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Notation

• Let g(x) > 0.

• f (x) = O(g(x)) and f (x)� g(x) mean that there exist positive constants
C and x0 such that

|f (x)| ≤ Cg(x) for x ≥ x0.

• f (x) � g(x) means f (x)� g(x) and g(x)� f (x).

• f (x) = Ω+(g(x)) means

lim sup
x→∞

f (x)

g(x)
> 0.

• f (x) = Ω−(g(x)) means

lim inf
x→∞

f (x)

g(x)
< 0.

• f (x) ∼ g(x) means limx→∞
f (x)
g(x)

= 1.

• f (x) = o(g(x)) means limx→∞
f (x)
g(x)

= 0.
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The Classical Summatory functions

• The ψ function of prime number theory.

ψ(x) =
∑
n≤x

Λ(n) where Λ(n) =

{
log p if n = pj ,

0 else .

• The sum of the Möbius function.

M(x) =
∑
n≤x

µ(n) where µ(n) =


1 if n = 1,

(−1)k if n = p1 · · · pk is squarefree,

0 else.

• The sum of the Liouville function.

L(x) =
∑
n≤x

λ(n) where λ(n) = (−1)Ω(n) = (−1)a1+···ak and n = pa1
1 · · · p

ak
k .

• A weighted version of L(x).

T (x) =
∑
n≤x

λ(n)

n
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The prime number theorem

• The prime number theorem (PNT) is the assertion

π(x) = #{p ≤ x | p prime } ∼
∫ x

2

dt

log t
.

• By an exercise (partial summation), the PNT is equivalent to

ψ(x) ∼ x .

• The Riemann hypothesis is equivalent to

ψ(x) = x + O(
√
x log2 x).

• The prime number theorem is also equivalent to the statement

M(x) = o(x).
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The size of M(x). Computations of Deleglise and Rivat

n 10 11 12 13 14 15
M (1× 10n) −33722 −87856 62366 599582 −875575 −3216373
M (2× 10n) 48723 −19075 −308413 127543 2639241 1011871
M (3× 10n) 42411 133609 190563 −759205 −2344314 5334755
M (4× 10n) −25295 202631 174209 −403700 −3810264 −6036592
M (5× 10n) 54591 56804 −435920 −320046 4865646 11792892
M (6× 10n) −56841 −43099 268107 1101442 −4004298 −14685733
M (7× 10n) 7917 111011 −4252 −2877017 −2605256 4195668
M (8× 10n) −1428 −268434 −438208 −99222 3425855 6528429
M (9× 10n) −5554 10991 290186 1164981 7542952 −12589671

M̃(x) = |M(x)|/
√
x .

n 10 11 12 13 14 15

M̃ (1× 10n) 0.3372 0.2778 0.0624 0.1896 0.0876 0.1017

M̃ (2× 10n) 0.3445 0.0427 0.2181 0.0285 0.1866 0.0226

M̃ (3× 10n) 0.2449 0.2439 0.1100 0.1386 0.1353 0.0974

M̃ (4× 10n) 0.1265 0.3204 0.0871 0.0638 0.1905 0.0954

M̃ (5× 10n) 0.2441 0.0803 0.1949 0.0453 0.2176 0.1668

M̃ (6× 10n) 0.2321 0.0556 0.1095 0.1422 0.1635 0.1896

M̃ (7× 10n) 0.0299 0.1327 0.0016 0.3439 0.0985 0.0501

M̃ (8× 10n) 0.0050 0.3001 0.1549 0.0111 0.1211 0.0730

M̃ (9× 10n) 0.0185 0.0116 0.0967 0.1228 0.2514 0.1327
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Known results.

Theorem
Unconditionally, M(x) = O

(
x exp

(
−c1 log

3
5 x(log log x)−

1
5

))
for c1 > 0 1

RH implies

M(x) = O
(
x

1
2 exp

(
(log x)

1
2 (log log x)

7
8

))
2

Theorem (Selection of explicit results 3)

von Sterneck, 1898 |M(x)| ≤ x

9
+ 8 for x ≥ 0,

Cohen, Dress, El Marraki, 2007 |M(x)| < x

4 345
for x ≥ 2 160 535,

Schoenfeld, 1968 |M(x)| < 0.55x

(log x)2/3
for x > 1,

Ramaré, 2013 |M(x)| < 0.013x

log x
for x ≥ 1078853,

Hurst, 2018 |M(x)| ≤ 0.571
√
x for 33 ≤ x ≤ 1016.

