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ABSTRACT. A important prime number race is Mertens’s product race between the partial Euler
product

∏
p≤x(1− p−1)−1 and eγ log(x). Recently, the density (in the logarithmic sense) for when

the product leads the race has been computed assuming the Riemann hypothesis and the linear
independence conjecture. Interestingly, the density is connected to the more classical race between
π(x) and Li(x). Moreover, this race is connected to an old conjcture of Erdős. This article is an
overview of the results given in [3], [7], and [9].

1. CLASSICAL PRIME NUMBER RACES

For x ≥ 2, we define

Li(x) =

ˆ x

2

dt

log(t)
,

where Li(x) is the logarithmic integral. If π(x) =
∑

p≤x 1 is the prime counting function, then
the prime number theorem (PNT) states that the logarithmic integral forms a good approximation
to π(x):

π(x) ∼ Li(x). (1.1)
Equivalently, the density of the primes up to x behaves like Li(x). Using integration by parts one
can show that Li(x) ∼ x

log(x)
, and a more classical version of PNT states that x ∼ x/ log(x).

However, Li(x) is a better numerical approximation to π(x) than x/ log(x), and as such is used
more commonly. Gauss gathered vast amounts of numerical evidence for PNT (see [4]) as early
as 1792-93, and finally, in 1896, building on the works on several influential mathematicians,
Hadamard and de la Vallée Poussin independently gave proofs of PNT (see [6] and [13]). Since
then, PNT has been one of the crowning achievements of analytic number theory. As an analogue
to π(x), we define π(x; q; a) to be the number of primes up to x that are congruent to a modulo q.
As every prime p is congruent to 1 or 3 modulo 4, it can be shown that

π(x; 4; 1) ∼ π(x; 4; 3) ∼ 1

2

x

log(x)
.

Loosely speaking, the densities of the primes congruent to 1 or 3 modulo 4 are equal. That is, half
of the primes are congruent to 1 modulo 4 and the other half are congruent to 3 modulo 4. At this
point, it is natural to assume that π(x; 4; 1) > π(x; 4; 3) and π(x; 4; 3) > π(x; 4; 1) each occur with
.5 probability. Surprisingly, this is not true as it has been shown that it is much more likely that for
a randomly chosen x, π(x; 4; 3) > π(x; 4; 1). In other words, there is a bias towards primes being
of the form 3 (mod 4) than of the form 1 (mod 4), and we call this phenomena Chebyshev’s bias.
Actually, the first time π(x; 4; 1) > π(x; 4; 3) is for x = 26861 (see [5]). To measure the degree of
which this bias occurs, we introduce the upper/lower logarithmic density for any set M ⊂ R≥2:

δ(M) = lim sup
x→∞

1

log(x)

ˆ
M∩[2,x]

dt

t
and δ(M) = lim inf

x→∞

1

log(x)

ˆ
M∩[2,x]

dt

t
.



If the upper and lower logarithmic densities are equal then we call the common value δ(M) the
logarithmic density of M .

Chebyshev’s bias sparked an important branch of analytic number theory now know as prime
number races. Many results about prime number races that we will discuss are conditional upon
the following two hypotheses:

• Riemann Hypothesis (RH): the hypothesis that all the nontrivial zeros ζ(s) lie on the line
ℜ(s) = 1/2.

• Linear Independence Conjecture (LIC or LI): the conjecture that the imaginary parts of the
nontrivial zeros of ζ(s) in the upper half plane are linearly independent over the rationals.

For example, under RH and LI, Rubinstein and Sarnak showed that the logarithmic density for
those x for which π(x; 4; 3) > π(x; 4; 1) is approximately 0.9959 (see [15]) which is a very strong
bias. So we can rephrase Chebyshev’s bias as the race between π(x; 4; 3) and π(x; 4; 1) where,
conditionally, it turns out that π(x; 4; 3) is leading the race approximately 99.59% of the time. For
the reader interested in standard prime number races, see the survey paper [5] of Granville and
Martin.

