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ABSTRACT. The function θ(x) − x has been the subject of much study in analytic number theory
due to its connection with the distribution of prime numbers. In this brief article, we will provide a
proof that produces a region where the first sign change of θ(x) − x occurs, which is a particularly
important property of this function. Specifically, we show that there is an x < exp(727.951332668)
for which θ(x) > x. We also provide a brief discussion on the algorithm that shows that θ(x) < x
for 0 < x ≤ 1.39× 1017.

1. INTRODUCTION

The prime number theorem states that π(x), the number of primes less than or equal to x, is
asymptotically equal to li(x) as x→ ∞ where

li(x) = lim
ϵ→0+

[ˆ 1−ϵ

0

dt

log t
+

ˆ x

1+ϵ

dt

log t

]
While π(x) is the primary expression we want to study, it done so by studying the Chebyshev

functions θ(x) and ψ(x) due to the relation that π(x) ∼ li(x) is equivalent to ψ(x) ∼ x and
θ(x) ∼ x. Littlewood [Lit14] showed that ψ(x)− x change signs infinitely often by showing

ψ(x)− x = Ω±(x
1
2 log log log x).

Rosser and Schoenfeld [RS62] proved that

ψ(x)− θ(x) ≤ 1.427
√
x, for x > 1

which by combining with the above relation gives us that θ(x) − x change signs infinitely often.
While the proof of Littlewood did not give any information as to where the sign change occurs,
Skewes [Ske55] showed that there is a sign change at some point less than exp exp exp exp(7 ×
705). However, Skewes’s proof could not be adapted to θ(x) − x. In this report, we will provide
an outline of the arguments for the below two theorems regarding θ(x)− x following [PT16].

Theorem 1.1. For 0 < x ≤ 1.39× 1017, we have θ(x) < x.

Theorem 1.2. There is some x ∈ [exp(727.951332642), exp(727.951332668)] for which θ(x) > x.

2. SOME LEMMAS

In preparation for the theorem, we will need to prove some preliminary lemmas. Throughout
this report ρ = β + iγ will denote a zero of the Riemann zeta function ζ(s) for which 0 < β < 1.
We say that f(x) = O∗(g(x)) if |f(x)| ≤ g(x) for the range of x under consideration. Let N(T )
be the number of zeros for which 0 < γ ≤ T . Backlund [Bac16] showed that for T ≥ 2,

N(T ) =
T

2π
log

T

2π
− T

2π
+

7

8
+Q(T )



where |Q(T )| ≤ 0.137 log T+0.443 log log T+4.35. From this we can conclude that for T ≥ 2πe,

N(T ) =
1

2π

ˆ T

2πe

log
t

2π
dt+

7

8
+O∗(2 log T ). (2.1)

Lemma 2.1. If φ(t) is a continuous function which is positive and monotone decreasing for 2πe ≤
T1 ≤ t ≤ T2, then∑

T1<γ≤T2

φ(γ) =
1

2π

ˆ T2

T1

φ(t) log
t

2π
dt+O∗

(
4φ(T1) log T1 + 2

ˆ T2

T1

φ(t)

t
dt

)
.

Proof. Using Stieltjes integrals, we have∑
T1<γ≤T2

φ(γ) =

ˆ T2

T1

φ(t)dN(t) =
1

2π

ˆ T2

T1

φ(t) log
t

2π
dt+

ˆ T2

T1

φ(t)dQ(t).

From the equation (2.1), we have∣∣∣∣ˆ T2

T1

φ(t)dQ(t)

∣∣∣∣ = |φ(T2)Q(T2)− φ(T1)Q(T1)| −
ˆ T2

T1

Q(t)dφ(t)

≤ 2φ(T2) log T2 + 2φ(T1) log T1 − 2

ˆ T2

T1

log tdφ(t)

≤ 4φ(T1) log T1 + 2

ˆ T2

T1

φ(t)d(log t).

□

Lemma 2.2. If T ≥ 2πe, then ∑
γ>T

1

γn
< T 1−n log T.

Proof. Applying Lemma 2.1, we have∑
γ>T

1

γn
=

1

2π

ˆ ∞

T

t−n log
t

2π
dt+O∗

(
4T−n log T +

2T−n

n

)
=
T 1−n

2π

(
log(T/2π)

n− 1
+

1

(n− 1)2

)
+O∗

(
4T−n log T +

2T−n

n

)
≤ T 1−n log T

[
1

2π
+

1

2π log T
+

4

T
+

1

T log T

]
< T 1−n log T.

