Monday, April 3
Recall that giver some function $\Delta_{0}(x)$, we recursively define $\Delta_{k}(x)=\int_{0}^{x} \frac{\Delta_{k-1}(t)}{t} d t$
Lemma:- The number of sign changes of $\Delta_{k-1}(x)$ an $[0, A]$ is at least as mary as the number of stor changes \& $A_{x}(x)$ a $[0, A]$.
Profs:- If we hove $0=x_{0}<x_{1}<x_{2}<\cdots<x_{w}$ weer $\operatorname{sign}\left(\Lambda_{k}\left(x_{j}\right)\right)=(-1)^{3}$. Then

$$
\begin{aligned}
0 & <(-1)^{j}\left(A_{h}\left(x_{j}\right)-A_{k}\left(x_{j-1}\right)\right) \\
& =(-1)^{j} \int_{x_{j-1}}^{x_{j}} \Delta_{k-1}(t) \frac{d t}{t} ;
\end{aligned}
$$

This $(-1)^{j} \Delta_{k-1}$ (t) mit be positive for some $y_{j} \in\left[x_{j-1,} x_{j}\right] .4$

We apply this (for example) to

$$
\Delta_{0}\left(z_{0}\right)=\Delta^{\psi}(x)=\psi(x)-x=\sum_{n \leq x}(\Lambda(n)-1)
$$

$$
=-\sum_{p} \frac{x^{p}}{p}+\text { error. }
$$

$$
\begin{aligned}
& \text { Then } \\
& \begin{aligned}
\left.\Delta_{k} l x\right) & \left.=\sum_{n \leqslant x}\left(\Lambda C_{n}\right)-1\right)\left(\log \frac{x}{n}\right)^{k} \\
& =-\sum_{p} \frac{x^{l}}{p^{k+1}}+\text { error }_{k} .
\end{aligned}
\end{aligned}
$$

In portizulor, let $\rho_{0}=\frac{1}{2}+\stackrel{r_{1}}{14.135 \ldots} i_{j}$ than

If RH is true then

$$
\begin{aligned}
& \left|A_{k}(x)+2 R_{e} \frac{x^{p_{1}}}{\rho_{1}^{p_{j}+1}}\right| \leqslant \mid 2 R_{2} \sum_{p_{p} \rho_{1}}^{\sum_{p^{p}}^{p^{k+1}}} \text { teroron} k \mid \\
& \tau_{\mathrm{m}} \gg 0
\end{aligned}
$$

$$
\begin{aligned}
& \left|\frac{\Delta_{k}(x)}{\sqrt{x}}+2 R_{e} \frac{x^{i r r_{1}}}{p_{1}^{k+1}}\right| \leqslant 2 R \sum_{r>r_{1}} \frac{x^{i r}}{p^{k(x)}}+\frac{\text { erior } k_{k}}{\sqrt{x}} \\
& \leq 2 \operatorname{Re} \sum_{r>r,} \frac{1}{p^{k+1}}+\frac{\text { evos }_{k}}{\sqrt{x}} \\
& \text { IIt turns ant tenot whe } k=3 \text {, } \\
& 2 \operatorname{Re} \frac{1}{\rho_{1}^{4}} \text { a } \frac{1}{20,000} \text { while } \\
& 2 \text { De } \sum_{r>r_{1}} \frac{1}{p^{4}} \& \frac{1}{4 n, 000} \text {. } \\
& \text { So it we choose } \left.\} x_{3}\right\} \text { such thol } \\
& \operatorname{Re} x_{j}^{i r_{1}}=\cos \left(r_{1} \log x_{j}\right)= \pm 1 \text {, the } \\
& \text { we get sion chaye yo } 2 R \frac{x^{i r_{1}}}{p^{4}} \\
& \text { did honce sifon chays of } \\
& \frac{\Delta_{k}(x)}{\sqrt{x}} \Rightarrow \text { sign chonges } \Delta_{0}(x) \\
& =\Delta^{4}(x) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { is } \left.\geq \frac{\log x}{\pi / \gamma_{1}}+O L_{1}\right) \text {. } \\
& \text { (Dssumbly Rt1) } \\
& \text { Resintes from the ibesouve: } \\
& \text { - Let } \Theta=\sup \{\operatorname{Rep}\} \text {, our sect } \\
& r_{0}=\operatorname{Nin}\{\gamma>0: S(\Theta+i \gamma)=0\} \text {. } \\
& \text { Nax: mozke } \gamma_{0}=\infty \text {. } \\
& \text { Define } W^{4}(X) \text { to be the \# व } \\
& \text { olon chages of } v_{2 x} \text {-X pa X. } \\
& \text { Thes } \\
& \lim _{x \rightarrow \infty} \ln \frac{W^{\varphi}(x)}{\log x} \geqslant \frac{\gamma_{0}}{\pi} \text {. }
\end{aligned}
$$

- Knapowski, 1985:
\$ $\{$ sifonchurges of $\theta(x)-x$ up to $x\}$ ${ }_{5} 5 \log X$ contstar is
and the sone for $\pi(x)-l_{i}(x)$
- Schlage-Puchta, 2004 :
samlor resuitt for rogr chaves of

$$
\pi\left(x, q_{0},\right)-\operatorname{mix}_{\substack{\log _{0} p=1 \\ \lambda \neq 1}} \pi\left(x ; q_{0}, x\right)
$$

(ai) min)

How mown stish changer ds we expect?

Thulk rabint $\pi(x, y, 3)-\pi(x, y, 1)$.
Model by o symmotse sundors wolk

$$
\left.S_{k}=\sum_{j=1}^{k} x_{j} \text { wher } x_{j}= \pm\right)
$$

$$
(50 / 50 \text { peob). }
$$

Feller: \# sign chayes of $\left\{S_{2}\right\}$ - Stign chaces of S_{5} modrs

$$
S_{i-1} S_{j+1}=-1 .
$$

$\operatorname{Pr}(\#$ Soign chages up \$ $2 n\}=r)$

$$
=\frac{1}{2^{2 n-2}}\binom{2 n-1}{n-1-r}
$$

As $n \rightarrow \infty$, this us modded by o normol rondar vardble will mear os valance propurtional力 小

We can dever:

- expectes number et ston chazos up to N is

$$
\sim \sqrt{\frac{2}{n}} \sqrt{N} \leadsto 0.399 \sqrt{N}
$$

- mediar is on $0.337 \sqrt{n}$.

Moyber we carjectrone
\# \{sign clayes of $\pi(x, 4,3)-n(x, 4)$,

$$
\text { us to } x
$$

$$
\backsim \sqrt{\frac{x}{\log x}} ?
$$

$$
?
$$

Exhoustive 2-way pitme number rekes (infinitely may sign
chages): uncondstiond rejuitos.

- Lítlewood, Stask Snead:
all two-way race uibl $4 \leqslant 100$
- Katai: if the L give (mot 9) have no real nontriulal zeros (tlasefgrove's condiblong tic) thes ony sie square vs squale nenspualy us nonspuite
is exhacustlte.
- Kuppowsta/Twráns assume HC, dll 2-way vises invoing $\pi\left(x_{0}, 0,1\right)$ de exharstive.
- Voshower: all zeway ranes hioling (ific) $\pi\left(x, 9 q_{0}-1\right)$ dre exhoustive.

