Prime number races with three or more competitors

Youness Lamzouri Institut Élie Cartan de Lorraine

March 20th, 2023

Youness Lamzouri (IECL) Prime number races with three or more comp

March 20th, 2023

• $q \ge 3$ and $2 \le r \le \varphi(q)$ are integers.

Youness Lamzouri (IECL) Prime number races with three or more comp

< 31

- $q \ge 3$ and $2 \le r \le \varphi(q)$ are integers.
- $\bullet~\mathbb{P}$ and \mathbb{E} will denote the probability and the expectation respectively.

- $q \ge 3$ and $2 \le r \le \varphi(q)$ are integers.
- \mathbb{P} and \mathbb{E} will denote the probability and the expectation respectively.
- $A_r(q)$ is the set of ordered *r*-tuples (a_1, \ldots, a_r) of distincts residue classes modulo *q* that are coprime to *q*.

- $q \ge 3$ and $2 \le r \le \varphi(q)$ are integers.
- \mathbb{P} and \mathbb{E} will denote the probability and the expectation respectively.
- $A_r(q)$ is the set of ordered *r*-tuples (a_1, \ldots, a_r) of distincts residue classes modulo *q* that are coprime to *q*.

Rubinstein and Sarnak (1994)

Assume GRH and LI. Let $P_{q;a_1,...,a_r}$ be the set of real numbers $x \ge 2$ such that

$$\pi(x;q,a_1)>\pi(x;q,a_2)>\cdots>\pi(x;q,a_r).$$

The logarithmic density of $P_{q;a_1,...,a_r}$ defined by

$$\delta_{q;a_1,\ldots,a_r} := \lim_{x \to \infty} \frac{1}{\log x} \int_{t \in P_{q;a_1,\ldots,a_r} \cap [2,x]} \frac{dt}{t},$$

exists and is positive.

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

• Let $\{\gamma_{\chi}\}$ be the set of the imaginary parts of the non-trivial zeros of $L(s, \chi)$ and $\Gamma = \bigcup_{\chi \neq \chi_0 \mod q} \{\gamma_{\chi} > 0\}.$

- Let $\{\gamma_{\chi}\}$ be the set of the imaginary parts of the non-trivial zeros of $L(s, \chi)$ and $\Gamma = \bigcup_{\chi \neq \chi_0 \mod q} \{\gamma_{\chi} > 0\}.$
- It follows from the work of Rubinstein and Sarnak that

 $\delta_{q;a_1,\ldots,a_r} = \mathbb{P}(\mathbb{X}(q,a_1) > \mathbb{X}(q,a_2) > \cdots > \mathbb{X}(q,a_r)).$

- Let $\{\gamma_{\chi}\}$ be the set of the imaginary parts of the non-trivial zeros of $L(s, \chi)$ and $\Gamma = \bigcup_{\chi \neq \chi_0 \mod q} \{\gamma_{\chi} > 0\}.$
- It follows from the work of Rubinstein and Sarnak that

$$\delta_{q; \mathsf{a}_1, ..., \mathsf{a}_r} = \mathbb{P}(\mathbb{X}(q, \mathsf{a}_1) > \mathbb{X}(q, \mathsf{a}_2) > \cdots > \mathbb{X}(q, \mathsf{a}_r)).$$

where

$$\mathbb{X}(q,a) := -c(q,a) + \sum_{\substack{\chi \neq \chi_0 \\ \chi \pmod{q}}} \operatorname{Re}\Big(2\chi(a) \sum_{\gamma_{\chi} > 0} \frac{U(\gamma_{\chi})}{\sqrt{\frac{1}{4} + \gamma_{\chi}^2}}\Big),$$

and $c(q, a) := -1 + |\{n \pmod{q} : n^2 \equiv a \pmod{q}\}|$, and $\{U(\gamma_{\chi})\}_{\gamma_{\chi} \in \Gamma}$ is a sequence of independent random variables uniformly distributed on the unit circle \mathbb{S}^1 .

- Let $\{\gamma_{\chi}\}$ be the set of the imaginary parts of the non-trivial zeros of $L(s, \chi)$ and $\Gamma = \bigcup_{\chi \neq \chi_0 \mod q} \{\gamma_{\chi} > 0\}.$
- It follows from the work of Rubinstein and Sarnak that

$$\delta_{q;a_1,\ldots,a_r} = \mathbb{P}(\mathbb{X}(q,a_1) > \mathbb{X}(q,a_2) > \cdots > \mathbb{X}(q,a_r)).$$

where

$$\mathbb{X}(q, \mathbf{a}) := -c(q, \mathbf{a}) + \sum_{\substack{\chi \neq \chi_0 \\ \chi \pmod{q}}} \operatorname{Re}\Big(2\chi(\mathbf{a}) \sum_{\gamma_{\chi} > 0} \frac{U(\gamma_{\chi})}{\sqrt{\frac{1}{4} + \gamma_{\chi}^2}}\Big),$$

and $c(q, a) := -1 + |\{n \pmod{q} : n^2 \equiv a \pmod{q}\}|$, and $\{U(\gamma_{\chi})\}_{\gamma_{\chi} \in \Gamma}$ is a sequence of independent random variables uniformly distributed on the unit circle \mathbb{S}^1 .

 In the notation of G. Martin's notes, the random variable X_{q;a,b} has the same distribution as X(q, a) − X(q, b) defined above.

- Let $\{\gamma_{\chi}\}$ be the set of the imaginary parts of the non-trivial zeros of $L(s, \chi)$ and $\Gamma = \bigcup_{\chi \neq \chi_0 \mod q} \{\gamma_{\chi} > 0\}.$
- It follows from the work of Rubinstein and Sarnak that

$$\delta_{q;a_1,\ldots,a_r} = \mathbb{P}(\mathbb{X}(q,a_1) > \mathbb{X}(q,a_2) > \cdots > \mathbb{X}(q,a_r)).$$

where

$$\mathbb{X}(q,a) := -c(q,a) + \sum_{\substack{\chi \neq \chi_0 \\ \chi \pmod{q}}} \operatorname{Re}\Big(2\chi(a) \sum_{\gamma_{\chi} > 0} \frac{U(\gamma_{\chi})}{\sqrt{\frac{1}{4} + \gamma_{\chi}^2}}\Big),$$

and $c(q, a) := -1 + |\{n \pmod{q} : n^2 \equiv a \pmod{q}\}|$, and $\{U(\gamma_{\chi})\}_{\gamma_{\chi} \in \Gamma}$ is a sequence of independent random variables uniformly distributed on the unit circle \mathbb{S}^1 .

• In the notation of G. Martin's notes, the random variable $X_{q;a,b}$ has the same distribution as $\mathbb{X}(q, a) - \mathbb{X}(q, b)$ defined above. Hence

$$\delta_{q;a,b} = \mathbb{P}(X_{q;a,b} > 0) = \mathbb{P}(\mathbb{X}(q,a) > \mathbb{X}(q,b)).$$

In an *r*-way race with $r \ge 2$ fixed, all biases dissolve when $q \to \infty$.

In an *r*-way race with $r \ge 2$ fixed, all biases dissolve when $q \to \infty$. More precisely

$$\Delta_r(q):=\max_{(a_1,a_2,...,a_r)\in\mathcal{A}_r(q)}\left|\delta_{q;a_1,...,a_r}-rac{1}{r!}
ight|
ightarrow 0, ext{ as } q
ightarrow \infty.$$

∃ >

In an *r*-way race with $r \ge 2$ fixed, all biases dissolve when $q \to \infty$. More precisely

$$\Delta_r(q):=\max_{(a_1,a_2,...,a_r)\in\mathcal{A}_r(q)}\left|\delta_{q;a_1,...,a_r}-rac{1}{r!}
ight|
ightarrow 0, ext{ as } q
ightarrow \infty.$$

Ideas of the proof

Show that the Fourier transform (properly normalized) of the joint distribution of the random vector (X(q, a₁),...,X(q, a_r)) converges to the Fourier transform of a standard multivariate Gaussian vector (Z₁,...,Z_r) (i.e. the Z_j are I. I. D and ~ N(0,1)).

