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ABSTRACT. This article deals with the elementary Euclidean proof of the Dirichlet’s Theorem re-
garding infinitude of primes in arithmetic progressions. We start by giving the notion of a Euclidean
proof and providing an example of such a proof for the arithmetic progression ≡ 3 (mod 4). We con-
struct a general “Euclidean Polynomial” and show that it always exists for arithmetic progressions
satisfying certain properties.

1. INTRODUCTION

Euclid is credited with the formulation of the first proof of the infinitude of primes. Euclid’s
proof assumes that there are finitely many primes, and denotes these primes by p1, p2, . . . pr, for
some finite r. It is trivial to see that the number Q =

∏r
i=1 pi + 1 is not divisible by any of the

primes p1, . . . pr, and hence it must either be a prime itself or be divisible by some prime not in the
list p1, p2 . . . , pr. This contradiction forces an infinitude of prime numbers, provided that there is
at least one.

Dirichlet’s theorem in 1837, which concerns the infinitude of primes in arithmetic progression,
can be considered an extension of Euclid’s Theorem, and can be stated as follows:

Theorem 1.1. (Dirichlet, 1837) For any l, k satisfying the condition gcd(l, k) = 1, there are
infinitely many primes p such that p ≡ l (mod k). Equivalently, every arithmetic progression of the
form an = kn+ l for coprime k, l contains infinitely many prime numbers.

Although Dirichlet’s original proof uses L-functions and analytic methods, for certain arithmetic
progressions, Dirichlet’s Theorem can be proved with arguments similar to the one used in Euclid’s
proof. We begin by defining the concept of a “Euclidean proof” :

Definition 1.2. Dirichlet’s theorem is said to admit a Euclidean Proof for l (mod k), if there exists
a non-constant polynomial f ∈ Z[x] such that,( with finitely many exceptions), when a prime
p | f(n) for some n ∈ Z, then p ≡ 1 (mod k) or p ≡ l (mod k) and infinitely many primes of the
latter type occur. We call the polynomial f a Euclidean polynomial for l (mod k).

Example 1.3. We assume that there are only finitely many primes of 3 (mod 4), say p1, . . . , pk.
Consider the polynomial f(x) = 4x − 1. Let n = p1 · · · pk. Then f(n) = 4(p1 · · · pk) − 1
has prime factors ≡ 1 or 3 (mod 4) since it is odd. It cannot have all prime factors ≡ 1 (mod 4)
otherwise f(n) ≡ 1 (mod 4), which is clearly not the case.

This implies there exists p | f(n) and p ≡ 3 (mod 4). Our choice of n ensures that p ̸=
p1, . . . , pk. We have found a new prime p ≡ 3 (mod 4) which contradicts to our assumption. This
proves an infinitude of primes of 3 (mod 4) provided there is at least one.

It is only possible to provide Euclidean proofs to Dirichlet’s Theorem for certain restricted
classes of arithmetic progressions. The following theorems yield a method to characterize the
exhaustive set of arithmetic progressions for which such a proof exists :



Theorem 1.4. (Schur, 1912) [6] If l2 ≡ 1 (mod k), for l, and k as defined above, then a Euclidean
polynomial for l (mod k) exists.

Theorem 1.5. (Murty, 1988) [2] If there is a Euclidean polynomial for l (mod k), then l2 ≡
1 (mod k).

Our aim in this article is to provide a detailed proof of Theorem 1.4 along with certain prerequi-
site theorems about prime divisors of polynomials, which are required to motivate the construction
of a Euclidean polynomial.

2. DEFINITIONS

We begin by providing certain definitions which are necessary for proving our main result :

Definition 2.1. Let f ∈ Z[x] be a polynomial. A rational prime p is a prime divisor of f if p | f(n)
for some n ∈ Z. We shall denote by P (f) the set of prime divisors of f .

Since the proof of Theorem 1.4 largely uses Galois Theory and algebraic number theory, the
remainder of this section will be majorly concerned with gathering the necessary concepts in those
topics that we are going to use throughout the article :

Definition 2.2. For a field extension L/K, the Galois group Gal(L/K) is the group of all auto-
morphisms of L which fixes K. The field extension is called Galois if |Gal(L/K)| = [L : K]. We
say that the extension L/K is abelian if it is Galois and the Galois group Gal(L/K) is abelian.

