The sum of the Möbius function

Nathan Ng

Analytic Number Theory 2 (UBC) PIMS network course (instructor G. Martin) Guest Lecture (online) Feb. 27, 2023

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction	The size of $M(x)$	Mertens Conjecture	Discrete Moments	An explicit formula	Limiting distributions	Polya and Turan problems	References
0000	0000	0000	000	0000000	00000	00	000

Table of Contents

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction

Size of M(x)

Mertens Conjecture

Discrete moments

Explicit formula

Limiting distributions

Polya and Turan problems

References

Introduction	The size of $M(x)$	Mertens Conjecture	Discrete Moments	An explicit formula	Limiting distributions	Polya and Turan problems	References
0000	0000	0000	000	0000000	00000	00	000

Table of Contents

Introduction

Size of M(x)

Mertens Conjecture

Discrete moments

Explicit formula

Limiting distributions

Polya and Turan problems

References

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● の Q @

Introduction	The size of $M(x)$	Mertens Conjecture	Discrete Moments	An explicit formula	Limiting distributions	Polya and Turan problems	References
000	0000	0000	000	0000000	00000	00	000

Notation

- Let g(x) > 0.
- f(x) = O(g(x)) and $f(x) \ll g(x)$ mean that there exist positive constants C and x_0 such that

$$|f(x)| \leq Cg(x)$$
 for $x \geq x_0$.

- $f(x) \asymp g(x)$ means $f(x) \ll g(x)$ and $g(x) \ll f(x)$.
- f(x) = Ω₊(g(x)) means

$$\limsup_{x\to\infty}\frac{f(x)}{g(x)}>0.$$

$$\liminf_{x\to\infty}\frac{f(x)}{g(x)}<0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- $f(x) \sim g(x)$ means $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$.
- f(x) = o(g(x)) means $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 0$.

The Classical Summatory functions

• The ψ function of prime number theory.

$$\psi(x) = \sum_{n \leq x} \Lambda(n)$$
 where $\Lambda(n) = egin{cases} \log p & ext{ if } n = p^j, \\ 0 & ext{ else }. \end{cases}$

• The sum of the Möbius function.

$$M(x) = \sum_{n \le x} \mu(n) \text{ where } \mu(n) = \begin{cases} 1 & \text{if } n = 1, \\ (-1)^k & \text{if } n = p_1 \cdots p_k \text{ is squarefree}, \\ 0 & \text{else.} \end{cases}$$

• The sum of the Liouville function.

$$L(x) = \sum_{n \leq x} \lambda(n) \text{ where } \lambda(n) = (-1)^{\Omega(n)} = (-1)^{a_1 + \cdots + a_k} \text{ and } n = p_1^{a_1} \cdots p_k^{a_k}.$$

• A weighted version of *L*(*x*).

$$T(x) = \sum_{n \le x} \frac{\lambda(n)}{n}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

The Classical Summatory functions

• The ψ function of prime number theory.

$$\psi(x) = \sum_{n \leq x} \Lambda(n)$$
 where $\Lambda(n) = egin{cases} \log p & ext{ if } n = p^j, \\ 0 & ext{ else }. \end{cases}$

• The sum of the Möbius function.

$$M(x) = \sum_{n \le x} \mu(n) \text{ where } \mu(n) = \begin{cases} 1 & \text{if } n = 1, \\ (-1)^k & \text{if } n = p_1 \cdots p_k \text{ is squarefree}, \\ 0 & \text{else.} \end{cases}$$

• The sum of the Liouville function.

$$L(x) = \sum_{n \leq x} \lambda(n) \text{ where } \lambda(n) = (-1)^{\Omega(n)} = (-1)^{a_1 + \cdots + a_k} \text{ and } n = p_1^{a_1} \cdots p_k^{a_k}.$$

• A weighted version of *L*(*x*).

$$T(x) = \sum_{n \le x} \frac{\lambda(n)}{n}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

The prime number theorem

The prime number theorem (PNT) is the assertion

$$\pi(x) = \#\{p \le x \mid p \text{ prime }\} \sim \int_2^x \frac{dt}{\log t}.$$

• By an exercise (partial summation), the PNT is equivalent to

$$\psi(x) \sim x.$$

• The Riemann hypothesis is equivalent to

$$\psi(x) = x + O(\sqrt{x}\log^2 x).$$

The prime number theorem is also equivalent to the statement

$$M(x)=o(x).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	The size of $M(x)$	Mertens Conjecture	Discrete Moments	An explicit formula	Limiting distributions	Polya and Turan problems	References
0000	0 000	0000	000	0000000	00000	00	000

Table of Contents

Introduction

Size of M(x)

Mertens Conjecture

Discrete moments

Explicit formula

Limiting distributions

Polya and Turan problems

References

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

Introduction	The size of $M(x)$	Mertens Conjecture	Discrete Moments	An explicit formula	Limiting distributions	Polya and Turan problems	References
0000	000	0000	000	0000000	00000	00	000