In an *r*-way race with $r \ge 2$ fixed, all biases dissolve when $q \to \infty$. More precisely

$$\Delta_r(q):=\max_{(a_1,a_2,...,a_r)\in\mathcal{A}_r(q)}\left|\delta_{q;a_1,...,a_r}-rac{1}{r!}
ight|
ightarrow 0, ext{ as } q
ightarrow\infty.$$

Ideas of the proof

- Show that the Fourier transform (properly normalized) of the joint distribution of the random vector (X(q, a₁),...,X(q, a_r)) converges to the Fourier transform of a standard multivariate Gaussian vector (Z₁,...,Z_r) (i.e. the Z_j are I. I. D and ~ N(0,1)).
- By Levy's Continuity Theorem we deduce that

$$\mathbb{P}_{q;a_1,...,a_r} = \mathbb{P}(\mathbb{X}(q,a_1) > \cdots > \mathbb{X}(q,a_r)) o \mathbb{P}(Z_1 > \cdots > Z_r) = rac{1}{r!}$$

1

Asymptotic formulas for the densities when $q ightarrow \infty$

The case r = 2: Fiorilli and Martin (2013)

If a_1 is a non-square and a_2 is a square modulo q, then

$$\delta_{q; {m a}_1, {m a}_2} = rac{1}{2} + rac{c(q, {m a}_2) - c(q, {m a}_1)}{2\sqrt{\pi V(q)}} (1 + o(1)),$$

where

$$V(q) := 2\sum_{\substack{\chi
eq \chi_0 \ \chi ext{ mod } q}} \sum_{\substack{\gamma_\chi > 0}} rac{1}{rac{1}{4} + \gamma_\chi^2} \sim arphi(q) \log q.$$

The case
$$r = 2$$
: Fiorilli and Martin (2013)

If a_1 is a non-square and a_2 is a square modulo q, then

$$\delta_{q; {m a}_1, {m a}_2} = rac{1}{2} + rac{c(q, {m a}_2) - c(q, {m a}_1)}{2\sqrt{\pi V(q)}} (1 + o(1)),$$

where

$$V(q) := 2\sum_{\substack{\chi
eq \chi_0 \ \chi ext{ mod } q}} \sum_{\substack{\gamma_\chi > 0}} rac{1}{rac{1}{4} + \gamma_\chi^2} \sim arphi(q) \log q.$$

Corollary (Fiorilli and Martin, 2013)

$$\Delta_2(q)=rac{1}{q^{1/2+o(1)}}.$$

Youness Lamzouri (IECL)

March 20th, 2023

• 3 •

While the behaviour of the densities δ_{q;a1,a2} is governed by the means of the random variables X(q, a1) and X(q, a2), the behaviour of δ_{q;a1,a2,...,ar} for r ≥ 3 will be governed by the correlations of the X(q, aj)'s.

While the behaviour of the densities δ_{q;a1,a2} is governed by the means of the random variables X(q, a1) and X(q, a2), the behaviour of δ_{q;a1,a2},...,a_r for r ≥ 3 will be governed by the correlations of the X(q, a₁)'s.

Definition

The **covariance matrix** of the random vector (X_1, \ldots, X_r) is the $r \times r$ matrix K whose entries are

$$K_{i,j} = \mathbb{E}((X_i - \mathbb{E}(X_i))(X_j - \mathbb{E}(X_j))).$$

While the behaviour of the densities δ_{q;a1,a2} is governed by the means of the random variables X(q, a1) and X(q, a2), the behaviour of δ_{q;a1,a2,...,ar} for r ≥ 3 will be governed by the correlations of the X(q, aj)'s.

Definition

The **covariance matrix** of the random vector (X_1, \ldots, X_r) is the $r \times r$ matrix K whose entries are

$$K_{i,j} = \mathbb{E}((X_i - \mathbb{E}(X_i))(X_j - \mathbb{E}(X_j))).$$

In particular the diagonal entries of K are the variances of the X_i 's, namely

$$K_{j,j} = \operatorname{Var}(X_j).$$

Exercise 1

Let $C = C_{q;a_1,...,a_r}$ be the covariance matrix of the random vector $(\mathbb{X}(q, a_1), \ldots, \mathbb{X}(q, a_r))$. Show

$$\mathcal{C}_{i,j} = \begin{cases} V(q) & \text{if } i = j \\ B_q(a_i, a_j) & \text{if } i \neq j, \end{cases}$$

where

$$V(q) = 2\sum_{\substack{\chi
eq \chi_0 \ \chi ext{ mod } q}} \sum_{\substack{\gamma_\chi > 0}} rac{1}{rac{1}{4} + \gamma_\chi^2} \sim arphi(q) \log q,$$

and

$$B_q(a,b) = \sum_{\substack{\chi \neq \chi_0 \\ \chi \bmod q}} \sum_{\substack{\gamma_\chi > 0}} \frac{\chi(\frac{a}{b}) + \chi(\frac{b}{a})}{\frac{1}{4} + \gamma_\chi^2}.$$

э

・ロト ・四ト ・ヨト・

For a, b such that $1 \le |a|, |b| \le q/2$ we have

$$B_q(a,b) = -\varphi(q) \left(\ell(a,b) \log 2 + \frac{\Lambda(s_1)}{s_1} + \frac{\Lambda(s_2)}{s_2} \right) + O((|a| + |b|)(\log q)^2)$$

< ∃ ►

For a, b such that $1 \le |a|, |b| \le q/2$ we have

$$B_q(a,b) = -\varphi(q) \left(\ell(a,b) \log 2 + \frac{\Lambda(s_1)}{s_1} + \frac{\Lambda(s_2)}{s_2} \right) + O\big((|a| + |b|) (\log q)^2 \big)$$

where $\ell(a, b) = 1$ if b = -a and equals 0 otherwise

• 3 •

For a, b such that $1 \le |a|, |b| \le q/2$ we have

$$B_q(a,b) = -\varphi(q) \left(\ell(a,b) \log 2 + \frac{\Lambda(s_1)}{s_1} + \frac{\Lambda(s_2)}{s_2} \right) + O((|a| + |b|)(\log q)^2)$$

where $\ell(a, b) = 1$ if b = -a and equals 0 otherwise, and where s_1 and s_2 denote the least positive residues of ba^{-1} and ab^{-1} modulo q, respectively.

For a, b such that $1 \le |a|, |b| \le q/2$ we have

$$B_q(a,b) = -\varphi(q) \left(\ell(a,b) \log 2 + \frac{\Lambda(s_1)}{s_1} + \frac{\Lambda(s_2)}{s_2} \right) + O((|a| + |b|)(\log q)^2)$$

where $\ell(a, b) = 1$ if b = -a and equals 0 otherwise, and where s_1 and s_2 denote the least positive residues of ba^{-1} and ab^{-1} modulo q, respectively.

• In particular, we have $\max_{(a,b)\in\mathcal{A}_2(q)}|B_q(a,b)|\asymp \varphi(q)$, and hence

$$\max_{(a,b)\in\mathcal{A}_2(q)}\frac{|B_q(a,b)|}{V(q)}\asymp\frac{1}{\log q}.$$

For a, b such that $1 \le |a|, |b| \le q/2$ we have

$$B_q(a,b) = -\varphi(q) \left(\ell(a,b) \log 2 + \frac{\Lambda(s_1)}{s_1} + \frac{\Lambda(s_2)}{s_2} \right) + O((|a| + |b|)(\log q)^2)$$

where $\ell(a, b) = 1$ if b = -a and equals 0 otherwise, and where s_1 and s_2 denote the least positive residues of ba^{-1} and ab^{-1} modulo q, respectively.

• In particular, we have $\max_{(a,b)\in\mathcal{A}_2(q)}|B_q(a,b)|\asymp \varphi(q)$, and hence

$$\max_{(a,b)\in\mathcal{A}_2(q)}\frac{|B_q(a,b)|}{V(q)}\asymp\frac{1}{\log q}.$$

However, we have |B_q(a, b)| ≍ log q on average over all (a, b) ∈ A₂(q).