□

Lemma 2.3. If α > 0 and φ(t) is positive and monotone decreasing for t ≥ T > 0, thenˆ ∞

T

φ(t)e−
t2

2α <
α

T
φ(T )e−

T2

2α .
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Proof. Since

d

dt

[
αe−

t2

2α

t

]
= −αe

− t2

2α

t2
− e−

t2

2α ,

we obtain ˆ ∞

T

φ(t)e−
t2

2α < −
ˆ ∞

T

φ(t)
d

dt

(
αe−

t2

2α

t

)
≤ α

T
φ(T )e−

T2

2α .

□

Lemma 2.4. If θ(x) < x for e2.4 ≤ x ≤ K, then π(x) < li(x) for e2.4 ≤ x ≤ K.

Proof. We can write (see [Ing32, Theorem A, p.18])

π(x) =
θ(x)

log(x)
+

ˆ x

2

θ(y)

y log2 y
dy. (2.2)

We also have that ˆ e2.4

2

θ(y)

y log2 y
dy < li(e2.4)− e2.4

2.4
.

This is because the value of the left expression equals 1.773 while the value of the right expression
is 2.008 by equation (2.2). Under the assumptions of our lemma, we can deduce that if e2.4 ≤ x ≤
K, then

π(x) <
x

log x
+ li(e2.4)− e2.4

2.4
+

ˆ x

e2.4

y

y log2 y
dy

In the meantime, integration by parts gives us
ˆ x

e2.4

y

y log2 y
dy = − y

log y

∣∣∣∣x
e2.4

+

ˆ x

e2.4

dy

log y
= − x

log x
+
e2.4

2.4
+ li(x)− li(e2.4)

which concludes the lemma. □

The combination of Lemma 2.4 and Theorem 1.1 gives us the following important corollary.

Corollary 2.5. π(x) < li(x) for all 2 < x ≤ 1.39× 1017.

3. OUTLINE OF THE ARGUMENT

Recall the two formulas discussed in class. The explicit formula for ψ(x) is given by

ψ0(x) =
ψ(x+ 0+) + ψ(x− 0+)

2
= x−

∑
ρ

xρ

ρ
− ζ ′

ζ
(0)− 1

2
log

(
1− 1

x2

)
(3.1)

where ρ are the non-trivial zeros of the Riemann-zeta function ζ(s). Second one is the identity
relating the two Chebyshev functions

ψ(x) = θ(x) + θ(x
1
2 ) + θ(x

1
3 ) + · · · . (3.2)
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From the above two identities, we can actually manufacture the explicit formula for θ(x). A direct
substitution of the explicit formula (3.1) into (3.2) gives

θ(x)− x = −
∑
ρ

xρ

ρ
− ζ ′

ζ
(0)− 1

2
log

(
1− 1

x2

)
−

∞∑
n=2

θ(x
1
n )

≤ −θ(x
1
2 )− x

1
2

∑
γ>0

(
xiγ

1
2
+ iγ

+
x−iγ

1
2
− iγ

)
− 1

2
log

(
1− 1

x2

)
(assuming RH). (3.3)

If Riemann hypothesis is true, we can write ρ = 1
2
+ iγ and from our knowledge on the first zero

of ζ(s), we have γ ≥ 14. Hence, we expect the dominant term on RHS of (3.3) is −θ(x 1
2 ), which

explains our expectation on why θ(x) < x should happen often. We have the following result by
Rosser and Schoenfeld [RS62, Theorem 14]

ψ(x)− θ(x) < θ(x
1
2 )− 3x

1
3 . (3.4)

Substituting (3.1) into (3.4) gives

θ(x)− x > −θ(x
1
2 )−

∑
ρ

xρ

ρ
− ζ ′

ζ
(0)− 3x

1
3 . (3.5)

Let α, ω and η be positive numbers such that ω − η > 1. Define the Gaussian Kernel K(y) =√
α
2π

exp(−1
2
αy2). For any real number γ,

ˆ ∞

−∞
K(y)eiγydy = e−

γ2

2α

√
α

2π

ˆ ∞

−∞
e−

α
2
(y− γ

α
i)2dy = e−

γ2

2α . (3.6)