The size of M(x). Computations of Deleglise and Rivat

n	10	11	12	13	14	15
$M(1 \times 10^n)$	-33722	-87856	62366	599582	-875575	-3216373
$M(2 \times 10^n)$	48723	-19075	-308413	127543	2639241	1011871
$M(3 \times 10^n)$	42411	133609	190563	-759205	-2344314	5334755
$M(4 \times 10^n)$	-25295	202631	174209	-403700	-3810264	-6036592
$M(5 \times 10^n)$	54591	56804	-435920	-320046	4865646	11792892
$M(6 \times 10^n)$	-56841	-43099	268107	1101442	-4004298	-14685733
$M(7 \times 10^n)$	7917	111011	-4252	-2877017	-2605256	4195668
$M(8 \times 10^n)$	-1428	-268434	-438208	-99222	3425855	6528429
$M(9 \times 10^n)$	-5554	10991	290186	1164981	7542952	-12589671

$\widetilde{M}(x) = |M(x)|/\sqrt{x}.$

п	10	11	12	13	14	15
$\widetilde{M}\left(1 imes10^n ight)$	0.3372	0.2778	0.0624	0.1896	0.0876	0.1017
$\widetilde{M}\left(2 imes10^n ight)$	0.3445	0.0427	0.2181	0.0285	0.1866	0.0226
$\widetilde{M}\left(3 imes10^n ight)$	0.2449	0.2439	0.1100	0.1386	0.1353	0.0974
$\widetilde{M}\left(4 imes10^n ight)$	0.1265	0.3204	0.0871	0.0638	0.1905	0.0954
$\widetilde{M}\left(5 imes10^n ight)$	0.2441	0.0803	0.1949	0.0453	0.2176	0.1668
$\widetilde{M}\left(6 imes10^n ight)$	0.2321	0.0556	0.1095	0.1422	0.1635	0.1896
$\widetilde{M}\left(7 imes10^n ight)$	0.0299	0.1327	0.0016	0.3439	0.0985	0.0501
$\widetilde{M}\left(8 imes10^n ight)$	0.0050	0.3001	0.1549	0.0111	0.1211	0.0730
$\widetilde{M}\left(9 imes10^n ight)$	0.0185	0.0116	0.0967	0.1228	0.2514	0.1327
				< □	」▶ ▲ 🗗 ▶ →	(문) 《문)

200

æ

Introduction	The size of $M(x)$	Mertens Conjecture	Discrete Moments	An explicit formula	Limiting distributions	Polya and Turan problems	References
0000	0000	0000	000	0000000	00000	00	000

Known results.

Theorem

Unconditionally, $M(x) = O\left(x \exp\left(-c_1 \log^{\frac{3}{5}} x(\log \log x)^{-\frac{1}{5}}\right)\right)$ for $c_1 > 0^{-1}$ RH implies

$$M(x) = O\left(x^{\frac{1}{2}}\exp\left((\log x)^{\frac{1}{2}}(\log\log x)^{\frac{7}{8}}\right)\right)^2$$

Theorem (Selection of explicit results ³)

¹see lvić's book, Theorem 12.7, pp. 309-315.

²Soundararjan, 2009 and Bui-Florea 2023

³See article of Lee-Leong for many references.

Omega results

$$f(x) = \Omega_+(g(x))$$
 means $\limsup_{x \to \infty} rac{f(x)}{g(x)} > 0.$

$$M(x) = \Omega_{\pm}(x^{\frac{1}{2}}) \; .$$

(ii) If $\zeta(s)$ has a multiple zero of of order $m \ge 2$

$$M(x) = \Omega_{\pm}(x^{\frac{1}{2}}(\log x)^{m-1})$$
.

(iii) If RH is false, then

$$M(x) = \Omega_{\pm}(x^{\theta-\delta})$$

where

$$\theta = \sup_{\rho,\zeta(\rho)=0} \operatorname{Re}(\rho)$$

and δ is any positive constant.

This shows that to disprove the Mertens conjecture, one can assume RH is true and all zeros of $\zeta(s)$ are simple.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

⁴See pp.467-470 of Montgomery-Vaughan's book.

Introduction	The size of $M(x)$	Mertens Conjecture	Discrete Moments	An explicit formula	Limiting distributions	Polya and Turan problems	References
0000	0000	●000	000	0000000	00000	00	000

Table of Contents

Introduction

Size of M(x)

Mertens Conjecture

Discrete moments

Explicit formula

Limiting distributions

Polya and Turan problems

References

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

Introduction	The size of $M(x)$	Mertens Conjecture	Discrete Moments	An explicit formula	Limiting distributions	Polya and Turan problems	References
0000	0000	000	000	0000000	00000	00	000