Let q be large. In the range $2 \le r = o((\log q/(\log \log q))^{1/2})$, we have uniformly for all $(a_1, \ldots, a_r) \in \mathcal{A}_r(q)$

$$\delta_{q;a_1,\ldots,a_r} = \left(1 + O\left(\frac{r^4(\log r)^2}{(\log q)^2}\right)\right)\left(\frac{1}{r!} + \sum_{1 \le j < k \le r} \beta_{j,k}(r)\frac{B_q(a_j,a_k)}{V(q)}\right),$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Let q be large. In the range $2 \le r = o((\log q/(\log \log q))^{1/2})$, we have uniformly for all $(a_1, \ldots, a_r) \in \mathcal{A}_r(q)$

$$\delta_{q;a_1,\ldots,a_r} = \left(1 + O\left(\frac{r^4(\log r)^2}{(\log q)^2}\right)\right) \left(\frac{1}{r!} + \sum_{1 \le j < k \le r} \beta_{j,k}(r) \frac{B_q(a_j,a_k)}{V(q)}\right),$$

where

$$\beta_{j,k}(r) := \frac{1}{(2\pi)^{r/2}} \int_{x_1 > \cdots > x_r} x_j x_k \exp\Big(-\frac{x_1^2 + \cdots + x_r^2}{2}\Big) dx_1 \dots dx_r.$$

э

Let q be large. In the range $2 \le r = o((\log q/(\log \log q))^{1/2})$, we have uniformly for all $(a_1, \ldots, a_r) \in \mathcal{A}_r(q)$

$$\delta_{q;a_1,\ldots,a_r} = \left(1 + O\left(\frac{r^4(\log r)^2}{(\log q)^2}\right)\right) \left(\frac{1}{r!} + \sum_{1 \le j < k \le r} \beta_{j,k}(r) \frac{B_q(a_j,a_k)}{V(q)}\right),$$

where

$$\beta_{j,k}(r) := \frac{1}{(2\pi)^{r/2}} \int_{x_1 > \cdots > x_r} x_j x_k \exp\Big(-\frac{x_1^2 + \cdots + x_r^2}{2}\Big) dx_1 \dots dx_r.$$

Exercise 2

• Show that $\sum_{1 \le j < k \le r} |\beta_{j,k}(r)| \ll (\log r)/(r-1)!$, and deduce that the secondary term is smaller than the main term in the given range.

Let q be large. In the range $2 \le r = o((\log q/(\log \log q))^{1/2})$, we have uniformly for all $(a_1, \ldots, a_r) \in \mathcal{A}_r(q)$

$$\delta_{q;a_1,\ldots,a_r} = \left(1 + O\left(\frac{r^4(\log r)^2}{(\log q)^2}\right)\right) \left(\frac{1}{r!} + \sum_{1 \le j < k \le r} \beta_{j,k}(r) \frac{B_q(a_j,a_k)}{V(q)}\right),$$

where

$$\beta_{j,k}(r) := \frac{1}{(2\pi)^{r/2}} \int_{x_1 > \cdots > x_r} x_j x_k \exp\Big(-\frac{x_1^2 + \cdots + x_r^2}{2}\Big) dx_1 \dots dx_r.$$

Exercise 2

- Show that $\sum_{1 \le j < k \le r} |\beta_{j,k}(r)| \ll (\log r)/(r-1)!$, and deduce that the secondary term is smaller than the main term in the given range.
- Show that $\beta_{1,2}(2) = 0$ and for $r \ge 3$ that $\beta_{1,r}(r) < 0$ and $\beta_{r-1,r}(r) > 0$.

Consequences of the asymptotic formula

Recall that

$$\Delta_r(q) := \max_{(a_1,a_2,...,a_r) \in \mathcal{A}_r(q)} \left| \delta_{q;a_1,...,a_r} - \frac{1}{r!} \right|.$$

• Rubinstein and Sarnak (1994): If $r \ge 2$ is fixed, then

 $\Delta_r(q)
ightarrow 0$ as $q
ightarrow \infty$.

Consequences of the asymptotic formula

Recall that

$$\Delta_r(q) := \max_{(a_1,a_2,...,a_r) \in \mathcal{A}_r(q)} \left| \delta_{q;a_1,...,a_r} - rac{1}{r!} \right|.$$

• Rubinstein and Sarnak (1994): If $r \ge 2$ is fixed, then

 $\Delta_r(q)
ightarrow 0$ as $q
ightarrow \infty$.

• Fiorilli and Martin (2013) If q is large, then

 $\Delta_2(q) = rac{1}{q^{1/2+o(1)}}.$

Consequences of the asymptotic formula

Recall that

$$\Delta_r(q) := \max_{(a_1,a_2,...,a_r) \in \mathcal{A}_r(q)} \left| \delta_{q;a_1,...,a_r} - rac{1}{r!} \right|.$$

• Rubinstein and Sarnak (1994): If $r \ge 2$ is fixed, then

 $\Delta_r(q)
ightarrow 0$ as $q
ightarrow \infty$.

• Fiorilli and Martin (2013) If q is large, then

$$\Delta_2(q) = rac{1}{q^{1/2+o(1)}},$$

Corollary 1 (L., 2013)

Let $r \ge 3$ be a fixed integer. If q is large, then

$$\Delta_r(q) \asymp_r rac{1}{\log q}.$$

Youness Lamzouri (IECL)

Biased races

Rubinstein and Sarnak (1994): The two-way {q; a, b} race is biased if and only if a is a quadratic residue and b is a quadratic non-residue (or vice-versa).

Biased races

Rubinstein and Sarnak (1994): The two-way {q; a, b} race is biased if and only if a is a quadratic residue and b is a quadratic non-residue (or vice-versa).

Feuerverger and Martin (2000)

The races $\{8; 3, 5, 7\}$ and $\{12; 5, 7, 11\}$ are **biased**.

Biased races

Rubinstein and Sarnak (1994): The two-way {q; a, b} race is biased if and only if a is a quadratic residue and b is a quadratic non-residue (or vice-versa).

Feuerverger and Martin (2000)

The races $\{8; 3, 5, 7\}$ and $\{12; 5, 7, 11\}$ are **biased**.

Corollary 2 (L., 2013)

Fix $r \ge 3$. There exists a constant $q_0(r)$ such that if $q \ge q_0(r)$ is a positive integer, then

• There exist distinct residue classes $a_1, \ldots, a_r \mod q$, with $(a_i, q) = 1$, a_1, \ldots, a_r are squares modulo q and the race $\{q; a_1, \ldots, a_r\}$ is biased.
Biased races

Rubinstein and Sarnak (1994): The two-way {q; a, b} race is biased if and only if a is a quadratic residue and b is a quadratic non-residue (or vice-versa).

Feuerverger and Martin (2000)

The races $\{8; 3, 5, 7\}$ and $\{12; 5, 7, 11\}$ are **biased**.

Corollary 2 (L., 2013)

Fix $r \ge 3$. There exists a constant $q_0(r)$ such that if $q \ge q_0(r)$ is a positive integer, then

- There exist distinct residue classes $a_1, \ldots, a_r \mod q$, with $(a_i, q) = 1$, a_1, \ldots, a_r are squares modulo q and the race $\{q; a_1, \ldots, a_r\}$ is biased.
- There exist distinct residue classes b₁,..., b_r mod q, with (b_i, q) = 1, b₁,..., b_r are non-squares modulo q and the race {q; b₁,..., b_r} is biased.