1see Ivić’s book, Theorem 12.7, pp. 309-315.
2Soundararjan, 2009 and Bui-Florea 2023
3See article of Lee-Leong for many references.
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Omega results

f (x) = Ω+(g(x)) means lim supx→∞
f (x)
g(x)

> 0.

Theorem (Omega results 4)

(i)

M(x) = Ω±(x
1
2 ) .

(ii) If ζ(s) has a multiple zero of of order m ≥ 2

M(x) = Ω±(x
1
2 (log x)m−1) .

(iii) If RH is false, then
M(x) = Ω±(xθ−δ)

where
θ = sup

ρ,ζ(ρ)=0

Re(ρ)

and δ is any positive constant.

This shows that to disprove the Mertens conjecture, one can assume RH is true
and all zeros of ζ(s) are simple.

4See pp.467-470 of Montgomery-Vaughan’s book.
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The Mertens Conjecture

Conjecture (Mertens Conjecture)

For all x ≥ 1,
|M(x)| ≤

√
x .

Conjecture (Mertens Conjecture with constant C )

There exists C > 1 such that

lim sup
x→∞

|M(x)|√
x
≤ C

Conjecture (Weak Mertens Conjecture)∫ X

1

(M(x)

x

)2

dx � logX .

Exercise. Each of these conjectures implies the Riemann Hypothesis.

1

ζ(s)
=
∞∑
n=1

µ(n)

ns
= s

∫ ∞
1

M(x)

x s+1
dx .
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Why the Mertens Conjecture should be false.
• We expect that for every ε > 0

M(x) = O(x
1
2

+ε)

• What is the smallest function f (x)→∞ such that M(x) = O(x
1
2 f (x)).

Conjecture (LI: Linear Independence Conjecture)

The imaginary parts γ1, γ2, . . . of the (distinct) zeros of ζ(s) above the real axis
are connected by no relation of the type

N∑
n=1

cnγn = 0 (cn integers not all zero),

Theorem (Ingham)

Assume LI is true. Then

lim sup
x→∞

M(x)√
x

=∞, lim inf
x→∞

M(x)√
x

= −∞,

lim sup
x→∞

L(x)√
x

=∞, lim inf
x→∞

L(x)√
x

= −∞.
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Disproving the Mertens Conjecture.

Let

A = lim sup
x→∞

M(x)√
x

and B = lim inf
x→∞

M(x)√
x
.

author year A B
Jurkat 1973 < −0.5054
Spira 1966 ≥ 0.5355 ≤ −0.6027

Jurkat-Peyerimhoff 1976 ≥ 0.779 ≤ −0.638
Te Riele 1979 ≥ 0.860 ≤ −0.843

Odlyzko-te-Riele 1985 ≥ 1.06 ≤ −1.009
Kotnik-te-Riele 2003 ≥ 1.279 ≤ −1.218
Best-Trudgian 2015 ≥ 1.6383 ≤ −1.6383

Hurst 2018 ≥ 1.837625 ≤ −1.837625
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Discrete moments of the Riemann zeta function.

Conjecture (SZ: Simple zeros Conjecture)

All zeros of the Riemann zeta function are simple.

Note that ρ is simple ⇐⇒ ζ′(ρ) 6= 0.

• The theory of M(x) is intimately related to negative moments of |ζ′(ρ)|.

J−k(T ) =
∑

0<γ≤T

1

|ζ′(ρ)|2k
for k ∈ R.

Conjecture (Gonek-Hejhal, 1989)

For k ∈ [0, 3
2
),

J−k(T ) � T (logT )(k−1)2

.
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Lower bounds for discrete moments

Conjecture (Gonek,1989 and Hughes-Keating-O’Connell, 200*)

J−1(T ) ∼ 3

π3
T and J− 1

2
(T ) ∼ αT (logT )

1
4

for a precise constant α.

Theorem (Milinovich-N., 2010)

Assume the Riemann Hypothesis and the zeros of ζ(s) are simple. Then for
every ε > 0,

J−1(T ) ≥
( 3

2π3
− ε)T ,

for T sufficiently large.

Theorem (Heap-Li-Zhao, 2022)

Assume the Riemann Hypothesis and the zeros of ζ(s) are simple. then

J− 1
2
(T )� T (logT )

1
4 .

Note: Currently there are no non-trivial upper bounds for J−1(T ) and J− 1
2
(T ).

In the study of M(x) we must assume some average bound for 1
|ζ′(ρ)| . See

recent work of Bui-Florea.
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An explicit formula for M(x).

Exercise: Use Perron’s formula to show for 1 ≤ T ≤ x :

M(x) =
1

2πi

∫ c+iT

c−iT

x s

sζ(s)
ds + O

(
x log x

T

)
where c = 1 +

1

log x
.