The Mertens Conjecture

Conjecture (Mertens Conjecture) For all $x \ge 1$,

 $|M(x)| \leq \sqrt{x}.$

The Mertens Conjecture

Conjecture (Mertens Conjecture) For all $x \ge 1$,

$$|M(x)| \leq \sqrt{x}.$$

Conjecture (Mertens Conjecture with constant C) There exists C > 1 such that

$$\limsup_{x\to\infty}\frac{|M(x)|}{\sqrt{x}}\leq C$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The Mertens Conjecture

Conjecture (Mertens Conjecture) For all $x \ge 1$,

$$|M(x)| \leq \sqrt{x}.$$

Conjecture (Mertens Conjecture with constant C) There exists C > 1 such that

$$\limsup_{x\to\infty}\frac{|M(x)|}{\sqrt{x}}\leq C$$

Conjecture (Weak Mertens Conjecture)

$$\int_1^X \left(\frac{M(x)}{x}\right)^2 dx \ll \log X.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The Mertens Conjecture

Conjecture (Mertens Conjecture) For all $x \ge 1$,

$$|M(x)| \leq \sqrt{x}.$$

Conjecture (Mertens Conjecture with constant C) There exists C > 1 such that

$$\limsup_{x\to\infty}\frac{|M(x)|}{\sqrt{x}}\leq C$$

Conjecture (Weak Mertens Conjecture)

$$\int_1^X \left(\frac{M(x)}{x}\right)^2 dx \ll \log X.$$

Exercise. Each of these conjectures implies the Riemann Hypothesis.

$$\frac{1}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} = s \int_1^{\infty} \frac{M(x)}{x^{s+1}} dx.$$

Why the Mertens Conjecture should be false.

We expect that for every ε > 0

$$M(x) = O(x^{\frac{1}{2}+\varepsilon})$$

• What is the smallest function $f(x) \to \infty$ such that $M(x) = O(x^{\frac{1}{2}}f(x))$.

Conjecture (LI: Linear Independence Conjecture)

The imaginary parts $\gamma_1, \gamma_2, \ldots$ of the (distinct) zeros of $\zeta(s)$ above the real axis are connected by no relation of the type

$$\sum_{n=1}^{N} c_n \gamma_n = 0 \, (c_n \text{ integers not all zero}),$$

Theorem (Ingham)

Assume LI is true. Then

$$\limsup_{x \to \infty} \frac{M(x)}{\sqrt{x}} = \infty, \ \liminf_{x \to \infty} \frac{M(x)}{\sqrt{x}} = -\infty,$$
$$\limsup_{x \to \infty} \frac{L(x)}{\sqrt{x}} = \infty, \ \liminf_{x \to \infty} \frac{L(x)}{\sqrt{x}} = -\infty.$$

Disproving the Mertens Conjecture.

Let

$$A = \limsup_{x \to \infty} \frac{M(x)}{\sqrt{x}}$$
 and $B = \liminf_{x \to \infty} \frac{M(x)}{\sqrt{x}}$.

author	year	A	В
Jurkat	1973		< -0.5054
Spira	1966	\geq 0.5355	≤ -0.6027
Jurkat-Peyerimhoff	1976	\geq 0.779	≤ -0.638
Te Riele	1979	\geq 0.860	≤ -0.843
Odlyzko-te-Riele	1985	≥ 1.06	≤ -1.009
Kotnik-te-Riele	2003	≥ 1.279	≤ -1.218
Best-Trudgian	2015	\geq 1.6383	≤ -1.6383
Hurst	2018	\geq 1.837625	≤ -1.837625

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Introduction	The size of $M(x)$	Mertens Conjecture	Discrete Moments	An explicit formula	Limiting distributions	Polya and Turan problems	References
0000	0000	0000	000	0000000	00000	00	000

Table of Contents

Introduction

Size of M(x)

Mertens Conjecture

Discrete moments

Explicit formula

Limiting distributions

Polya and Turan problems

References

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

Discrete moments of the Riemann zeta function.

Conjecture (SZ: Simple zeros Conjecture) All zeros of the Riemann zeta function are simple.

Note that ρ is simple $\iff \zeta'(\rho) \neq 0$.

The theory of M(x) is intimately related to negative moments of |ζ'(ρ)|.

$$J_{-k}(T) = \sum_{0 < \gamma \leq T} rac{1}{|\zeta'(
ho)|^{2k}} ext{ for } k \in \mathbb{R}.$$

Conjecture (Gonek-Hejhal, 1989) For $k \in [0, \frac{3}{2})$, $J_{-k}(T) \asymp T(\log T)^{(k-1)^2}$.

Lower bounds for discrete moments

Conjecture (Gonek, 1989 and Hughes-Keating-O'Connell, 200*)

$$J_{-1}(T)\sim rac{3}{\pi^3}T$$
 and $J_{-rac{1}{2}}(T)\sim lpha T(\log T)^{rac{1}{4}}$

for a precise constant α .

Theorem (Milinovich-N., 2010)

Assume the Riemann Hypothesis and the zeros of $\zeta(s)$ are simple. Then for every $\varepsilon > 0$,

$$J_{-1}(T) \geq \left(rac{3}{2\pi^3} - arepsilon
ight) T,$$

for T sufficiently large.