• Biased races with *r* squares:

Let q be positive integer with (q, 6) = 1. Consider the race $\{q; 1, 6^4, 6^6, \dots, 6^{2(r-1)}, 4\}$. If q is large, then

$$\delta(q; 1, 6^4, 6^6, \dots, 6^{2(r-1)}, 4) > \frac{1}{r!} > \delta(q; 6^4, 6^6, \dots, 6^{2(r-1)}, 1, 4).$$

• Biased races with *r* squares:

Let q be positive integer with (q, 6) = 1. Consider the race $\{q; 1, 6^4, 6^6, \dots, 6^{2(r-1)}, 4\}$. If q is large, then

$$\delta(q; 1, 6^4, 6^6, \dots, 6^{2(r-1)}, 4) > \frac{1}{r!} > \delta(q; 6^4, 6^6, \dots, 6^{2(r-1)}, 1, 4).$$

• Biased races with *r* non-squares:

Let $q \equiv 3 \mod 4$ be a prime. Then -1 is a non-square modulo q. Consider the race $\{q; -1, -6^4, -6^6, \dots, -6^{2(r-1)}, -4\}$. If q is large,

$$\delta(q; -1, \ldots, -6^{2(r-1)}, -4) > \frac{1}{r!} > \delta(q; -6^4, \ldots, -6^{2(r-1)}, -1, -4).$$

• Let $S = \{b_1, \ldots, b_r\}$ be a finite set.

- Let $S = \{b_1, \ldots, b_r\}$ be a finite set.
- Let m ≥ 2 be a integer and (V_k)_{1≤k≤m} be a sequence of independent complex valued random variables with mean 0.

- Let $S = \{b_1, \ldots, b_r\}$ be a finite set.
- Let m ≥ 2 be a integer and (V_k)_{1≤k≤m} be a sequence of independent complex valued random variables with mean 0.
- Let $(c_k(b_j))_{\substack{1 \le j \le r \\ 1 \le k \le m}}$ be complex numbers.

- Let $S = \{b_1, \ldots, b_r\}$ be a finite set.
- Let m ≥ 2 be a integer and (V_k)_{1≤k≤m} be a sequence of independent complex valued random variables with mean 0.
- Let $(c_k(b_j))_{\substack{1 \le j \le r \\ 1 \le k \le m}}$ be complex numbers.
- We consider the following vector of random variables
 W = (W₁,..., W_r) where

$$\mathbb{W}_j = \mathsf{Re}\left(\sum_{k=1}^m c_k(b_j)\mathbb{V}_k\right).$$

- Let $S = \{b_1, \ldots, b_r\}$ be a finite set.
- Let m ≥ 2 be a integer and (V_k)_{1≤k≤m} be a sequence of independent complex valued random variables with mean 0.
- Let $(c_k(b_j))_{\substack{1 \le j \le r \\ 1 \le k \le m}}$ be complex numbers.
- We consider the following vector of random variables
 W = (W₁,..., W_r) where

$$\mathbb{W}_j = \mathsf{Re}\left(\sum_{k=1}^m c_k(b_j)\mathbb{V}_k\right).$$

• Our goal to approximate the distribution of W by a multivariate Gaussian with the **same covariance matrix**, uniformly in all parameters.

Let $\mathbb{Y} = (\mathbb{Y}_1, \ldots, \mathbb{Y}_r)$ be a multivariate normal random vector with the same covariance matrix as $\mathbb{W} = (\mathbb{W}_1, \ldots, \mathbb{W}_r)$. Let $C := \max_{j,k} |c_k(b_j)|$ and assume that $\mathbb{E}(|\mathbb{V}_k|^4) \leq \frac{K^4}{m^2}$ for all $1 \leq k \leq m$ and some $K \geq 1$.

Let $\mathbb{Y} = (\mathbb{Y}_1, \ldots, \mathbb{Y}_r)$ be a multivariate normal random vector with the same covariance matrix as $\mathbb{W} = (\mathbb{W}_1, \ldots, \mathbb{W}_r)$. Let $C := \max_{j,k} |c_k(b_j)|$ and assume that $\mathbb{E}(|\mathbb{V}_k|^4) \leq \frac{K^4}{m^2}$ for all $1 \leq k \leq m$ and some $K \geq 1$. Then, for any three times differentiable function $h : \mathbb{R}^r \to \mathbb{R}$ we have

$$\left|\mathbb{E}(h(\mathbb{W})) - \mathbb{E}(h(\mathbb{Y}))\right| \ll \frac{(KC)^2 r^2 |h|_2 + (KC)^3 r^3 |h|_3}{\sqrt{m}}$$

Let $\mathbb{Y} = (\mathbb{Y}_1, \ldots, \mathbb{Y}_r)$ be a multivariate normal random vector with the same covariance matrix as $\mathbb{W} = (\mathbb{W}_1, \ldots, \mathbb{W}_r)$. Let $C := \max_{j,k} |c_k(b_j)|$ and assume that $\mathbb{E}(|\mathbb{V}_k|^4) \leq \frac{K^4}{m^2}$ for all $1 \leq k \leq m$ and some $K \geq 1$. Then, for any three times differentiable function $h : \mathbb{R}^r \to \mathbb{R}$ we have

$$\left|\mathbb{E}(h(\mathbb{W})) - \mathbb{E}(h(\mathbb{Y}))\right| \ll \frac{(KC)^2 r^2 |h|_2 + (KC)^3 r^3 |h|_3}{\sqrt{m}}$$

where

$$|h|_2 := \sup_{1 \le i, j \le r} \left| \left| \frac{\partial^2}{\partial x_i \partial x_j} h \right| \right|_{\infty}, \text{ and } |h|_3 := \sup_{1 \le i, j, k \le r} \left| \left| \frac{\partial^3}{\partial x_i \partial x_j \partial x_k} h \right| \right|_{\infty}.$$

Let $\mathbb{Y} = (\mathbb{Y}_1, \ldots, \mathbb{Y}_r)$ be a multivariate normal random vector with the same covariance matrix as $\mathbb{W} = (\mathbb{W}_1, \ldots, \mathbb{W}_r)$. Let $C := \max_{j,k} |c_k(b_j)|$ and assume that $\mathbb{E}(|\mathbb{V}_k|^4) \leq \frac{K^4}{m^2}$ for all $1 \leq k \leq m$ and some $K \geq 1$. Then, for any three times differentiable function $h : \mathbb{R}^r \to \mathbb{R}$ we have

$$\left|\mathbb{E}(h(\mathbb{W})) - \mathbb{E}(h(\mathbb{Y}))\right| \ll \frac{(KC)^2 r^2 |h|_2 + (KC)^3 r^3 |h|_3}{\sqrt{m}}$$

where

$$|h|_2 := \sup_{1 \le i,j \le r} \left| \left| \frac{\partial^2}{\partial x_i \partial x_j} h \right| \right|_{\infty}, \text{ and } |h|_3 := \sup_{1 \le i,j,k \le r} \left| \left| \frac{\partial^3}{\partial x_i \partial x_j \partial x_k} h \right| \right|_{\infty}.$$

Harper (2013) deduced this theorem from a general multivariate normal approximation result of Reinert and Röllin (2009), which they established using Stein's method of exchangeable pairs.

We will apply this result the random vector $\mathbb{W} = (\mathbb{W}_1, \dots, \mathbb{W}_r)$ where

$$\mathbb{W}_j := \frac{\mathbb{X}(q, a_j) + c(q, a_j)}{\sqrt{V(q)}} = \sum_{\substack{\chi \neq \chi_0 \\ \chi \pmod{q}}} \mathsf{Re}(\chi(a_j)\mathbb{V}_{\chi}),$$

where

$$\mathbb{V}_{\chi} := rac{2}{\sqrt{V(q)}} \sum_{\gamma_{\chi} > 0} rac{U(\gamma_{\chi})}{\sqrt{rac{1}{4} + \gamma_{\chi}^2}},$$

and as before $\{U(\gamma_{\chi})\}_{\gamma_{\chi}\in\Gamma}$ is a sequence of independent random variables uniformly distributed on the unit circle \mathbb{S}^1 .