In particular,
´∞
−∞K(y)dy = 1. We divide both sides of (3.5) by x

1
2 , make the substitution x 7→ eu

and integrate against K(u− w), which givesˆ ω+η

ω−η

K(u− ω)e−
u
2 (θ(eu)− eu)du > −

ˆ ω+η

ω−η

K(u− ω)θ(e
u
2 )e−

u
2

−
∑
ρ

1

ρ

ˆ ω+η

ω−η

K(u− ω)eu(ρ−
1
2
)du− ζ ′(0)

ζ(0)

ˆ ω+η

ω−η

K(u− ω)e−
u
2 du

− 3

ˆ ω+η

ω−η

K(u− ω)e−
u
6 du = −I1 − I2 − I3 − I4.

The interchange of summation and integration is valid by noting that the sum over the zeros of
ζ(s) in (3.5) converges boundedly in u ∈ [ω − η, ω + η]. Noting that ζ′(0)

ζ(0)
= log 2π, we estimate

I3 trivially as follows

0 < I3 < (log 2π)

ˆ ω+η

ω−η

K(u− ω)e−
ω−η
2 du < e−

ω−η
2 log 2π.

We proceed similarly to estimate I4 trivially to obtain

0 < I4 < 3e−
ω−η
6 .

The contributions of I3 and I4 are actually negligible as shown in latter part of calculations.
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We are now going to estimate I2. Let A be the height to which the Riemann hypothesis has been
verified, and let T ≤ A be the height to which we can reasonably compute zeros to a high degree
of accuracy. We write

I2 =
∑
|γ|≤A

1

ρ

ˆ ω+η

ω−η

K(u− ω)e(ρ−
1
2
)udu+

∑
|γ|>A

1

ρ

ˆ ω+η

ω−η

K(u− ω)e(ρ−
1
2
)udu

=
∑
|γ|≤A

1

ρ

ˆ ω+η

ω−η

K(u− ω)eiγudu+
∑
|γ|>A

1

ρ

ˆ ω+η

ω−η

K(u− ω)e(ρ−
1
2
)udu = S1 + S2

which is valid since we know Riemann hypothesis is true up to height A. By (3.6) and the change
of variable y = u− ω,

S1 =
∑
|γ|≤A

eiγω

ρ

ˆ η

−η

K(y)eiγydy

=
∑
|γ|≤A

eiγω

ρ
e−

γ2

2α +O∗
(
4

γ

∣∣∣∣ˆ ∞

η

K(y)eiγy
∣∣∣∣)

We want to give an estimate the the term
´∞
η
K(y)eiγy. Integration by parts yields

ˆ ∞

η

K(y)eiγy =

ˆ ∞

η

K ′(y)
eiγη − eiγy

iγ
dy.

Hence, from the monotonic decreasing of K(y) for y > 0,∣∣∣∣ˆ ∞

η

K(y)eiγy
∣∣∣∣ ≤ ˆ ∞

η

∣∣∣∣K ′(y)
eiγη − eiγy

iγ

∣∣∣∣ dy ≤ 2

γ

ˆ ∞

η

|K ′(y)|dy =
2

γ
K(η) =

2

γ

√
α

2π
e−

αη2

2 .

(3.7)

Now, we apply the following numerical estimate∑
0<γ<∞

1

γ2
< 0.025,

the inequality (2π)−
1
2 < 0.4 and (3.7) to obtain

S1 =
∑
|γ|≤A

eiγω

ρ
e−

γ2

2α +O∗

(
8

√
α

2π

∑
0<γ≤A

1

γ2

)
=
∑
|γ|≤A

eiγω

ρ
e−

γ2

2α +O∗
(
0.08

√
αe−

αη2

2

)
.

Instead of taking the sum over zeros for which |γ| ≤ A, we would like to take the sum over zeros
for which |γ| ≤ T . Indeed, for T ≥ 2πe,∣∣∣∣∣∣

∑
T<|γ|≤A

eiγω

ρ
e−

γ2

2α

∣∣∣∣∣∣ ≤ 2
∑

T<|γ|≤A

e−
γ2

2α ≤
ˆ ∞

T

e−
t2

2α

πt
log

t

2π
dt+

8e−
T2

2α log T

T
+ 4

ˆ ∞

T

e−
t2

2α

t2
dt.