Comparison to PNT:

ψ(x) = − 1

2πi

∫ c+iT

c−iT

x s

s

ζ′(s)

ζ(s)
ds + O

(
x(log x)2

T

)
where c = 1 +

1

log x
.

Move contour left to Re(s) = − 1
10

function integrand pole residue

ψ(x) − ζ
′(s)xs

ζ(s)s
s = 1 x

ψ(x) − ζ
′(s)xs

ζ(s)s
s = ρ − xρ

ρ

M(x) xs

ζ(s)s
s = ρ, ρ simple zero xρ

ρζ′(ρ)

Exercise. Compute residue
(

xs

ζ(s)s
, s = ρ

)
assuming ρ is a zero of order m.



Introduction The size of M(x) Mertens Conjecture Discrete Moments An explicit formula Limiting distributions Polya and Turan problems References

Lemma (Special sequence T 5)

Assume RH. Let ε > 0. There exists a sequence of numbers T = {Tn}∞n=0

which satisfies

n ≤ Tn ≤ n + 1 and
1

ζ(σ + iT )
= O(T ε)

for all −1 ≤ σ ≤ 2.

Theorem (M(x) explicit formula 6)

Let ε > 0. Assume the Riemann hypothesis and that all zeros of ζ(s) are
simple. For x ≥ 2 and T ∈ T

M(x) =
∑
|γ|<T

xρ

ρζ′(ρ)
+ O

(x log x

T
+

x

T 1−ε log x
+ 1
)
.

Let ρ = 1
2

+ iγ be a non-trivial zero.

M(x)x−
1
2 =

∑
|γ|<T

x iγ

ρζ′(ρ)
+ O

(x 1
2 log x

T
+

x
1
2

T 1−ε log x
+ x−

1
2

)
.

5See Lemma 3 of Ng, PLMS, 2004
6See Lemma 4 of Ng, PLMS, 2004



Introduction The size of M(x) Mertens Conjecture Discrete Moments An explicit formula Limiting distributions Polya and Turan problems References

Lemma (Special sequence T 5)

Assume RH. Let ε > 0. There exists a sequence of numbers T = {Tn}∞n=0

which satisfies

n ≤ Tn ≤ n + 1 and
1

ζ(σ + iT )
= O(T ε)

for all −1 ≤ σ ≤ 2.

Theorem (M(x) explicit formula 6)

Let ε > 0. Assume the Riemann hypothesis and that all zeros of ζ(s) are
simple. For x ≥ 2 and T ∈ T

M(x) =
∑
|γ|<T

xρ

ρζ′(ρ)
+ O

(x log x

T
+

x

T 1−ε log x
+ 1
)
.

Let ρ = 1
2

+ iγ be a non-trivial zero.

M(x)x−
1
2 =

∑
|γ|<T

x iγ

ρζ′(ρ)
+ O

(x 1
2 log x

T
+

x
1
2

T 1−ε log x
+ x−

1
2

)
.

5See Lemma 3 of Ng, PLMS, 2004
6See Lemma 4 of Ng, PLMS, 2004



Introduction The size of M(x) Mertens Conjecture Discrete Moments An explicit formula Limiting distributions Polya and Turan problems References

For an appropriate T = T (x) ≥ Cx
1
2 log x

M(x)x−
1
2 =

∑
|γ|<T

x iγ

ρζ′(ρ)
+ o(1).

Pair conjugate zeros in the sum ρ = 1
2

+ iγ and ρ = 1
2
− iγ

x iγ

ρζ′(ρ)
+

x−iγ

ρζ′(ρ)
= 2Re

( x iγ

ρζ′(ρ)

)
since ζ

′
(ρ) = ζ′(ρ)

= 2Re
( x iγ

|ρζ′(ρ)|e iarg(ρζ′(ρ))

)
=

2

|ρζ′(ρ)|Re
(
e iγ log x+iβγ

)
where βγ = −arg(ρζ′(ρ))

M(x)x−
1
2 = 2Re

( ∑
0<γ<T

e i(γ log x+βγ )

|ρζ′(ρ)|

)
+ o(1)
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Variable change x = ey

M(ey )e−
y
2 = 2Re

( ∑
0<γ<Ty

e i(γy+βγ )

|ρζ′(ρ)|

)
+ o(1) = 2Re

( N∑
j=1

e2πi(
γj
2π

y+β̃j )

|ρjζ′(ρj)|

)
+ o(1)

where non-trivial zeros have been labelled as ρj = 1
2

+ iγj with

γ1 ≤ γ2 ≤ · · · ≤ γj ≤ γj+1 ≤ · · · .