We will apply this result the random vector $\mathbb{W} = (\mathbb{W}_1, \dots, \mathbb{W}_r)$ where

$$\mathbb{W}_j := \frac{\mathbb{X}(q, a_j) + c(q, a_j)}{\sqrt{V(q)}} = \sum_{\substack{\chi \neq \chi_0 \\ \chi \pmod{q}}} \mathsf{Re}(\chi(a_j)\mathbb{V}_{\chi}),$$

where

$$\mathbb{V}_{\chi} := rac{2}{\sqrt{V(q)}} \sum_{\gamma_{\chi} > 0} rac{U(\gamma_{\chi})}{\sqrt{rac{1}{4} + \gamma_{\chi}^2}},$$

and as before $\{U(\gamma_{\chi})\}_{\gamma_{\chi}\in\Gamma}$ is a sequence of independent random variables uniformly distributed on the unit circle \mathbb{S}^1 . Here $c_k(b_i) = \chi(a_i)$ and $m = |\{\chi \neq \chi_0, \chi \pmod{q}\}| = \varphi(q) - 1$. We will apply this result the random vector $\mathbb{W} = (\mathbb{W}_1, \dots, \mathbb{W}_r)$ where

$$\mathbb{W}_j := \frac{\mathbb{X}(q, a_j) + c(q, a_j)}{\sqrt{V(q)}} = \sum_{\substack{\chi \neq \chi_0 \\ \chi \pmod{q}}} \operatorname{Re}(\chi(a_j) \mathbb{V}_{\chi}),$$

where

$$\mathbb{V}_{\chi} := rac{2}{\sqrt{V(q)}} \sum_{\gamma_{\chi} > 0} rac{U(\gamma_{\chi})}{\sqrt{rac{1}{4} + \gamma_{\chi}^2}},$$

and as before $\{U(\gamma_{\chi})\}_{\gamma_{\chi}\in\Gamma}$ is a sequence of independent random variables uniformly distributed on the unit circle \mathbb{S}^1 . Here $c_k(b_i) = \chi(a_i)$ and $m = |\{\chi \neq \chi_0, \chi \pmod{q}\}| = \varphi(q) - 1$.

Exercise 3

Show that for any $\chi \neq \chi_0 \pmod{q}$ we have

$$\mathbb{E}\left(|\mathbb{V}_{\chi}|^4
ight)\llrac{(\log q)^2}{V(q)^2}\llrac{1}{m^2}.$$

Youness Lamzouri (IECL)

→ ∃ →

Corollary 3

Let $\mathbb{Y} = (\mathbb{Y}_1, \dots, \mathbb{Y}_r)$ denote a multivariate normal random vector whose components have mean zero, variance 1, and correlations

$$\mathbb{E}(\mathbb{Y}_{j}\mathbb{Y}_{k}) := \mathbb{E}(\mathbb{W}_{j}\mathbb{W}_{k}) = rac{B_{q}(a_{j}, a_{k})}{V(q)}.$$

Corollary 3

Let $\mathbb{Y} = (\mathbb{Y}_1, \dots, \mathbb{Y}_r)$ denote a multivariate normal random vector whose components have mean zero, variance 1, and correlations

$$\mathbb{E}(\mathbb{Y}_{j}\mathbb{Y}_{k}) := \mathbb{E}(\mathbb{W}_{j}\mathbb{W}_{k}) = rac{B_{q}(a_{j}, a_{k})}{V(q)}$$

Then for any three times differentiable function $h : \mathbb{R}^n \to \mathbb{R}$ we have

$$\left|\mathbb{E}(h(\mathbb{W})) - \mathbb{E}(h(\mathbb{Y}))\right| \ll rac{r^2|h|_2 + r^3|h|_3}{\sqrt{\varphi(q)}}$$

Corollary 3

Let $\mathbb{Y} = (\mathbb{Y}_1, \dots, \mathbb{Y}_r)$ denote a multivariate normal random vector whose components have mean zero, variance 1, and correlations

$$\mathbb{E}(\mathbb{Y}_{j}\mathbb{Y}_{k}):=\mathbb{E}(\mathbb{W}_{j}\mathbb{W}_{k})=rac{B_{q}(a_{j},a_{k})}{V(q)}.$$

Then for any three times differentiable function $h : \mathbb{R}^n \to \mathbb{R}$ we have

$$\left|\mathbb{E}(h(\mathbb{W})) - \mathbb{E}(h(\mathbb{Y}))\right| \ll rac{r^2|h|_2 + r^3|h|_3}{\sqrt{\varphi(q)}}$$

Now we need to find a nice choice of the function *h* that approximates the characteristic function of the set $\{(x_1, \ldots, x_r) \in \mathbb{R}^n : x_1 > x_2 > \cdots > x_r\}$.

The choice of the function h

• Let $\delta > 0$ be a parameter to be chosen. Let $g : \mathbb{R} \to \mathbb{R}$ be a three times differentiable function such that

$$g(x) = \begin{cases} 1 & \text{if } x \ge \delta, \\ \in [0,1] & \text{if } 0 < x \le \delta, \\ 0 & \text{if } x \le 0, \end{cases}$$

and such that $g^{(\ell)}(x) \ll (1/\delta)^{\ell}$ for $1 \leq \ell \leq 3$.

The choice of the function h

• Let $\delta > 0$ be a parameter to be chosen. Let $g : \mathbb{R} \to \mathbb{R}$ be a three times differentiable function such that

$$g(x) = \begin{cases} 1 & \text{if } x \ge \delta, \\ \in [0,1] & \text{if } 0 < x \le \delta, \\ 0 & \text{if } x \le 0, \end{cases}$$

and such that $g^{(\ell)}(x) \ll (1/\delta)^{\ell}$ for $1 \leq \ell \leq 3$.

• Note that such g exists since the interval on which g changes from 0 to 1 has length δ .

The choice of the function h

• Let $\delta > 0$ be a parameter to be chosen. Let $g : \mathbb{R} \to \mathbb{R}$ be a three times differentiable function such that

$$g(x) = \begin{cases} 1 & \text{if } x \ge \delta, \\ \in [0,1] & \text{if } 0 < x \le \delta, \\ 0 & \text{if } x \le 0, \end{cases}$$

and such that $g^{(\ell)}(x) \ll (1/\delta)^{\ell}$ for $1 \leq \ell \leq 3$.

- Note that such g exists since the interval on which g changes from 0 to 1 has length δ .
- Let $h_{\delta}^-, h_{\delta}^+ : \mathbb{R}^r \to \mathbb{R}$ be three times differentiable functions defined by

$$h_{\delta}^{-}(x_1,\ldots,x_r):=\prod_{1\leq i< j\leq r}g(x_i-x_j),$$

and

$$h^+_{\delta}(x_1,\ldots,x_r) := \prod_{1 \leq i < j \leq r} g(x_i - x_j + \delta).$$

Youness Lamzouri (IECL)

a. Show that $\mathbb{E}(h_{\delta}^{-}(\mathbb{W})) \leq \mathbb{P}(\mathbb{W}_{1} > \mathbb{W}_{2} > \cdots > \mathbb{W}_{r}) \leq \mathbb{E}(h_{\delta}^{+}(\mathbb{W}))$, and that the same holds for \mathbb{Y} .

4 3 > 4

- a. Show that $\mathbb{E}(h_{\delta}^{-}(\mathbb{W})) \leq \mathbb{P}(\mathbb{W}_{1} > \mathbb{W}_{2} > \cdots > \mathbb{W}_{r}) \leq \mathbb{E}(h_{\delta}^{+}(\mathbb{W}))$, and that the same holds for \mathbb{Y} .
- b. Let $\delta_1, \ldots, \delta_r$ be such that $|\delta_j| \leq \delta$. Show that

 $|\mathbb{P}(\mathbb{W}_1 + \delta_1 > \cdots > \mathbb{W}_r + \delta_r) - \mathbb{P}(\mathbb{W}_1 > \cdots > \mathbb{W}_r)| \ll r^2 \delta,$

and that the same holds for \mathbb{Y} .