The Primitive Element Theorem states that if L/K is an extension of number fields which has
finite degree, then there exists α ∈ L such that L = K(α).

If f ∈ K[x] is an irreducible polynomial and L is the splitting field of f , then for every root α
of f and σ ∈ Gal(L/K), σ(α) is also a root of f . Moreover, the Galois group acts transitively on
the roots of f .

Theorem 2.3 (Fundamental Theorem of Galois Theory). Let L/K be a Galois extension of finite
degree. Then there is a one-to-one correspondence between the intermediate fields K ⊂ M ⊂ L
and the subgroups H of the Galois group Gal(L/K). The correspondence is given by the map

φ : {H : H ⊂ Gal(L/K)} → {M : K ⊂ M ⊂ L}
H 7→ LH ,

where LH = {x ∈ L : σ(x) = x for all σ ∈ H} is fixed field of H . Moreover, such bijection is
inclusion-reversing.

Definition 2.4. For k ∈ N, we define the k-th cyclotomic polynomial Φk as

Φk(x) =
∏

a∈(Z/kZ)×
(x− ζak ),

where ζk is the primitive k-th root of unity in C.

The field K := Q(ζk) is Galois over Q with Galois group isomorphic to the group of coprime
residue classes modulo k, which is denoted by (Z/kZ)×.

Definition 2.5. For an algebraic number field K, we denote by OK the ring of integers of K which
is defined as

OK = {α ∈ K : the minimal polynomial of α over Q has integer coefficients}.
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It can be proved that OK is indeed a ring.

Definition 2.6. For A,B ideals in OK , we say that A divides B and denote it A | B if B ⊂ A.

Definition 2.7. Let f be an irreducible polynomial over Q and let K be its splitting field. If
f = (x − α1) · · · (x − αn) is the factorization of f in K[x], we define the discriminant of f as
D(f) =

∏
i ̸=j(αi − αj).

The discriminant of a polynomial with integer coefficients is an integer. For a cyclotomic exten-
sion K = Q(ζk) and OK = Z[ζk], if a prime number p divides D(Φk), then p divides k.

3. EUCLIDEAN PROOF AND CONSTRUCTION OF THE EUCLIDEAN POLYNOMIAL

The first requirement of a Euclidean proof is the existence of a Euclidean polynomial with
infinitely many prime divisors. It is not obvious that a polynomial has infinitely many prime
divisors and the following theorem provides a proof of this fact:

Theorem 3.1. (Schur) If f ∈ Z[x] is non-constant, then P (f) is infinite.

Proof. Write f(x) = anx
n + an−1x

n−1 + · · · + a0. If a0 = 0, we have f(p) = anp
n + · · · + a1p

and hence p | f(p). Suppose a0 ̸= 0. Now, f(x) = ±1 has only finitely many solutions, so P (f)
is non-empty. Suppose P (f) is finite, say P (f) = {p1, p2, . . . , pk} and let Q = p1p2 . . . pk. Then
f(Qa0x) = a0g(x) for some polynomial g ∈ Z[x] of the form 1+ c1x+ · · ·+ cnx

n with Q | ci for
each i. Note that pi ̸∈ P (g) for each i from our construction of g. Also, p | g implies that p | f ,
i.e. P (g) ⊂ P (f). By the exact argument as above, P (g) is non-empty. That means there exists
some prime p ∈ P (g) where p ̸= pi for any i and p ∈ P (f), which is a contradiction. □

Theorem 3.2. (Nagell) [5] If f, g ∈ Z[x] are non-constant, then P (f) ∩ P (g) is infinite.

Using the properties of prime divisors of polynomials, and basic algebraic number theory, we
can now start to construct the notion of a Euclidean Polynomial.

Theorem 3.3. Let H be a subgroup of (Z/kZ)×. Then there is an irreducible polynomial f so that
all of the prime divisors of f , with a finite number of exceptions, belong to the residue classes of
H .

