue of the decay of θχ(x) both integrals in 2.3 are holomorphic on C and thus the right-
hand side gives analytic continuation to C. Also, the symmetry of the right-hand side as s→ 1− s
immediately results in the following corollary which is better known as the functional equation for
L(s, χ):

Corollary 2.2.

qs/2
Γ ((s+ δχ)/2)

π(s+δχ)/2
L(s, χ) =

εχ
iδχ

q(1−s)/2Γ (((1− s) + δχ)/2)

π((1−s)+δχ)/2
L(1− s, χ).

3. THE MELLIN TRANSFORM & THETA FUNCTIONS

The unifying idea underpinning functional equations of L-functions is to find an integral repre-
sentation that is symmetric under s→ 1− s. The integral representation is obtained by taking the
Mellin transform of a theta function, and the symmetry of the integral is lifted from a transforma-
tion law for the theta function. Let us being with the Mellin transform. If f is some continuous
function, then the Mellin transform {Mf}(s) of f is given by

{Mf}(s) =
ˆ ∞

0

f(x)xs dx

x
.

If f is a sufficiently nice function, say bounded near 0 and of exponential decay near ∞, this
integral converge in a half-plane. The classical example is when f = e−x so that {Me−x}(s) =
Γ(s). In our case, we want f to be a theta function. A theta function is a absolutely convergent
series that is a sum of exponentials over Z that is symmetric in the sign of Z. Both the zeta function
and Dirichlet L-functions are associated to a theta function:

ζ(s)←→ θ(x) =
∑
n∈Z

e−πn2x = 1 + 2
∑
n≥1

e−πn2x,

L(s, χ)←→ θχ(x) =
∑
n∈Z

χ(n)nδχe−πn2x = 2
∑
n≥1

χ(n)nδχe−πn2x.

By “associated” we mean that if one takes the Mellin transform over the subsum n ≥ 1 on the
left-hand side, then the corresponding L-functions on the right-hand side is obtained up to gamma
factors. For example, this is 2.1. More generally, given some theta function θ(x) we can obtain an
L-functions L(s, θ) by taking the Mellin transform. In order to obtain a functional equation for the
L-functions, the theta function must admit a transformation law:

θ(x) ∼ θ (1/cx) ,

for some c > 0. In this case, we can decompose the Mellin transform as

{Mf}(s) =
ˆ 1/

√
c

0

f(x)xs dx

x
+

ˆ ∞

1/
√
c

f(x)xs dx

x
.

Making the change of variables x→ 1/cx to the first integral, we can apply the transformation law
and symmetrize the Mellin transformation to respect s→ 1− s as much as possible. Roughly,

L(s, θ) = polar factor +
ˆ ∞

1/
√
c

θ(x)x1−s dx

x
+

ˆ ∞

1/
√
c

θ(x)xs dx

x
4



The resulting integrals will be analytic by virtue of the rapid decay of θ(x), and therefore give
analytic continuation of the L-functions to C. The functional equation then follows immediately
from the symmetry of the integral representation.

Let’s give an example. If f is a weight k cuspidal modular form on the full modular group
PSL2(Z), then f admits a Fourier expansion at the∞ cusp:

f(z) =
∑
n≥1

a(n)e2πinz.

We can package the Fourier coefficient of f into an L-functions L(s, f) called the L-functions
associated to f :

L(s, f) =
∑
n≥1

af (n)

ns
.

where af (n) = a(n)n−(k−1)/2. By the Ramanujan conjecture (see [5]), af (n) ≪ 1 so that L(s, f)
converges absolutely uniformly on compact sets for ℜ(s) > 1. We would like to analytically
continue L(s, f) in the same way as for the zeta function an Dirichlet L-functions. What’s the
underlying theta function? Well, it comes naturally equip to f as the Fourier series of f along the
positive imaginary axis:

f(iy) =
∑
n≥1

a∞(n)e−2πny.

Due to the negative sign in the exponent, it exhibits the required exponential decay and by modu-
larity

f

((
0 1
−1 0

)
iy

)
= (−iy)kf (1/iy) .

This transformation law is more geometric in nature since the modularity of f describes how f
changes under a Möbius transformation.
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