Theorem (Heap-Li-Zhao, 2022)

Assume the Riemann Hypothesis and the zeros of $\zeta(s)$ are simple. then

$$J_{-\frac{1}{2}}(T) \gg T(\log T)^{\frac{1}{4}}.$$

Note: Currently there are no non-trivial upper bounds for $J_{-1}(T)$ and $J_{-\frac{1}{2}}(T)$. In the study of M(x) we must assume some average bound for $\frac{1}{|\zeta'(\rho)|}$. See recent work of Bui-Florea.

Introduction	The size of $M(x)$	Mertens Conjecture	Discrete Moments	An explicit formula	Limiting distributions	Polya and Turan problems	References
0000	0000	0000	000	000000	00000	00	000

Table of Contents

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Introduction

Size of M(x)

Mertens Conjecture

Discrete moments

Explicit formula

Limiting distributions

Polya and Turan problems

References

An explicit formula for M(x).

Exercise: Use Perron's formula to show for $1 \le T \le x$:

$$M(x) = \frac{1}{2\pi i} \int_{c-iT}^{c+iT} \frac{x^s}{s\zeta(s)} ds + O\left(\frac{x\log x}{T}\right) \text{ where } c = 1 + \frac{1}{\log x}$$

Comparison to PNT:

$$\psi(x) = -\frac{1}{2\pi i} \int_{c-iT}^{c+iT} \frac{x^s}{s} \frac{\zeta'(s)}{\zeta(s)} ds + O\left(\frac{x(\log x)^2}{T}\right) \text{ where } c = 1 + \frac{1}{\log x}.$$

Move contour left to $\mathfrak{Re}(s) = -rac{1}{10}$

function	integrand	pole	residue
$\psi(\mathbf{x})$	$-\frac{\zeta'(s)x^s}{\zeta(s)s}$	s = 1	x
$\psi(x)$	$-\frac{\zeta'(s)x^s}{\zeta(s)s}$	s = ho	$-\frac{x^{\rho}}{\rho}$
M(x)	$\frac{x^{s}}{\zeta(s)s}$	s = ho, $ ho$ simple zero	$\frac{x^{\rho}}{\rho\zeta'(\rho)}$

Exercise. Compute residue $\left(\frac{x^s}{\zeta(s)s}, s = \rho\right)$ assuming ρ is a zero of order m.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Lemma (Special sequence \mathcal{T}^{5})

Assume RH. Let $\epsilon > 0$. There exists a sequence of numbers $\mathcal{T} = \{T_n\}_{n=0}^{\infty}$ which satisfies

$$n \leq T_n \leq n+1$$
 and $rac{1}{\zeta(\sigma+iT)} = O(T^\epsilon)$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

for all $-1 \leq \sigma \leq 2$.

⁵See Lemma 3 of Ng, PLMS, 2004 ⁶See Lemma 4 of Ng, PLMS, 2004

Lemma (Special sequence \mathcal{T}^{5})

Assume RH. Let $\epsilon > 0$. There exists a sequence of numbers $\mathcal{T} = \{T_n\}_{n=0}^{\infty}$ which satisfies

$$n \leq T_n \leq n+1$$
 and $rac{1}{\zeta(\sigma+iT)} = O(T^\epsilon)$

for all $-1 \leq \sigma \leq 2$.

Theorem $(M(x) \text{ explicit formula } ^6)$

Let $\epsilon > 0$. Assume the Riemann hypothesis and that all zeros of $\zeta(s)$ are simple. For $x \ge 2$ and $T \in T$

$$M(x) = \sum_{|\gamma| < \tau} \frac{x^{\rho}}{\rho \zeta'(\rho)} + O\Big(\frac{x \log x}{T} + \frac{x}{T^{1-\epsilon} \log x} + 1\Big).$$

Let $\rho = \frac{1}{2} + i\gamma$ be a non-trivial zero.

$$M(x)x^{-\frac{1}{2}} = \sum_{|\gamma| < T} \frac{x^{i\gamma}}{\rho \zeta'(\rho)} + O\Big(\frac{x^{\frac{1}{2}}\log x}{T} + \frac{x^{\frac{1}{2}}}{T^{1-\epsilon}\log x} + x^{-\frac{1}{2}}\Big).$$

⁵See Lemma 3 of Ng, PLMS, 2004 ⁶See Lemma 4 of Ng, PLMS, 2004

For an appropriate $T = T(x) \ge Cx^{\frac{1}{2}} \log x$

$$M(x)x^{-\frac{1}{2}} = \sum_{|\gamma| < \tau} \frac{x^{i\gamma}}{\rho \zeta'(\rho)} + o(1).$$

For an appropriate
$$T = T(x) \ge Cx^{\frac{1}{2}} \log x$$

$$M(x)x^{-rac{1}{2}} = \sum_{|\gamma| < \tau} rac{x^{i\gamma}}{
ho\zeta'(
ho)} + o(1).$$