Proof. By Primitive Element Theorem, there exists η = h(ζk) for some h ∈ Z[x] such that
Q(η) be the fixed field of H . Let m1, . . . ,ms be coset representatives of H in (Z/kZ)×, where
s = [(Z/kZ)× : H]. Set ηi = h(ζmi

k ) for 1 ≤ i ≤ s. Suppose these are not distinct. Let
σn ∈ Gal(Q(ζk)/Q) given by σn : ζk 7→ ζnk . Then σmi

(η) = σmj
(η) for some distinct coset

representatives mi,mj of H . But then σmim
−1
j
(η) = η so mim

−1
j fixes Q(η) which implies that mi

and mj are in the same coset of H . A contradiction.
Thus ηi = h(ζmi

k ), 1 ≤ i ≤ s, are the distinct conjugates of η. Note that

f(x) =
s∏

i=1

(x− ηi).

is the minimal polynomial of ηi over Q with integer coefficients. We will show that f satisfies the
conditions in the theorem.

Let p ∈ P (f) so that p ∤ k and so that p ∤ D(f). Since p ∈ P (f), there exists a ∈ Z such that

f(a) =
s∏

i=1

(a− ηi) ≡ 0 (mod p).
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Let p be any prime ideal in OQ(η) dividing (p). Then (a − ηi) ∈ p for some i. On the other
hand, ap ≡ a (mod p), so ap ≡ a (mod p). Similarly, h(x)p ≡ h(xp) (mod p). Thus, we get the
following congruence:

h(ζmi
k ) ≡ ηi ≡ a ≡ ap ≡ ηpi ≡ h(ζmi

k )p ≡ h(ζpmi

k ) (mod p)

In particular, we see that (h(ζmi
k ) − h(ζpmi

k )) ∈ p. Now, since p ∤ k, we have that pmi is coprime
to k, so h(ζpmi

k ) is one of the η1, . . . , ηs. Suppose h(ζpmi

k ) ̸= h(ζmi
k ). WLOG, say h(ζpmi

k ) = ηj
with j ̸= i. Then h(ζmi

k )− h(ζpmi

k ) = ηi − ηj is a factor of D(f). Then D(f) ∈ p and since D(f)
is a rational integer, p | D(f). This contradicts our choice of p. Thus, h(ζpmi

k ) = h(ζmi
k ) and so

ηi is fixed by the automorphism σp. So σp fixes Q(ηi). Recall that Q(ηi) is a Galois extension and
Q(ηi) = Q(η). Thus σp fixes Q(η) and so p belongs to a residue class of H . □

The converse of Theorem 3.3 can be stated as follows:

Theorem 3.4. If f is as in Theorem 3.3, then any prime belonging to any residue class of H divides
f .

Proof. Let p be a prime belonging to some residue class of H . σp fixes Q(η), in particular,

ηp ≡ h(ζk)
p ≡ h(ζpk) ≡ h(ζk) ≡ η (mod p).

Hence, for any prime ideal p in OQ(η) dividing p, we have ηp ≡ η (mod p). Since OQ(η) is a
Dedekind domain, OK/p is a field and so there are at most p solutions to xp−x in this field. From
this, it follows that η ≡ a (mod p) for some rational integer a. Thus, f(a) ∈ p and since f(a) is a
rational integer, it follows that p | f(a) as desired. □

Corollary 3.5. If Φk is the k-th cyclotomic polynomial, then all of the prime divisors of Φk are
≡ 1 (mod k) or divide k.

Proof. This result follows from setting H = {1} in Theorem 3.3 and the fact that the only primes
which divide the discriminant of Φk are those primes which divide k. Since all the prime divisors
of Φk, with a finite number of exceptions, belong to the residue classes of H , all of the prime
divisors of Φk are ≡ 1 (mod k) or divide k □

We are now finally able to prove the main result of this article Theorem 1.4, restated as follows:

Theorem. If l2 ≡ 1 (mod k), then there are infinitely many primes ≡ l (mod k) provided there is
at least one such prime.