(3.8)

The first inequality comes from | eiγω
ρ
| = 1

|β+iγ| ≤ 1
γ

and the second inequality is just a direct
application of Lemma 2.1. Each integral in RHS of (3.8) can be estimated by using Lemma 2.3,

5



which gives ∣∣∣∣∣∣
∑

T<|γ|≤A

eiγω

ρ
e−

γ2

2α

∣∣∣∣∣∣ ≤ e−
T2

2α

(
α

πT 2
log

T

2π
+

8

T
log T +

4α

T 3

)
.

Combining our results of the estimation for S1 yields

S1 =
∑
|γ|≤T

eiγω

ρ
e−

γ2

2α + E1,

where

|E1| < 0.08
√
αe−

αη2

2 + e−
T2

2α

(
α

πT 2
log

T

2π
+

8

T
log T +

4α

T 3

)
.

Define

fρ(s) = exp(−1

2
α(s− w)2).

By using integration by parts, residue theorem and Lemma 2.2, we can deduce that (following the
same idea as Lehman in [Leh65, Section 5])

|S2| ≤ A log
[
Ae−

A2

2a
+ω+η

2

(
4α− 1

2 + 15η
)]

provided that

4A

w
≤ α ≤ A2,

2A

α
≤ η <

w

2
.

It remains to estimate

I1 =

ˆ ω+η

ω−η

K(u− ω)θ(e
u
2 )e−

u
2 .

The result from Rosser and Schoenfeld [RS62, Theorem 13] says

ψ(x)− θ(x) ≤ 1.4263
√
x, for all x > 0.

Meanwhile, Faber and Kadiri [FK15, Table 3] had explicitly computed

|ψ(x)− x| ≤ (1.5423× 10−9)x, for x ≥ e200.

Using these two results and the positivity of I1, for ω − η ≥ 400, hence e
ω−η
2 ≥ e200 and

I1 ≤
ˆ ω+η

ω−η

[e
u
2 + (1.5423× 10−9)e

u
2 ]e−

u
2K(u− ω)du

≤ (1 + 1.5423× 10−9)

ˆ ω+η

ω−η

K(u− ω)du

< 1 + 1.5423× 10−9.

We combine all our estimates into the following theorem.
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Theorem 3.1. Let A be the height to which the Riemann hypothesis has been verified, and let T
satisfy 0 < T < A. Let α, η and ω be positive numbers for which ω − η ≥ 400 and for which

4A

w
≤ α ≤ A2,

2A

α
≤ η <

w

2
.

Let K(y) =
√

α
2π

exp−1
2
αy2 be the Gaussian kernel and

I(ω, η) =

ˆ ω+η

ω−η

K(u− ω)e−
u
2 (θ(eu)− eu)du.

Then,

I(ω, η) ≥ −1−
∑
|γ|≤T

eiγω

ρ
e−

γ2

2α −R1 −R2 −R3 −R4, (3.9)

where

R1 = 1.5423× 10−9

R2 = 0.08
√
αe−

αη2

2 + e−
T2

2α

(
α

πT 2
log

T

2π
+

8

T
log T +

4α

T 3

)
R3 = e−

ω−η
2 log 2π + 3e−

ω−η
6

R4 = A log
[
Ae−

A2

2α
+ω+η

2

(
4α− 1

2 + 15η
)]
.

Remark 3.2. This is an unconditional result since we do not assume RH. However, the proof of
the theorem does rely on rigorous verification of RH.

4. COMPUTATIONS

4.1. Upper Bound. Using the above theorem, we need to substitute appropriate values for ω, η,
A, T and α such that the right side of the inequality (3.9) is positive. We refer the reader to [PT16]
for a detailed analysis on the reasoning for choosing these specific values of the parameters given
below.

Consider the sum
∑

1 =
∑

|γ|≤T
eiγω

ρ
. We need to substitute appropriate values of T and ω such

that this value is close to −1. Bays and Hudson [BH00] has provided a list of values for ω for
which

∑
1 is small, namely ω = 405, 412, 437, 599, 686 and 728. We aim to choose the remaining

parameters to make the other error terms R2, R3 and R4 comparable to R1 = 1.5423× 10−9. The
rigorous verification of Riemann hypothesis has been made in [PT21] for A = 3.0610046× 1010.
We can pick T = A ≈ 3 × 1010. A trade-off between good error bounds and computation power
has been made for choosing T = 6970346000.