Another important race is the the race between π(x) and Li(x). We can ask how often π(x)
leads in the race against Li(x). The classical result due to Littlewood says that both lead infinitely
often (see [11]):

Theorem 1.1 (Littlewood). π(x)− Li(x) has infinitely many sign changes as x → ∞.

Actually, conditional upon RH and LI, the logarithmic density δ0 for the set of x for which π(x)
leads exists and is positive (see [9]). Throughout, we will define δ0 to be the logarithmic density
for the set of x for which π(x) leads the race between Li(x). Explicitly,

δ0 ≈ 2.6× 10−7, (1.2)

and so π(x) is almost never leading. It turns out that this density is intimately connected with
Mertens’s product race which comprises the main discussion of this paper.

2. MERTENS’S PRODUCT RACE

It was Euler in [8] who first argued that the harmonic series diverges like the logarithm:∑
n≤x

1

n
∼ log(x).

Euler also observed the (at the time formal) relationship∑
n≥1

1

n
=
∏
p

(
1− 1

p

)−1

. (2.1)

The precise version of this relationship is more commonly known as the Euler product for the
Riemann zeta function. Taking the logarithm of Equation 2.1, Euler argued that the sum of the
reciprocals of the primes should diverge like the logarithm of the harmonics and therefore∑

p

1

p
∼ log log(x). (2.2)
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Moreover, one might expect that the rate of divergence of the product is similar. Explicitly, for
some positive constant C, we suspect the following:∏

p≤x

(
1− 1

p

)−1

∼ C log(x). (2.3)

Euler was able to prove the divergence of
∑

p(1/p) but only gave a heuristic proofs of Equations
2.1 and 2.3. Success came in 1847 (see [12]) when Mertens proved three results on the distribution
of primes. His second result was a slightly more precise reformulation of Equation 2.2 and his
third result verified Equation 2.3 with C = eγ where γ is the Euler–Mascheroni constant. Now
Equation 2.3 only tells us that the relative error between

∏
p≤x(1− p−1)−1 and eγ log log(x) tends

to zero for large x. This naturally leads us to wonder how large the exact error∏
p≤x

(
1− 1

p

)−1

− eγ log(x),

can be and if we can obtain precise estimates for it. In [14], Rosser and Schoenfeld showed that
for 2 ≤ x ≤ 108 the exact error is positive. Moreover they conjectured that it might be true that the
error changes sign infinitely often. In [2], Diamond and Pintz proved the conjecture. This means

that we can ask interesting questions about the race between
∏

p≤x

(
1− 1

p

)−1

and eγ log(x). This
race is known as the Mertens’s product race. As we did with Chebyshev’s bias, a natural first
question to ask is if upper/lower logarithmic densities exist, and if so, are they equal. Accordingly,
let M be the set of those x ≥ 2 such that∏

p≤x

(
1− 1

p

)−1

> eγ log(x). (2.4)

That is, M is the set of x for which the product leads in the race. Under RH, we will sketch the
proof of the following result concerning the logarithmic density of M:

Theorem 2.1. Under RH, δ(M) > 0 and δ(M) < 1.

If we also assume LI, then the logarithmic density of M exists and is related to δ0:

Theorem 2.2. Under RH and LI, the logarithmic density δ(M) exists and

δ(M) = 1− δ0.

Theorem 2.2 is somewhat more interesting because, under the reasonable belief that RH and LI
are true, Mertens’s product race is connected to the more classical race between π(x) and Li(x) as
given in the introduction.

The idea behind the proof of Theorem 2.1 is to estimate a normalized form of the logarithmic
remainder between the two players in the product race. We define

EM(x) =
√
x log(x)

(
log

(∏
p≤x

(
1− 1

p

)−1
)

− log(eγ log(x))

)
.