- a. Show that $\mathbb{E}(h_{\delta}^{-}(\mathbb{W})) \leq \mathbb{P}(\mathbb{W}_{1} > \mathbb{W}_{2} > \cdots > \mathbb{W}_{r}) \leq \mathbb{E}(h_{\delta}^{+}(\mathbb{W}))$, and that the same holds for \mathbb{Y} .
- b. Let $\delta_1, \ldots, \delta_r$ be such that $|\delta_j| \leq \delta$. Show that

 $|\mathbb{P}(\mathbb{W}_1 + \delta_1 > \cdots > \mathbb{W}_r + \delta_r) - \mathbb{P}(\mathbb{W}_1 > \cdots > \mathbb{W}_r)| \ll r^2 \delta,$

and that the same holds for \mathbb{Y} .

c. Use 1) and 2) to show that $|\mathbb{E}(h_{\delta}^{\pm}(\mathbb{W})) - \mathbb{P}(\mathbb{W}_1 > \mathbb{W}_2 > \cdots > \mathbb{W}_r)| \ll r^2 \delta$, and that the same holds for \mathbb{Y} .

- a. Show that $\mathbb{E}(h_{\delta}^{-}(\mathbb{W})) \leq \mathbb{P}(\mathbb{W}_{1} > \mathbb{W}_{2} > \cdots > \mathbb{W}_{r}) \leq \mathbb{E}(h_{\delta}^{+}(\mathbb{W}))$, and that the same holds for \mathbb{Y} .
- b. Let $\delta_1, \ldots, \delta_r$ be such that $|\delta_j| \leq \delta$. Show that

 $|\mathbb{P}(\mathbb{W}_1 + \delta_1 > \cdots > \mathbb{W}_r + \delta_r) - \mathbb{P}(\mathbb{W}_1 > \cdots > \mathbb{W}_r)| \ll r^2 \delta,$

and that the same holds for \mathbb{Y} .

- c. Use 1) and 2) to show that $|\mathbb{E}(h_{\delta}^{\pm}(\mathbb{W})) \mathbb{P}(\mathbb{W}_1 > \mathbb{W}_2 > \cdots > \mathbb{W}_r)| \ll r^2 \delta$, and that the same holds for \mathbb{Y} .
- d. Show that

$$|h_{\delta}^{-}|_{2} \ll rac{r^{2}}{\delta^{2}}, ext{ and } |h_{\delta}^{-}|_{3} \ll rac{r^{3}}{\delta^{3}},$$

and that the same bounds hold for h_{δ}^+ .

Corollary 4

Let $\mathbb{Y} = (\mathbb{Y}_1, \dots, \mathbb{Y}_r)$ denote a multivariate normal random vector whose components have mean zero, variance 1, and correlations

$$\mathbb{E}(\mathbb{Y}_{j}\mathbb{Y}_{k}) := \mathbb{E}(\mathbb{W}_{j}\mathbb{W}_{k}) = rac{B_{q}(a_{j}, a_{k})}{V(q)}.$$

Then we have

$$|\delta_{q;a_1,...,a_r} - \mathbb{P}(\mathbb{Y}_1 > \cdots > \mathbb{Y}_r)| \ll rac{r^3}{arphi(q)^{1/8}}.$$

• = • •

Corollary 4

Let $\mathbb{Y} = (\mathbb{Y}_1, \dots, \mathbb{Y}_r)$ denote a multivariate normal random vector whose components have mean zero, variance 1, and correlations

$$\mathbb{E}(\mathbb{Y}_{j}\mathbb{Y}_{k}):=\mathbb{E}(\mathbb{W}_{j}\mathbb{W}_{k})=rac{B_{q}(a_{j},a_{k})}{V(q)}.$$

Then we have

$$|\delta_{q;a_1,...,a_r} - \mathbb{P}(\mathbb{Y}_1 > \cdots > \mathbb{Y}_r)| \ll rac{r^3}{arphi(q)^{1/8}}.$$

Proof : First, recall that

$$egin{aligned} \delta_{q; m{a}_1, \dots, m{a}_r} &= \mathbb{P}(\mathbb{X}(q, m{a}_1) > \dots > \mathbb{X}(q, m{a}_r)) \ &= \mathbb{P}\left(rac{\mathbb{X}(q, m{a}_1)}{\sqrt{V(q)}} > \dots > rac{\mathbb{X}(q, m{a}_r)}{\sqrt{V(q)}}
ight). \end{aligned}$$

< ∃ > <

$$\mathbb{W}_j = \frac{\mathbb{X}(q, a_j) + c(q, a_j)}{\sqrt{V(q)}} = \frac{\mathbb{X}(q, a_j)}{\sqrt{V(q)}} + O(q^{-1/2 + o(1)}).$$

э

イロト イヨト イヨト イ

$$\mathbb{W}_j = \frac{\mathbb{X}(q, a_j) + c(q, a_j)}{\sqrt{V(q)}} = \frac{\mathbb{X}(q, a_j)}{\sqrt{V(q)}} + O(q^{-1/2 + o(1)}).$$

• Hence by Exercise 4b we deduce that

$$|\delta_{q;a_1,\ldots,a_r} - \mathbb{P}(\mathbb{W}_1 > \cdots > \mathbb{W}_r)| \ll \frac{r^2}{q^{1/2-o(1)}}.$$
 (1)

$$\mathbb{W}_j = \frac{\mathbb{X}(q, a_j) + c(q, a_j)}{\sqrt{V(q)}} = \frac{\mathbb{X}(q, a_j)}{\sqrt{V(q)}} + O(q^{-1/2 + o(1)}).$$

Hence by Exercise 4b we deduce that

$$|\delta_{q;a_1,\ldots,a_r} - \mathbb{P}(\mathbb{W}_1 > \cdots > \mathbb{W}_r)| \ll rac{r^2}{q^{1/2-o(1)}}.$$
 (1)

• Furthermore, by Corollary 3 and Exercise 4d we have $\left|\mathbb{E}(h_{\delta}^{\pm}(\mathbb{W})) - \mathbb{E}(h_{\delta}^{\pm}(\mathbb{Y}))\right| \ll \frac{r^{2}|h|_{2} + r^{3}|h|_{3}}{\sqrt{\varphi(q)}} \ll \frac{r^{4}/\delta^{2} + r^{6}/\delta^{3}}{\sqrt{\varphi(q)}}.$

$$\mathbb{W}_j = \frac{\mathbb{X}(q, a_j) + c(q, a_j)}{\sqrt{V(q)}} = \frac{\mathbb{X}(q, a_j)}{\sqrt{V(q)}} + O(q^{-1/2 + o(1)}).$$

Hence by Exercise 4b we deduce that

$$\left| \delta_{q;a_1,\ldots,a_r} - \mathbb{P}(\mathbb{W}_1 > \cdots > \mathbb{W}_r) \right| \ll rac{r^2}{q^{1/2-o(1)}}.$$
 (1)

• Furthermore, by Corollary 3 and Exercise 4d we have $\left|\mathbb{E}(h_{\delta}^{\pm}(\mathbb{W})) - \mathbb{E}(h_{\delta}^{\pm}(\mathbb{Y}))\right| \ll \frac{r^{2}|h|_{2} + r^{3}|h|_{3}}{\sqrt{\varphi(q)}} \ll \frac{r^{4}/\delta^{2} + r^{6}/\delta^{3}}{\sqrt{\varphi(q)}}.$

• We now use Exercise 4c to get

$$|\mathbb{P}(\mathbb{W}_1 > \cdots > \mathbb{W}_r) - \mathbb{P}(\mathbb{Y}_1 > \cdots > \mathbb{Y}_r)| \ll \frac{r^4/\delta^2 + r^6/\delta^3}{\sqrt{\varphi(q)}} + r^2\delta.$$

$$\mathbb{W}_j = \frac{\mathbb{X}(q, a_j) + c(q, a_j)}{\sqrt{V(q)}} = \frac{\mathbb{X}(q, a_j)}{\sqrt{V(q)}} + O(q^{-1/2 + o(1)}).$$

Hence by Exercise 4b we deduce that

$$\delta_{q;a_1,\ldots,a_r} - \mathbb{P}(\mathbb{W}_1 > \cdots > \mathbb{W}_r)| \ll \frac{r^2}{q^{1/2-o(1)}}.$$
 (1)

• Furthermore, by Corollary 3 and Exercise 4d we have $\left|\mathbb{E}(h_{\delta}^{\pm}(\mathbb{W})) - \mathbb{E}(h_{\delta}^{\pm}(\mathbb{Y}))\right| \ll \frac{r^{2}|h|_{2} + r^{3}|h|_{3}}{\sqrt{\varphi(q)}} \ll \frac{r^{4}/\delta^{2} + r^{6}/\delta^{3}}{\sqrt{\varphi(q)}}.$

• We now use Exercise 4c to get

$$|\mathbb{P}(\mathbb{W}_1 > \cdots > \mathbb{W}_r) - \mathbb{P}(\mathbb{Y}_1 > \cdots > \mathbb{Y}_r)| \ll \frac{r^4/\delta^2 + r^6/\delta^3}{\sqrt{\varphi(q)}} + r^2\delta.$$

• The result follows upon making the optimal choice $\delta = r/\varphi(q)^{1/8}$ and combining this estimate with (1).