Our goal is to detect a narrow region [exp(ω − η), exp(ω + η)] for which θ(x) > x for some
x ∈ [exp(ω − η), exp(ω + η)]. We have to pick η as small as possible. Next, we choose α as large
as possible because the smaller the width (variance) of the Gaussian distribution, the narrower the
region we obtain. However, to make the error term R4 manageable, we need A2

2α
> ω

2
. A little

experimentation has led to picking

α = 1153308722614227968 and η =
933831

244
.
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The authors in [PT16] searched the regions around ω = 405, 412, 437, 599 and 686. The compu-
tation shows

∑
1 is far away from dipping below the −1 level for these values of ω. It is believed

that θ(x) < x around all these values of ω.

It is natural to expect that the region near ω = 728 yields a point where θ(x) > x. This is
because the lowest published interval containing an x such that π(x) > li(x) is

x ∈ [exp(727.951335231), exp(727.951335621)]

in [STD15]. Since the error terms for θ(x)−x are tighter than those for π(x)−li(x), this necessarily
means that the same x will satisfy θ(x) > x. In fact choosing ω = 727.951332655 gives∑

|γ|≤T

exp(iγω)

ρ
exp

(
− γ2

2α

)
∈ [−1.0013360278,−1.0013360277].

Our choice of parameters gives R1 +R2 +R3 +R4 < 1.7× 10−9. Subsequent calculations showˆ ω+η

ω−η

K(u− ω)e−u/2(θ(eu)− eu)du > 0.0013360261

which proves Theorem 1.2.

4.2. Lower bound. Having established an upper bound for the first time that θ(x) exceeds x, we
now turn to a lower bound. A simple method would be to run through all the primes p less than
some bound B. Compute the sum log p starting from p = 2 and compare the running sum total
each time to p. To obtain the desired error we would need to set B = 1.39 × 1017. By the prime
number theorem we would expect to find about 3.5 × 1015 primes below this bound. Since this is
far too many for a single thread computation, we opt for parallel computing.

We refer the reader to [PT16, Section 3.2.1] for a discussion on the following algorithm1. Divide
the range (0, B] into contiguous intervals. For each interval Sj = (xj, yj], set Tj = ∆j = ∆j,max =
0. Let Pj = [pj,1, pj,2, . . . , pj,n] be the ordered list of primes in the interval Sj with usual number
ordering “<”. In particular, xj < pj,1 < pj,2 < · · · < pj,n ≤ yj . We run the following algorithm
over all primes pj,i in Pj starting with the smallest one pj,1.

1. Compute lj,i = log pj,i.
2. Set Tj = Tj + lj,i and ∆j = ∆j + lj,i − pj,i + pj,i−1, where pj,0 = 0.
3. Set ∆j,max = max{∆j,max,∆j}.

After running the algorithm, output Tj and ∆j,max. Mathematically, we can express Tj and ∆j,max

as

Tj =
n∑

i=1

log pj,i = θ(yj)− θ(xj)

and

∆j,max = max
1≤k≤n

[
k∑

i=1

log pj,i − pj,k

]
= max

1≤k≤n
[θ(pj,k)− pj,k]− θ(xj)

1There are possibly some typos in [PT16, Section 3.2.1]. We make some appropriate amendments in our exposition.
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respectively. After obtaining the output Tj and ∆j for each Sj , we can easily compute

θ(yj) =

j∑
k=1

Tk.

Note that
max
1≤k≤n

[θ(pj,k)− pj,k] = max
x∈Sj

[θ(x)− x]

for all j, and hence,

θ(xj) + ∆j,max = max
1≤k≤n

[θ(pj,k)− pj,k] = max
x∈Sj

[θ(x)− x] .

If θ(xj) + ∆j,max < 0, then we can conclude θ(x) < x for all x ∈ (xj, yj].

By splitting B into 10, 000 segments of width 1013 followed by 390 segments of width 1014, the
authors in [PT16] were able to prove Theorem 1.1 with computer aids.
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