Proof. We begin by noting that k has only finitely many prime factors. So all of the prime divisors
of Φk with the exception of finitely many are ≡ 1 (mod k). Since we know from Theorem 3.1
that Φk has infinitely many prime divisors, we can claim that there exists infinitely many primes
≡ 1 (mod k) for any positive integer k.

Since we have already proved the infinitude of primes ≡ 1 (mod k), we can now assume that
l is not congruent to 1 (mod k). We consider the subgroup H of (Z/kZ)× generated as follows:
H = {1, l}. We assume L to be the fixed field of H and then define h(x) = (u − x)(u − xl), for
some u ∈ Z, where u will be determined later. Let m1, . . . ,ms denote the coset representatives
of H in (Z/kZ)×, and let u ∈ Z be chosen such that h(ζmi

k ) are distinct for i = i, . . . , s, then
L = Q(h(ζk)). To see this, suppose that σj ∈ Gal(Q(ζk)/Q) which fixes h(ζk) and σj ̸= σ1, σl.
Then, h(ζk) = σj(h(ζk)) = (u − ζjk)(u − ζjlk ) = h(ζjk). Since we choose u such that h(ζmi

k ) are
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distinct, we have j = 1 or l. Hence, the fix automorphisms of Q(h(ζk)) are exactly σ1 and σl. Note
that there are also infinitely many u ∈ Z satisfying the condition.

If we apply Theorem 3.3 to H , with η = h(ζk), we get a polynomial f(x), all of whose prime
divisors (apart from finitely many) are ≡ 1 or l (mod k). If we write f explicitly, we get

f(x)2 =
∏

(a,k)=1

(x− (u− ζak )(u− ζ lak )).

We note that f(0) = (−1)φ(k)Φk(u), where φ is the Euler totient function. We now choose u to
be a non-zero multiple of k, then f(0) = Φk(u) ≡ (−1)φ(k) (mod k) by Corollary 3.5. We define
g = (−1)φ(k)f , so that at each point, g has the same prime divisors as f and g(0) ≡ 1 (mod k).

By assumption, there exists p ≡ l (mod k). Then, p ∤ D(g), otherwise it has to divide k. By
Theorem 3.4, we can find b ∈ Z such that p | g(b). We are able to choose b such that p2 ∤ g(b). If
p2 | g(b), then g(b + p) = g(b) + pg′(b) ≡ pg′(b) (mod p2). But since p ∤ D(g), we can say that g
has no double roots (mod p) and therefore g′(b) ̸≡ 0 (mod p). So g(b) ≡ 0 (mod p2) implies that
g(b+ p) ̸≡ 0 (mod p2). Thus, replacing b by b+ p if necessary, we can find such b.

Now if we suppose there are finitely many primes ≡ l (mod k), and denote them by p1, p2, . . . , pm.
Also let q1, q2 . . . , qt be the prime divisors of D(g). We define Q = p1p2 . . . pmq1q2 . . . qt. By the
Chinese Remainder Theorem, we can find c so that

c ≡ b (mod p2)
c ≡ 0 (mod kQ)

Thus g(c) ≡ g(b) (mod p2) and g(c) ≡ g(0) (mod kQ). By Theorem 3.2, the only prime divisors
of g are those primes which divide k, or are ≡ 1 or l (mod k). Since g(0) is only divisible by
those primes ≡ 1 (mod k), it follows that g(c) is only divisible by those primes ≡ 1 (mod k) and
p ≡ l (mod k). Since p2 ∤ g(c), it follows that g(c) ≡ l (mod k). But g(c) = g(0) ≡ 1 (mod k)
which is a contradiction. Thus there must be infinitely many primes ≡ l (mod k). □

Theorem 1.5 is the converse of Theorem 1.4 and can be restated as follows :

Theorem. Let f ∈ Z[x] . Suppose that with finitely many exceptions, all prime divisors of f are
either ≡ 1 or l (mod k). Then l2 ≡ 1 (mod k).

The Chebotarev Density Theorem is used to prove the above theorem, however we do not pro-
vide the proof in this article.
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