Theorem (Kronecker 7)

Let a1, . . . , aN be linearly independent over the rational numbers.That is, there
is no linear relation λ1a1 + · · ·+ λNaN = 0 where λ1, . . . , λN are integers (not
all zero). Let b1, . . . , bN be any real numbers, and ε ∈ (0, 1). Then we can find
a number y and integers x1, . . . , xN such that

|ajy − bj − xj | ≤ ε (j = 1, . . . ,N).

Applying with aj =
γj
2π

and bj = −β̃j for j = 1, . . . ,N, we see that there exists y

γj
2π

y + β̃j is close to an integer =⇒ e2πi(
γj
2π

y+β̃j ) ≈ 1.

7See. Titchmarsh, Theorem 8.3, p.185 and Ivić, Lemma 9.3, p.233
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is no linear relation λ1a1 + · · ·+ λNaN = 0 where λ1, . . . , λN are integers (not
all zero). Let b1, . . . , bN be any real numbers, and ε ∈ (0, 1). Then we can find
a number y and integers x1, . . . , xN such that

|ajy − bj − xj | ≤ ε (j = 1, . . . ,N).

Applying with aj =
γj
2π

and bj = −β̃j for j = 1, . . . ,N, we see that there exists y

γj
2π

y + β̃j is close to an integer =⇒ e2πi(
γj
2π

y+β̃j ) ≈ 1.

7See. Titchmarsh, Theorem 8.3, p.185 and Ivić, Lemma 9.3, p.233
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M(ey )e−
y
2 ≈ 2Re

( N∑
j=1

1

|ρjζ′(ρj)|

)
+ o(1)

Assuming RH and SZ (all zeros are simple), Ingham showed

∞∑
j=1

1

|ρjζ′(ρj)|
=∞.

Note that the Gonek-Hejhal conjecture implies∑
0<γ<T

1

|ζ′(ρ)| � T (logT )
1
4 . (1)

Exercise. Use partial summation to show that (1) implies∑
0<γ<T

1

|ρζ′(ρ)| � (logT )
5
4 .

Thus we expect for this value of y :

M(ey )e−
y
2 ≈ (logN)

5
4 .
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Theorem
The Riemann Hypothesis and J−1(T )� T imply:
(i)

M(x)� x
1
2 (log x)

3
2 ,

(ii) and the weak Mertens conjecture is true∫ X

2

(
M(x)

x

)2

dx � logX .

• Assuming the bound J−1/2(T )� T (logT )
1
4 (i) becomes

M(x)� x
1
2 (log x)

5
4 .

• Compare to von Koch’s RH implies

ψ(x) = x + O(
√
x(log x)2).
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Heath-Brown 1992:
“It appears to be an open question whether x−

1
2 M(x) has a distribution function. To

prove this one would want to assume the Riemann Hypothesis and the simplicity of

the zeros, and perhaps also a growth condition on M(x).”

Theorem (N., 2004, PLMS)

Assume RH and J−1(T )� T. Then e−
y
2 M(ey ) has a limiting distribution ν

on R, that is,

lim
Y→∞

1

Y

∫ Y

0

f (e−
y
2 M(ey )) dy =

∫ ∞
−∞

f (x) dν(x) (2)

for all bounded Lipschitz continuous functions f on R.

• Techniques of Rubinstein-Sarnak, Cramer.

• Kronecker-Weyl equidistribution theorem.
(the ray y(γ1, . . . , γN) is uniformly distributed in its closure within TN)

• ν is a probability measure which reveals behaviour of M(x).

• Approximation argument gives f bounded, continuous functions.
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Suppose the above theorem remains valid for indicator functions. Let f = 1[a,b]

where

1[a,b](x) =

{
1 if x ∈ [a, b]
0 else

.

With the above choice of f (x) the theorem translates to

lim
Y→∞

1

Y
meas{y ∈ [0,Y ] | a ≤ M(ey )

e
y
2

≤ b } = ν([a, b]). (3)

• If ν is an absolutely continuous measure, then this identity would be true.

• The measure ν tells us how often the scaled version of M(x)/
√
x lies

between a and b. (eg. take a = −1 and b = 1)
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A random model for M(x).

Recall

M(ey )e−
y
2 ∼ 2Re

( N∑
j=1

e
i(γj y+βγj )

|ρjζ′(ρj)|

)
for some N = Ny .