The role of
√
x log(x) is a normalization factor, as the remaining term is the logarithmic difference

between
∏

p≤x

(
1− 1

p

)−1

and eγ log(x). In particular, EM(x) is positive if and only if x ∈ M.
It now suffices to study the density of those x for which EM(x) is positive. We will achieve this
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by writing EM(x) as a sum over zeros of ζ(s) with an error term. This is essentially an “explicit
formula with error” for EM(x) analogous to the classical explicit formula due to Riemann for π(x):

Proposition 2.3. For any T, x ≥ 5,

EM(x) = 1 +
∑

|ℑ(ρ)|≤T

xρ− 1
2

ρ− 1
+O

 1

log(x)

∑
|ℑ(ρ)|≤T

xℜ(ρ)− 1
2

ℑ(ρ)2
+

√
x log((xT )2)

T
+

1

log(x)

 ,

where ρ is a nontrivial zero of ζ(s).

In order to prove Proposition 2.3, we will require two estimates. The proofs are standard and
details are given in [7], so we only sketch them:

Lemma 2.4. For any x ≥ 2,

log

(∏
p≤x

(
1− 1

p

)−1
)

=
∑
n≤x

Λ(n)

n log(n)
+

1√
x log(x)

+O

(
1

x log(x)2

)
.

Sketch of Proof. Expressing log(
∏

p≤x(1− p−1)−1) as a series,

log

(∏
p≤x

(
1− 1

p

)−1
)

=
∑
n≤x

Λ(n)

n log(n)
+

∑
k≥2

x1/k<p≤x

1

kpk
.

The remainder term
∑

1
kpk

can be estimated by∑
√
x<p≤x

1

2p2
+O

(
1

x2/3

)
.

Estimating the sum
∑

1
2p2

by
´ dπ(t)

t2
, PNT implies that the total error from

∑
1/2p2 + O(1/x2/3)

is no larger than 2/(
√
x log(x)) +O(1/(

√
x log(x)2)). □

The second lemma is an explicit formula with error for the Dirichlet series of Λ(n):

Lemma 2.5. For any α > 1 and x, T ≥ 5,∑
n≤x

Λ(n)

nα
= −ζ ′

ζ
(α) +

x1−α

1− α
−

∑
|ℑ(ρ)|≤T

xρ−α

ρ− α

+O

(
x−α log(x) +

x1−α

T

(
4α + (log(x))2 +

log(T )2

log(x)

)
+

1

T

∑
n≥1

Λ(n)

nα+1/ log(x)

)
Sketch of Proof. Choose T > 0 and set c = 1/ log(x) and consider the integral

1

2πi

ˆ c+iT

c−iT

(
−ζ ′

ζ
(α + s)

)
xsds

s
.

First apply Perron’s formula to obtain the estimate∑
n≤x

Λ(n)

nα
=

1

2πi

ˆ c+iT

c−iT

(
−ζ ′

ζ
(α + s)

)
xsds

s
+O

(∑
n≥1

Λ(n)

nα+c
min

(
1,

1

T | log(x/n)|

))
.
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To bound the error term, if n ≤ x/2 or n ≥ 2x then | log(x/n)| ≥ log(2) so that their contribution
is

≪ 1

T

∑
n≥1

Λ(n)

nα+c
.

For the remaining terms, if we set r = n − x, then we either get a contribution on the size of
x−α log(x) or | log(x/n)| ≫ |r|/x according to whether |r| ≤ 1 or not. Therefore the total
contribution is

x1−α log(x)

T

∑
1≤|r|≤x

1

|r|
≪ x1−α log(x)2

T
.

The error term is then

O

(
x−α log(x) +

x1−α log(x)2

T
+

1

T

∑
n≥1

Λ(n)

nα+c

)
.

Now the integral term is estimated. By shifting the line of integration far to the left, say −N , and
applying the residue theorem we deduce

1

2πi

ˆ −N+iT

−N−iT

(
−ζ ′

ζ
(α + s)

)
xsds

s
= −ζ ′

ζ
(α) +

x1−α

1− α
+

∑
|ℑ(ρ)|≤T

xρ−α

ρ− α
+

∑
n≤(N−α)/2

x−2n−α

2n+ α
+ I,

where ρ is a nontrivial zero of ζ and the corresponding sum is counted with multiplicity according
to the order of the zero. The last sum is a sum over trivial zeros. Also, I is the remainder integral
corresponding to the other three sides of the rectangle of integration. The sum over the nontrivial
zeros is ≪ x1−α log(T )/T and the sum over the trivial zeros is at most ≪ x−2−α. As for I , a
routine but careful estimation shows that

I ≪ x1−α

T

(
4α + log(x) +

log(T )2

log(x)

)
+

1

T

∑
n≥1

Λ(n)

nα+c
.