Youness Lamzouri (IECL)

The joint distribution of weakly correlated Gaussians

 Let 𝒴 = (𝒴₁,...,𝒴_r) denote a multivariate normal random vector whose components have mean zero, variance 1, and correlations

$$\mathbb{E}(\mathbb{Y}_j\mathbb{Y}_k) = \frac{B_q(a_j, a_k)}{V(q)} \ll \frac{1}{\log q}$$

The joint distribution of weakly correlated Gaussians

 Let 𝒴 = (𝒴₁,...,𝒴_r) denote a multivariate normal random vector whose components have mean zero, variance 1, and correlations

$$\mathbb{E}(\mathbb{Y}_j\mathbb{Y}_k) = \frac{B_q(a_j, a_k)}{V(q)} \ll \frac{1}{\log q}$$

• Let $C = (c_{j,k})_{1 \le j,k \le r}$ be the covariance matrix of \mathbb{Y} . Then $c_{j,j} = 1$ and $c_{j,k} = \mathbb{E}(\mathbb{Y}_j \mathbb{Y}_k) \ll \frac{1}{\log q}$, if $j \ne k$.

The joint distribution of weakly correlated Gaussians

 Let 𝒴 = (𝒴₁,...,𝒴_r) denote a multivariate normal random vector whose components have mean zero, variance 1, and correlations

$$\mathbb{E}(\mathbb{Y}_j\mathbb{Y}_k) = \frac{B_q(a_j, a_k)}{V(q)} \ll \frac{1}{\log q}$$

- Let $C = (c_{j,k})_{1 \le j,k \le r}$ be the covariance matrix of \mathbb{Y} . Then $c_{j,j} = 1$ and $c_{j,k} = \mathbb{E}(\mathbb{Y}_j \mathbb{Y}_k) \ll \frac{1}{\log q}$, if $j \ne k$.
- Let C⁻¹ = (č_{j,k})_{1≤j,k≤r}. The joint density function of the random vector Y is given by

$$f(x_1, \dots, x_r) = \frac{1}{(2\pi)^{r/2}\sqrt{\det(\mathcal{C})}} \exp\left(-\frac{1}{2}\mathbf{x}^T \mathcal{C}^{-1}\mathbf{x}\right)$$
$$= \frac{1}{(2\pi)^{r/2}\sqrt{\det(\mathcal{C})}} \exp\left(-\frac{1}{2}\sum_{1\leq j,k\leq r} \tilde{c}_{j,k} x_j x_k\right).$$
Lemma (L., 2012)

Let $r \ge 2$ be an integer and $0 < \varepsilon \le 1/(2r)$. Let $\mathcal{M}_r(\varepsilon)$ be the set of $r \times r$ symmetric matrices whose diagonal entries are 1, and whose off-diagonal entries have absolute value at most ε .

Lemma (L., 2012)

Let $r \ge 2$ be an integer and $0 < \varepsilon \le 1/(2r)$. Let $\mathcal{M}_r(\varepsilon)$ be the set of $r \times r$ symmetric matrices whose diagonal entries are 1, and whose off-diagonal entries have absolute value at most ε . Then for any $A = (a_{i,j}) \in \mathcal{M}_r(\varepsilon)$ we have

a. $\det(A) = 1 + O(\varepsilon^2 r^2)$.

Lemma (L., 2012)

Let $r \ge 2$ be an integer and $0 < \varepsilon \le 1/(2r)$. Let $\mathcal{M}_r(\varepsilon)$ be the set of $r \times r$ symmetric matrices whose diagonal entries are 1, and whose off-diagonal entries have absolute value at most ε . Then for any $A = (a_{i,j}) \in \mathcal{M}_r(\varepsilon)$ we have

- a. $\det(A) = 1 + O(\varepsilon^2 r^2)$.
- b. A is invertible and if we denote by $\tilde{a}_{j,k}$ the entries of the inverse matrix A^{-1} then we have

$$\tilde{a}_{j,k} = \begin{cases} 1 + O(\varepsilon^2 r^2) & \text{if } j = k \\ -a_{j,k} + O(\varepsilon^2 r^2) & \text{if } j \neq k. \end{cases}$$

Proof : Exercise.

We have $\mathcal{C} \in \mathcal{M}_r(\varepsilon)$ where $\varepsilon = c/\log q$ for some constant c > 0.

- E

We have $C \in \mathcal{M}_r(\varepsilon)$ where $\varepsilon = c/\log q$ for some constant c > 0. Therefore we obtain

• det
$$(\mathcal{C}) = 1 + O\left(\frac{r^2}{(\log q)^2}\right)$$
.

We have $C \in \mathcal{M}_r(\varepsilon)$ where $\varepsilon = c/\log q$ for some constant c > 0. Therefore we obtain

- det $(\mathcal{C}) = 1 + O\left(\frac{r^2}{(\log q)^2}\right)$.
- If $\mathcal{C}^{-1} = (\tilde{c}_{j,k})_{1 \leq j,k \leq r}$, then

$$\tilde{c}_{j,k} = \begin{cases} 1 + O\left(\frac{r^2}{(\log q)^2}\right) & \text{if } j = k, \\ -c_{j,k} + O\left(\frac{r^2}{(\log q)^2}\right) & \text{if } j \neq k. \end{cases}$$

Hence we get

$$\begin{split} f(x_1, \dots, x_r) &= \frac{1}{(2\pi)^{r/2} \sqrt{\det(\mathcal{C})}} \exp\left(-\frac{1}{2} \mathbf{x}^T \mathcal{C}^{-1} \mathbf{x}\right) \\ &= \left(1 + O\left(\frac{r^2}{(\log q)^2}\right)\right) \frac{1}{(2\pi)^{r/2}} \exp\left(-\frac{1}{2} \sum_{1 \le j,k \le r} \tilde{c}_{j,k} x_j x_k\right) \\ &= \left(1 + O\left(\frac{r^2}{(\log q)^2}\right)\right) \\ &\times \frac{1}{(2\pi)^{r/2}} \exp\left(-\frac{||\mathbf{x}||_2^2}{2} + \sum_{1 \le j < k \le r} c_{j,k} x_j x_k + O\left(\frac{r^3 ||\mathbf{x}||_2^2}{(\log q)^2}\right)\right), \end{split}$$

æ

イロト イヨト イヨト イヨト

Hence we get

$$\begin{split} f(x_1, \dots, x_r) &= \frac{1}{(2\pi)^{r/2} \sqrt{\det(\mathcal{C})}} \exp\left(-\frac{1}{2} \mathbf{x}^T \mathcal{C}^{-1} \mathbf{x}\right) \\ &= \left(1 + O\left(\frac{r^2}{(\log q)^2}\right)\right) \frac{1}{(2\pi)^{r/2}} \exp\left(-\frac{1}{2} \sum_{1 \le j,k \le r} \tilde{c}_{j,k} x_j x_k\right) \\ &= \left(1 + O\left(\frac{r^2}{(\log q)^2}\right)\right) \\ &\qquad \times \frac{1}{(2\pi)^{r/2}} \exp\left(-\frac{||\mathbf{x}||_2^2}{2} + \sum_{1 \le j < k \le r} c_{j,k} x_j x_k + O\left(\frac{r^3 ||\mathbf{x}||_2^2}{(\log q)^2}\right)\right), \end{split}$$

since $c_{j,k} = c_{k,j}$ and

$$\sum_{1 \le j,k \le r} |x_j x_k| \le r \sum_{j=1}^r |x_j|^2 = r ||\mathbf{x}||_2^2,$$

by the Cauchy-Schwarz inequality.