Pair conjugate zeros in the sum $\rho=\frac{1}{2}+i\gamma$ and $\overline{\rho}=\frac{1}{2}-i\gamma$

$$\begin{split} \frac{x^{i\gamma}}{\rho\zeta'(\rho)} + \frac{x^{-i\gamma}}{\bar{\rho}\zeta'(\bar{\rho})} &= 2\mathfrak{Re}\Big(\frac{x^{i\gamma}}{\rho\zeta'(\rho)}\Big) \text{ since } \zeta'(\bar{\rho}) = \overline{\zeta'(\rho)} \\ &= 2\mathfrak{Re}\Big(\frac{x^{i\gamma}}{|\rho\zeta'(\rho)|e^{i\arg(\rho\zeta'(\rho))}}\Big) \\ &= \frac{2}{|\rho\zeta'(\rho)|}\mathfrak{Re}\Big(e^{i\gamma\log x + i\beta\gamma}\Big) \text{ where } \beta\gamma = -\arg(\rho\zeta'(\rho)) \end{split}$$

$$M(x)x^{-\frac{1}{2}} = 2\mathfrak{Re}\Big(\sum_{0 < \gamma < T} \frac{e^{i(\gamma \log x + \beta_{\gamma})}}{|\rho \zeta'(\rho)|}\Big) + o(1)$$

For an appropriate
$$T = T(x) \ge Cx^{\frac{1}{2}} \log x$$

$$M(x)x^{-rac{1}{2}} = \sum_{|\gamma| < \tau} rac{x^{i\gamma}}{
ho\zeta'(
ho)} + o(1).$$

Pair conjugate zeros in the sum $\rho=\frac{1}{2}+i\gamma$ and $\overline{\rho}=\frac{1}{2}-i\gamma$

$$\begin{split} \frac{x^{i\gamma}}{\rho\zeta'(\rho)} + \frac{x^{-i\gamma}}{\bar{\rho}\zeta'(\bar{\rho})} &= 2\mathfrak{Re}\Big(\frac{x^{i\gamma}}{\rho\zeta'(\rho)}\Big) \text{ since } \zeta'(\bar{\rho}) = \overline{\zeta'(\rho)} \\ &= 2\mathfrak{Re}\Big(\frac{x^{i\gamma}}{|\rho\zeta'(\rho)|e^{i\arg(\rho\zeta'(\rho))}}\Big) \\ &= \frac{2}{|\rho\zeta'(\rho)|}\mathfrak{Re}\Big(e^{i\gamma\log x + i\beta\gamma}\Big) \text{ where } \beta\gamma = -\arg(\rho\zeta'(\rho)) \end{split}$$

$$M(x)x^{-\frac{1}{2}} = 2\mathfrak{Re}\Big(\sum_{0 < \gamma < T} \frac{e^{i(\gamma \log x + \beta_{\gamma})}}{|\rho \zeta'(\rho)|}\Big) + o(1)$$

Variable change $x = e^y$

$$M(e^{\gamma})e^{-\frac{\gamma}{2}} = 2\mathfrak{Re}\Big(\sum_{0 < \gamma < T_{\gamma}} \frac{e^{i(\gamma\gamma + \beta_{\gamma})}}{|\rho\zeta'(\rho)|}\Big) + o(1) = 2\mathfrak{Re}\Big(\sum_{j=1}^{N} \frac{e^{2\pi i(\frac{j'}{2\pi}\gamma + \tilde{\beta}_j)}}{|\rho_j\zeta'(\rho_j)|}\Big) + o(1)$$

where non-trivial zeros have been labelled as $\rho_j = \frac{1}{2} + i\gamma_j$ with

$$\gamma_1 \leq \gamma_2 \leq \cdots \leq \gamma_j \leq \gamma_{j+1} \leq \cdots$$

⁷See. Titchmarsh, Theorem 8.3, p.185 and Ivić, Lemma 9.3, p.233 \rightarrow $\langle \square \rangle$ \rightarrow $\langle \square \rangle$ $\langle \square \rangle$ $\langle \square \rangle$

Variable change $x = e^{y}$

$$M(e^{\gamma})e^{-\frac{\gamma}{2}} = 2\mathfrak{Re}\Big(\sum_{0<\gamma<\tau_{\gamma}}\frac{e^{i(\gamma\gamma+\beta_{\gamma})}}{|\rho\zeta'(\rho)|}\Big) + o(1) = 2\mathfrak{Re}\Big(\sum_{j=1}^{N}\frac{e^{2\pi i(\frac{j'}{2\pi}\gamma+\widetilde{\beta}_{j})}}{|\rho_{j}\zeta'(\rho_{j})|}\Big) + o(1)$$

where non-trivial zeros have been labelled as $\rho_j = \frac{1}{2} + i\gamma_j$ with

$$\gamma_1 \leq \gamma_2 \leq \cdots \leq \gamma_j \leq \gamma_{j+1} \leq \cdots$$