Combining these bounds together finishes the proof. □

With these two lemmas, we can now sketch the proof of Proposition 2.3:

Proof sketch of Proposition 2.3. Fix σ > 1. By Lemma 2.5,∑
n≤x

Λ(n)

nσ log(n)
=

ˆ ∞

σ

∑
n≤x

Λ(n)

nα
dα

= log ζ(σ) +

ˆ ∞

σ

x1−α

1− α
dα−

∑
|ℑ(ρ)|≤T

ˆ ∞

σ

xρ−α

ρ− α
dα + E1,

(2.5)

where

E1 ≪
1

T

(
log(x) +

log(T )2

log(x)2

)
+

1

x
.

Now it is not hard to see that

lim
σ→1+

(
log ζ(σ) +

ˆ ∞

σ

x1−α

ρ− α
dα

)
= log log(x) + γ, (2.6)
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where γ is the Euler–Mascheroni constant. So taking the limit as σ → 1+ in Equation 2.5 and
applying Equation 2.6 yields∑
n≤x

Λ(n)

n log(n)
= log log(x)+γ−

∑
|ℑ(ρ)|≤T

xρ

ˆ ∞

1

x−α

ρ− α
dα+O

(
log(x)

T
+

log(T )2

T log(x)2
+

1

x

)
. (2.7)

All that remains is to estimate the remaining integral. By making a change of variables (α −
1) log(x) → u, we find thatˆ ∞

1

x−α

ρ− α
dα =

1

x

ˆ ∞

0

eu

(ρ− 1) log(x)− u)
.

Since |(ρ− 1) log(x)− u| ≥ |ℑ(ρ)| log(x), for all u, it follows that

1

(ρ− 1) log(x)− u)
=

1

(ρ− 1) log(x)
+O

(
u

(ℑ(ρ) log(x))2

)
.

The estimate above impliesˆ ∞

1

x−α

ρ− α
dα =

1

x log(x)(ρ− 1)
+O

(
1

x log(x)2ℑ(ρ)2

)
,

which upon inserting into Equation 2.7 and applying 2.4 finishes the proof. □

Under RH, Theorem 2.1 will follow from Proposition 2.3 and some results of Rubinstein and
Sarnak:

Proof sketch of Theorem 2.1. Assume Y to be large and set x = eY . Make the change of variables
y → log(t), to get

1

log(x)

ˆ
M∩[2,x]

dt

t
=

1

Y
meas({log(2) ≤ y ≤ Y : ey ∈ M})

=
1

Y
meas{log(2) ≤ y ≤ Y : EM(ey) > 0}.

(2.8)

We recall that the Riemann–von Mangoldt formula is given as:

N(2πT ) = T log(T )− T +O(log(T )),

where N(T ) is the number of zeros of ζ(s) up to height T . Assuming RH, an application of the
Riemann–von Mangoldt formula to Proposition 2.3 gives the refined bound

EM(ey) = 2
∑

0<γn<T

sin(γny)

γn
+O

(
1 +

(y + log(T ))2ey/2

T

)
,

where γn is the height of the nth zero of the Riemann zeta function. Moreover,
∑ sin(γny)

γn
≍

EM(eY ). Now Rubinstein and Sarnak (see [15]) proved that for sufficiently large λ,

1

Y
meas

2 ≤ y ≤ Y :

∣∣∣∣∣∣
∑

0<γn<eY

sin(γny)

γn

∣∣∣∣∣∣ > λ


 ≥ c1 exp(− exp(−c2λ)),
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for some absolute positive constants c1 and c2. Also,
∑ sin(γny)