Assuming LI this behaves like

X (θ) =
∞∑
n=1

rn cos(2πθn) where rn =
2

|ρnζ′(ρn)| . (4)

where θ = (θ1, θ2, . . . , ) ∈ T∞ (i.i.d. variables in [0, 1]).
This gives a probability measure PX on R:

PX (B) = P(X ∈ B) where B is a Borel set.

and P is the canonical probability measure on T∞.
On RH, LI, and J−1(T )� T , we have

ν(B) = PX (B).



Introduction The size of M(x) Mertens Conjecture Discrete Moments An explicit formula Limiting distributions Polya and Turan problems References

A random model for M(x).

Recall

M(ey )e−
y
2 ∼ 2Re

( N∑
j=1

e
i(γj y+βγj )

|ρjζ′(ρj)|

)
for some N = Ny .

Assuming LI this behaves like

X (θ) =
∞∑
n=1

rn cos(2πθn) where rn =
2

|ρnζ′(ρn)| . (4)

where θ = (θ1, θ2, . . . , ) ∈ T∞ (i.i.d. variables in [0, 1]).

This gives a probability measure PX on R:

PX (B) = P(X ∈ B) where B is a Borel set.

and P is the canonical probability measure on T∞.
On RH, LI, and J−1(T )� T , we have

ν(B) = PX (B).



Introduction The size of M(x) Mertens Conjecture Discrete Moments An explicit formula Limiting distributions Polya and Turan problems References

A random model for M(x).

Recall

M(ey )e−
y
2 ∼ 2Re

( N∑
j=1

e
i(γj y+βγj )

|ρjζ′(ρj)|

)
for some N = Ny .

Assuming LI this behaves like

X (θ) =
∞∑
n=1

rn cos(2πθn) where rn =
2

|ρnζ′(ρn)| . (4)

where θ = (θ1, θ2, . . . , ) ∈ T∞ (i.i.d. variables in [0, 1]).
This gives a probability measure PX on R:

PX (B) = P(X ∈ B) where B is a Borel set.

and P is the canonical probability measure on T∞.

On RH, LI, and J−1(T )� T , we have

ν(B) = PX (B).



Introduction The size of M(x) Mertens Conjecture Discrete Moments An explicit formula Limiting distributions Polya and Turan problems References

A random model for M(x).

Recall

M(ey )e−
y
2 ∼ 2Re

( N∑
j=1

e
i(γj y+βγj )

|ρjζ′(ρj)|

)
for some N = Ny .

Assuming LI this behaves like

X (θ) =
∞∑
n=1

rn cos(2πθn) where rn =
2

|ρnζ′(ρn)| . (4)

where θ = (θ1, θ2, . . . , ) ∈ T∞ (i.i.d. variables in [0, 1]).
This gives a probability measure PX on R:

PX (B) = P(X ∈ B) where B is a Borel set.

and P is the canonical probability measure on T∞.
On RH, LI, and J−1(T )� T , we have

ν(B) = PX (B).



Introduction The size of M(x) Mertens Conjecture Discrete Moments An explicit formula Limiting distributions Polya and Turan problems References

• Using methods from probability, we can show there exist c1, c2 > 0

exp(− exp(c1V
4
5 ))� PX ([V ,∞))� exp(− exp(c2V

4
5 )). (5)

• A heurstic argument suggests(
1

c1

) 5
4

≤ lim sup
y→∞

M(ey )

e
y
2 (log log y)

5
4

≤
(

1

c2

) 5
4

. (6)

Conjecture (Gonek)

There exists a number B > 0 such that

limx→∞
M(x)

√
x(log log log x)

5
4

= ±B . (7)

Conjecture (Ng (2012))

The value of B in (7) is B = 8a
5

where

a =
1√
π
e3ζ′(−1)− 11

12
log 2
∏
p

(
(1− p−1)

1
4

∞∑
k=0

(Γ(k − 1
2
)

k!Γ(− 1
2
)

)2

p−k
)

= 0.16712 . . . 8

8This value is based on independent numerical calculations of Harald Helfgott and Michael
Rubinstein.
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Polya and Turan problems.

Polya observed that

L(x) =
∑
n≤x

λ(n) ≤ 0 (for 2 ≤ x ≤ 250, 000)

and Turan observed

T (x) =
∑
n≤x

λ(n)

n
≥ 0

for small values of x . Does this persist forever?

Theorem (Haselgrove)

(i) L(x) changes signs infinitely often.
(ii) T (x) changes signs infinitely often,.

Tanaka, 1980, L(906105257) > 0,

Borwein, Ferguson, Mossinghoff, 2008, T (72185376951205) < 0.

See article of Humphries for limiting distribution results on L(x) and T (x) and
article of Mossinghoff and Trudgian.
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