Theorem (Kronecker⁷)

Let a_1, \ldots, a_N be linearly independent over the rational numbers. That is, there is no linear relation $\lambda_1 a_1 + \cdots + \lambda_N a_N = 0$ where $\lambda_1, \ldots, \lambda_N$ are integers (not all zero). Let b_1, \ldots, b_N be any real numbers, and $\varepsilon \in (0, 1)$. Then we can find a number y and integers x_1, \ldots, x_N such that

$$|a_jy - b_j - x_j| \leq \varepsilon \ (j = 1, \dots, N).$$

Variable change $x = e^{y}$

$$M(e^{\gamma})e^{-\frac{\gamma}{2}} = 2\mathfrak{Re}\Big(\sum_{0 < \gamma < \tau_{\gamma}} \frac{e^{i(\gamma\gamma + \beta_{\gamma})}}{|\rho\zeta'(\rho)|}\Big) + o(1) = 2\mathfrak{Re}\Big(\sum_{j=1}^{N} \frac{e^{2\pi i(\frac{\gamma j}{2\pi}\gamma + \tilde{\beta}_{j})}}{|\rho_{j}\zeta'(\rho_{j})|}\Big) + o(1)$$

where non-trivial zeros have been labelled as $\rho_j = \frac{1}{2} + i\gamma_j$ with

$$\gamma_1 \leq \gamma_2 \leq \cdots \leq \gamma_j \leq \gamma_{j+1} \leq \cdots$$

Theorem (Kronecker ⁷)

Let a_1, \ldots, a_N be linearly independent over the rational numbers. That is, there is no linear relation $\lambda_1 a_1 + \cdots + \lambda_N a_N = 0$ where $\lambda_1, \ldots, \lambda_N$ are integers (not all zero). Let b_1, \ldots, b_N be any real numbers, and $\varepsilon \in (0, 1)$. Then we can find a number y and integers x_1, \ldots, x_N such that

$$|a_jy-b_j-x_j|\leq \varepsilon \ (j=1,\ldots,N).$$

Applying with $a_j = \frac{\gamma_j}{2\pi}$ and $b_j = -\widetilde{\beta}_j$ for $j = 1, \dots, N$, we see that there exists y

$$\frac{\gamma_j}{2\pi}y + \widetilde{\beta}_j \text{ is close to an integer } \implies e^{2\pi i \left(\frac{\gamma_j}{2\pi}y + \widetilde{\beta}_j\right)} \approx 1.$$

⁷See. Titchmarsh, Theorem 8.3, p.185 and Ivić, Lemma 9.3, p.233 \rightarrow $\langle \square \rangle$ \rightarrow $\langle \square \rangle$ $\langle \square \rangle$ $\langle \square \rangle$

$$M(e^{y})e^{-rac{y}{2}}pprox 2\mathfrak{Re}\Big(\sum_{j=1}^{N}rac{1}{|
ho_{j}\zeta'(
ho_{j})|}\Big)+o(1)$$

Assuming RH and SZ (all zeros are simple), Ingham showed

$$\sum_{j=1}^\infty rac{1}{|
ho_j \zeta'(
ho_j)|} = \infty.$$

Note that the Gonek-Hejhal conjecture implies

$$\sum_{0 < \gamma < \tau} \frac{1}{|\zeta'(\rho)|} \asymp T(\log T)^{\frac{1}{4}}.$$
 (1)

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Exercise. Use partial summation to show that (1) implies

$$\sum_{0<\gamma< au}rac{1}{|
ho\zeta'(
ho)|} symp (\log T)^{rac{5}{4}}.$$

Thus we expect for this value of *y*:

$$M(e^{\gamma})e^{-\frac{\gamma}{2}}\approx (\log N)^{\frac{5}{4}}.$$

Theorem The Riemann Hypothesis and $J_{-1}(T) \ll T$ imply: (i) $M(x) \ll x^{\frac{1}{2}}(\log x)^{\frac{3}{2}}$

$$W(x) \ll x^2 (\log x)^2$$

(ii) and the weak Mertens conjecture is true

$$\int_2^X \left(\frac{M(x)}{x}\right)^2 \ dx \ll \log X \ .$$

• Assuming the bound $J_{-1/2}(T) \ll T(\log T)^{\frac{1}{4}}$ (i) becomes

$$M(x) \ll x^{\frac{1}{2}} (\log x)^{\frac{5}{4}}.$$

Compare to von Koch's RH implies

$$\psi(x) = x + O(\sqrt{x}(\log x)^2).$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Introduction	The size of $M(x)$	Mertens Conjecture	Discrete Moments	An explicit formula	Limiting distributions	Polya and Turan problems	References
0000	0000	0000	000	0000000	0000	00	000

Table of Contents

Introduction

Size of M(x)

Mertens Conjecture

Discrete moments

Explicit formula

Limiting distributions

Polya and Turan problems

References

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

Heath-Brown 1992:

"It appears to be an open question whether $x^{-\frac{1}{2}}M(x)$ has a distribution function. To prove this one would want to assume the Riemann Hypothesis and the simplicity of the zeros, and perhaps also a growth condition on M(x)."