γn
alternates in sign. Together with

Equation 2.8, when
∑ sin(γny)

γn
is positive this implies

1

log(x)

ˆ
M∩[2,x]

dt

t
≥ c1

2
exp(− exp(c2A)),

for large enough Y . From this, δ(M) ≥ c1
2
exp(− exp(−c2A)) > 0. An analogous argument

holds when
∑ sin(γny)

γn
is negative to conclude that δ(M) ≤ 1 − c1

2
exp(− exp(−c2A)) < 1 as

desired. □

Assuming LI, Theorem 2.2 will follow. However, we require two results (see [7]) which will be
instrumental in proving the theorem:

Proposition 2.6. Assuming RH, there exists a probability measure µm on R such that

lim
x→∞

1

log(x)

ˆ x

2

f(EM(t))
dt

t
=

ˆ ∞

−∞
f(t) dµm.

for all bounded functions on R.

Proposition 2.7. Assume RH and LI and let X(γn) be a sequence of independent random vari-
ables, indexed by the positive imaginary part of the non-trivial zeros of ζ(s), that are uniformly
distributed on the unit circle. Then µM is the distribution of the random variable

Z = 1 + 2ℜ

∑
γn>0

X(γn)√
1
4
+ γ2

n

 .

A sufficient understanding of µm and Z is enough to prove Theorem 2.2:

Proof sketch of Theorem 2.2. Since Z is the sum of continuous random variables, then by proposi-
tion 2.7, the probability distribution µM is absolutely continuous. Now let ϵ > 0 be given, and let
f1(x) : R → [0, 1] be a continuous function such that f1 ≡ 1 for x ≥ 1 and f1 ≡ 0 for x < ϵ. Then
by Propositions 2.6 and 2.7,

δ(M) ≤ lim
x→∞

1

log(x)

ˆ x

2

f1(EM(t))
dt

t
=

ˆ ∞

−∞
f1(t) dµM ≤ µM(−ϵ,∞) = P(Z > 0) +O(ϵ),

where the last equality follows by absolute continuity. Similarly, let f2(x) : R → [0, 1] be a con-
tinuous function such that f2 ≡ 1 for x ≥ ϵ and f2 ≡ 0 for x ≤ 0. In just the same way, we
obtain

δ(M) ≥ lim
x→∞

1

log(x)

ˆ x

2

f2(EM(t))
dt

t
=

ˆ ∞

−∞
f2(t) dµM ≤ µM(ϵ,∞) = P(Z > 0) +O(ϵ),

Letting ϵ → 0, these two bounds imply δ(M) exists and δ(M) = P(Z > 0). From work of
Rubinstein and Sarnak [15], it follows easily that P(Z > 0) = 1− δ0. □
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3. THE ERDŐS CONJECTURE

The Mertens’s product race has recently been used to prove an old conjecture of Erdós about
primes. The following serves as a small overview of the progress surrounding the conjecture and
its resolution as well as an application of the Mertens’s product race.

A set A of positive integers is said to be primitive if no member divides another. The prototyp-
ical example of a primitive set is the set of primes P (or any of its subsets). We can consider sums
built from primitive sets such as ∑

a∈A

1

a
or

∑
a∈A

1

a log(a)
.

Unfortunately, the first sum need not converge. For example, if we consider P , then Equa-
tion 2.2 tells us that the first sum diverges. It turns out that inserting the weight factor 1

log(a)

is enough to guarantee convergence. Accordingly, let f(A) =
∑

1/(a log(a)) where we set
f(a) = 1/(a log(a)) in accordance if A is a singleton set. In 1935 Erdős proved that f(A) is
universally bounded over all primitive sets A. A natural next question to ask, is if this universal
bound is obtained for some primitive set. That is, does f(A) admit a maximum. It’s not too hard
to guess what the answer A should be. Indeed, if a is composite its contribution to f(A) is less
than any prime factor p of a, so a natural guess is that this maximum would be obtained for the
primitive set P . Accordingly, Erdős’s conjecture is the following:

Conjecture 3.1 (The Erdős conjecture). For any primitive set A, we have f(A) ≤ f(P(A)).