Theorem (N., 2004, PLMS)

Assume RH and $J_{-1}(T) \ll T$. Then $e^{-\frac{\nu}{2}}M(e^{\nu})$ has a limiting distribution ν on \mathbb{R} , that is,

$$\lim_{Y\to\infty}\frac{1}{Y}\int_0^Y f(e^{-\frac{y}{2}}M(e^y))\ dy = \int_{-\infty}^\infty f(x)\ d\nu(x) \tag{2}$$

for all bounded Lipschitz continuous functions f on \mathbb{R} .

- Techniques of Rubinstein-Sarnak, Cramer.
- Kronecker-Weyl equidistribution theorem.
 (the ray y(γ₁,..., γ_N) is uniformly distributed in its closure within T^N)
- ν is a probability measure which reveals behaviour of M(x).
- Approximation argument gives *f* bounded, continuous functions.

Suppose the above theorem remains valid for indicator functions. Let $f = 1_{[a,b]}$ where

$$1_{[a,b]}(x) = \begin{cases} 1 \text{ if } x \in [a,b] \\ 0 \text{ else} \end{cases}$$

With the above choice of f(x) the theorem translates to

$$\lim_{Y\to\infty}\frac{1}{Y}\operatorname{meas}\{y\in[0,Y]\mid a\leq\frac{M(e^{y})}{e^{\frac{y}{2}}}\leq b\}=\nu([a,b]). \tag{3}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- If ν is an absolutely continuous measure, then this identity would be true.
- The measure ν tells us how often the scaled version of M(x)/√x lies between a and b. (eg. take a = −1 and b = 1)

A random model for M(x).

Recall

$$M(e^{y})e^{-rac{y}{2}}\sim 2\mathfrak{Re}\Big(\sum_{j=1}^{N}rac{e^{i(\gamma_{j}y+eta\gamma_{j})}}{|
ho_{j}\zeta'(
ho_{j})|}\Big)$$
 for some $N=N_{y}.$

A random model for M(x).

Recall

$$M(e^{y})e^{-rac{y}{2}}\sim 2\mathfrak{Re}\Big(\sum_{j=1}^{N}rac{e^{i(\gamma_{j}y+eta\gamma_{j})}}{|
ho_{j}\zeta'(
ho_{j})|}\Big)$$
 for some $N=N_{y}$.

Assuming LI this behaves like

$$X(\underline{\theta}) = \sum_{n=1}^{\infty} r_n \cos(2\pi\theta_n) \text{ where } r_n = \frac{2}{|\rho_n \zeta'(\rho_n)|}.$$
 (4)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

where $\underline{\theta} = (\theta_1, \theta_2, \dots,) \in \mathbb{T}^{\infty}$ (i.i.d. variables in [0, 1]).

A random model for M(x).

Recall

$$M(e^{y})e^{-rac{y}{2}}\sim 2\mathfrak{Re}\Big(\sum_{j=1}^{N}rac{e^{i(\gamma_{j}y+eta\gamma_{j})}}{|
ho_{j}\zeta'(
ho_{j})|}\Big)$$
 for some $N=N_{y}$.

Assuming LI this behaves like

$$X(\underline{\theta}) = \sum_{n=1}^{\infty} r_n \cos(2\pi\theta_n) \text{ where } r_n = \frac{2}{|\rho_n \zeta'(\rho_n)|}.$$
 (4)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

where $\underline{\theta} = (\theta_1, \theta_2, ...,) \in \mathbb{T}^{\infty}$ (i.i.d. variables in [0, 1]). This gives a probability measure P_X on \mathbb{R} :

 $P_X(B) = P(X \in B)$ where B is a Borel set.

and P is the canonical probability measure on \mathbb{T}^{∞} .

A random model for M(x).

Recall

$$M(e^{y})e^{-rac{y}{2}}\sim 2\mathfrak{Re}\Big(\sum_{j=1}^{N}rac{e^{i(\gamma_{j}y+eta\gamma_{j})}}{|
ho_{j}\zeta'(
ho_{j})|}\Big)$$
 for some $N=N_{y}$.