This conjecture has been resolved quite recently and the proof is due to Lichtman in [3]. Before
recounting his argument, we discuss some historical progress and the connection to the Mertens’s
product race. The Mertens’s product race is concerned with the limiting distribution of those real
x ≥ 2 for which Equation 2.4 holds or equivalently for which EM(x) > 0. Nevertheless, it is
still an interesting to know for which primes p, we have EM(p) > 0. Such primes are said to be
Mertens. To connect this to the Erdős conjecture we need to understand two pieces of machinery:
another type of prime and another type of density. For the first piece of machinery, as in [9], a
prime p is said to be Erdős strong if f(A) ≤ f(p) for all primitive sets A such that every a ∈ A
has p as its smallest prime factor. It is easy to see that if every prime is Erdős strong then Erdős’s
conjecture holds (partition A into subsets according to the smallest prime factor). This raises the
question as to which primes are Erdős strong. Now a sufficient condition for p to be Erdős strong
is

eγ
∏
q<p

(
1− 1

q

)
≤ 1

log(p)
,

where q runs over primes (see [3]). From this it can be deduced that every Mertens prime is Erdős
strong (see [10]). As for the second piece of machinery, for any subset M ⊂ R≥2, we define the
logarithmic density relative to the prime numbers δ′(M) to be

δ′(M) = lim
x→∞

1

log log(x)

∑
p≤x
p∈M

1

p
,

provided this limit exists. The upper/lower relative densities are defined according to the limit
supremum and limit infimum. The idea behind these relative densities is that we are only recording
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the logarithmic density of the primes inside M . The normalizing factor 1/ log log(x) is to account
for the rate of divergence in Equation 2.2.

Now we can discuss earlier partial progress. In 1991, Zhang in [16] proved the Erdős conjec-
ture for any primitive set A such that no a ∈ A had more than four prime factors (counted with
multiplicity). Cohen in [1] computed f(P):

f(P) =
∑
p

1

p log(p)
= 1.6366....

and some subsequent bounds were found for f(A) in later years. Major progress came in 2019
(see [10]) when it was shown that the first 108 odd primes are Mertens and that the Mertens primes
have large lower logarithmic density:

Theorem 3.2. The first 108 odd primes are Mertens. Moreover, under RH and LI the Mertens
primes have relative lower logarithmic density larger than 0.995.

This is good progress since it means that lots of primes are Erdős strong. Unfortunately, this is
not sufficient enough to give a proof of the Erdős conjecture since not every prime is Mertens. For
example 2 is not a Mertens prime as 2 > eγ log(2) ≈ 0.5361.

Now for the resolution of the Erdős conjecture. In 2019, Lichtman, Martin, and Pomerance
provided the following improvement to Theorem 3.2 by applying results about the Mertens’s race.
Their result is the following:

Theorem 3.3. Assuming RH and LI, the Mertens primes have relative logarithmic density 1− δ0.

In 2022 Lichtman finished off the proof of the Erdős conjecture (see [3]). He showed this by
proving that every odd primes is Erdős strong using the following result:

Theorem 3.4. For any primitive set A and any prime p > 2, we have f(Ap) ≤ f(P).

The idea behind the proof of Theorem 3.4 is technical improvement upon the main results in
[10]. The main idea is the following. Let A be a primitive set. If a ≥ 1 is any integer, let P (a)
denote the largest prime factor of a. For example, P (p) = p for any prime p. Improvements for
bounding f(A) can be made by showing that A cannot contain too many elements a with P (a)
is slightly less than a. The exceptional case is when A is P , but then P (p) is maximized for
all elements of A. It is then not too hard to deal with the prime 2 separately and conclude from
Theorem 3.4 that Erdős’s conjecture is true. Surprisingly, while it is known that 2 is not Mertens’s,
it remains open whether 2 is Erdős strong.
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