Assuming LI this behaves like

$$X(\underline{\theta}) = \sum_{n=1}^{\infty} r_n \cos(2\pi\theta_n) \text{ where } r_n = \frac{2}{|\rho_n \zeta'(\rho_n)|}.$$
 (4)

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

where $\underline{\theta} = (\theta_1, \theta_2, ...,) \in \mathbb{T}^{\infty}$ (i.i.d. variables in [0, 1]). This gives a probability measure P_X on \mathbb{R} :

 $P_X(B) = P(X \in B)$ where B is a Borel set.

and *P* is the canonical probability measure on \mathbb{T}^{∞} . On RH, LI, and $J_{-1}(T) \ll T$, we have

$$\nu(B)=P_X(B).$$

• Using methods from probability, we can show there exist $c_1, c_2 > 0$

$$\exp(-\exp(c_1V^{\frac{4}{5}})) \ll P_X([V,\infty)) \ll \exp(-\exp(c_2V^{\frac{4}{5}})).$$
 (5)

A heurstic argument suggests

$$\left(\frac{1}{c_1}\right)^{\frac{5}{4}} \le \limsup_{y \to \infty} \frac{M(e^y)}{e^{\frac{y}{2}} (\log \log y)^{\frac{5}{4}}} \le \left(\frac{1}{c_2}\right)^{\frac{5}{4}} .$$
 (6)

Conjecture (Gonek)

There exists a number B > 0 such that

$$\overline{\underline{\lim}}_{x\to\infty} \frac{M(x)}{\sqrt{x}(\log\log\log x)^{\frac{5}{4}}} = \pm B .$$
 (7)

Conjecture (Ng (2012))

The value of B in (7) is $B = \frac{8a}{5}$ where

$$a = \frac{1}{\sqrt{\pi}} e^{3\zeta'(-1) - \frac{11}{12}\log 2} \prod_{p} \left((1 - p^{-1})^{\frac{1}{4}} \sum_{k=0}^{\infty} \left(\frac{\Gamma(k - \frac{1}{2})}{k! \Gamma(-\frac{1}{2})} \right)^2 p^{-k} \right) = 0.16712 \dots^8$$

Introduction	The size of $M(x)$	Mertens Conjecture	Discrete Moments	An explicit formula	Limiting distributions	Polya and Turan problems	References
0000	0000	0000	000	0000000	00000	•0	000

Table of Contents

Introduction

Size of M(x)

Mertens Conjecture

Discrete moments

Explicit formula

Limiting distributions

Polya and Turan problems

References

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Polya and Turan problems.

Polya observed that

$$L(x) = \sum_{n \le x} \lambda(n) \le 0$$
 (for $2 \le x \le 250,000$)

and Turan observed

$$T(x) = \sum_{n \le x} \frac{\lambda(n)}{n} \ge 0$$

for small values of x. Does this persist forever?

```
Theorem (Haselgrove)
(i) L(x) changes signs infinitely often.
(ii) T(x) changes signs infinitely often,.
```

Tanaka, 1980, L(906105257) > 0,

Borwein, Ferguson, Mossinghoff, 2008, T(72185376951205) < 0.

See article of Humphries for limiting distribution results on L(x) and T(x) and article of Mossinghoff and Trudgian.

Introduction	The size of $M(x)$	Mertens Conjecture	Discrete Moments	An explicit formula	Limiting distributions	Polya and Turan problems	References
0000	0000	0000	000	0000000	00000	00	•00

Table of Contents

Introduction

Size of M(x)

Mertens Conjecture

Discrete moments

Explicit formula

Limiting distributions

Polya and Turan problems

References

References

- H. Bui, A. Florea, Negative moments of the Riemann zeta-function, https://arxiv.org/abs/2302.07226.
- S.M. Gonek, On negative moments of the Riemann zeta-function, Mathematika, 1989.
- C.B. Haselgrove, A disproof of a conjecture of Pólya, Mathematika, 1958.
- C.P. Hughes, J.P. Keating, Neil O'Connell, Random matrix theory and the derivative of the Riemann zeta function, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.,2000.
- Peter Humphries, *The distribution of weighted sums of the Liouville function and Pólya's conjecture*, JNT, 2013.
- G. Hurst, Computations of the Mertens function and improved bounds on the Mertens conjecture, Math. Comp., 2018.
- A.E. Ingham, On two conjectures in the theory of numbers, AJM, 1942.
- A. Ivić, The Riemann zeta-function. Theory and applications, Reprint of the 1985 original [Wiley, New York; MR0792089]. Dover Publications, 2003.
- E. Lee, N. Leong, Explicit bounds on the summatory function of the Möbius function using the Perron formula, https://arxiv.org/pdf/2208.06141.pdf.

- H.L. Montgomery, R. C. Vaughan, *Multiplicative number theory. I. Classical theory.* Cambridge University Press, 2007.
- M. Mossinghoff, T. Trudgian, Between the problems of Pólya and Tur{an. J. Aust. Math. Soc., 2012.
- N. Ng, The distribution of the summatory function of the Möbius function, PLMS, 2004.
- A.M. Odlyzko and H. te Riele, Disproof of the Mertens conjecture, Crelle, 1985.
- K. Soundararajan, Partial sums of the Möbius function, Crelle, 2009.
- E.C. Titchmarsh, *The Theory of the Riemann Zeta function*, Second edition. Edited and with a preface by D. R. Heath-Brown. The Clarendon Press, Oxford University Press, 1986.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00