Recall that $c_{j,j} = \mathbb{E}(|Y_j|^2) = 1$ and $c_{j,k} = \mathbb{E}(\mathbb{Y}_j \mathbb{Y}_k) \ll \frac{1}{\log q}$, if $j \neq k$.

Youness Lamzouri (IECL) Prime number races with three or more comp

▲ 圖 ▶ ▲ 圖 ▶ ▲

Recall that $c_{j,j} = \mathbb{E}(|Y_j|^2) = 1$ and $c_{j,k} = \mathbb{E}(\mathbb{Y}_j \mathbb{Y}_k) \ll \frac{1}{\log q}$, if $j \neq k$.

Exercise 5

۲

If $r = o((\log q))^{2/3}$ show that

$$f(x_1,...,x_r) \ll \frac{1}{(2\pi)^{r/2}} \exp\left(-\frac{||\mathbf{x}||_2^2}{4}\right)$$

→ < Ξ > < Ξ</p>

.

Recall that $c_{j,j} = \mathbb{E}(|Y_j|^2) = 1$ and $c_{j,k} = \mathbb{E}(\mathbb{Y}_j \mathbb{Y}_k) \ll \frac{1}{\log q}$, if $j \neq k$.

Exercise 5

۲

If $r = o((\log q))^{2/3}$ show that

$$f(x_1,...,x_r) \ll \frac{1}{(2\pi)^{r/2}} \exp\left(-\frac{||\mathbf{x}||_2^2}{4}\right)$$

Deduce that

$$\mathbb{P}(||\mathbb{Y}||_2 > R) \ll \exp\left(-\frac{R^2}{4} + O(r)\right).$$

э

▶ ★ 臣 ▶ ★ 臣 ▶

.

We now have all the ingredients to prove our theorem.

Theorem 1 (L., 2013)

Let q be large. In the range $2 \le r = o((\log q/(\log \log q))^{1/2})$, we have uniformly for all $(a_1, \ldots, a_r) \in \mathcal{A}_r(q)$

$$\delta_{q;a_1,\ldots,a_r} = \left(1 + O\left(\frac{r^4(\log r)^2}{(\log q)^2}\right)\right)\left(\frac{1}{r!} + \sum_{1 \le j < k \le r} \beta_{j,k}(r)\frac{B_q(a_j,a_k)}{V(q)}\right),$$

where

$$\beta_{j,k}(r) := \frac{1}{(2\pi)^{r/2}} \int_{x_1 > \cdots > x_r} x_j x_k \exp\left(-\frac{x_1^2 + \cdots + x_r^2}{2}\right) dx_1 \dots dx_r.$$

A 3 > 4

Proof of Theorem 1

By Corollary 4 we have

$$|\delta_{q;a_1,\ldots,a_r}-\mathbb{P}(\mathbb{Y}_1>\cdots>\mathbb{Y}_r)|\ll rac{r^3}{arphi(q)^{1/8}}.$$

Youness Lamzouri (IECL) Prime number races with three or more comp

March 20th, 2023

< □ > < @ >

→ ∃ →

Proof of Theorem 1

By Corollary 4 we have

$$|\delta_{q;a_1,\ldots,a_r}-\mathbb{P}(\mathbb{Y}_1>\cdots>\mathbb{Y}_r)|\ll rac{r^3}{arphi(q)^{1/8}}.$$

Hence, it suffices to prove the same asymptotic formula for $\mathbb{P}(\mathbb{Y}_1 > \cdots > \mathbb{Y}_r)$.

< ∃ ►

Proof of Theorem 1

By Corollary 4 we have

$$|\delta_{q;a_1,\ldots,a_r}-\mathbb{P}(\mathbb{Y}_1>\cdots>\mathbb{Y}_r)|\ll rac{r^3}{arphi(q)^{1/8}}.$$

Hence, it suffices to prove the same asymptotic formula for $\mathbb{P}(\mathbb{Y}_1 > \cdots > \mathbb{Y}_r)$. Let $R > c_0 \sqrt{r}$ be a parameter to be chosen, where c_0 is a sufficiently large constant. By Corollary 4 we have

$$|\delta_{q;a_1,\ldots,a_r}-\mathbb{P}(\mathbb{Y}_1>\cdots>\mathbb{Y}_r)|\ll rac{r^3}{arphi(q)^{1/8}}.$$

Hence, it suffices to prove the same asymptotic formula for $\mathbb{P}(\mathbb{Y}_1 > \cdots > \mathbb{Y}_r)$. Let $R > c_0 \sqrt{r}$ be a parameter to be chosen, where c_0 is a sufficiently large constant. By Exercise 5 we have

$$\mathbb{P}(\mathbb{Y}_1 > \dots > \mathbb{Y}_r)$$

= $\mathbb{P}(\mathbb{Y}_1 > \dots > \mathbb{Y}_r \text{ and } ||\mathbb{Y}||_2 \le R) + O\left(\exp\left(-\frac{R^2}{4} + O(r)\right)\right)$
= $\int_{\substack{x_1 > \dots > x_r \\ ||\mathbf{x}||_2 \le R}} f(x_1, \dots, x_r) dx_1 \cdots dx_r + O\left(\exp\left(-\frac{R^2}{5}\right)\right).$

Now if $||\mathbf{x}||_2 \leq R$ then we have

$$\begin{split} f(x_1, \dots, x_r) &= \left(1 + O\left(\frac{r^2}{(\log q)^2}\right) \right) \\ &\times \frac{1}{(2\pi)^{r/2}} \exp\left(-\frac{||\mathbf{x}||_2^2}{2} + \sum_{1 \le j < k \le r} c_{j,k} x_j x_k + O\left(\frac{r^3 ||\mathbf{x}||_2^2}{(\log q)^2}\right) \right) \\ &= \left(1 + O\left(\frac{r^3 R^2}{(\log q)^2}\right) \right) \frac{1}{(2\pi)^{r/2}} \exp\left(-\frac{||\mathbf{x}||_2^2}{2} + \sum_{1 \le j < k \le r} c_{j,k} x_j x_k \right) \end{split}$$

(日)

Now if $||\mathbf{x}||_2 \leq R$ then we have

$$\begin{split} f(x_1, \dots, x_r) &= \left(1 + O\left(\frac{r^2}{(\log q)^2}\right) \right) \\ &\times \frac{1}{(2\pi)^{r/2}} \exp\left(-\frac{||\mathbf{x}||_2^2}{2} + \sum_{1 \le j < k \le r} c_{j,k} x_j x_k + O\left(\frac{r^3 ||\mathbf{x}||_2^2}{(\log q)^2}\right) \right) \\ &= \left(1 + O\left(\frac{r^3 R^2}{(\log q)^2}\right) \right) \frac{1}{(2\pi)^{r/2}} \exp\left(-\frac{||\mathbf{x}||_2^2}{2} + \sum_{1 \le j < k \le r} c_{j,k} x_j x_k \right) \end{split}$$

Moreover, we have

$$\exp\Big(\sum_{1 \le j < k \le r} c_{j,k} x_j x_k\Big) = 1 + \sum_{1 \le j < k \le r} c_{j,k} x_j x_k + O\left(\frac{r^2 ||\mathbf{x}||_2^4}{(\log q)^2}\right).$$

→ ∃ →

< 行

Therefore, we deduce that

 $f(x_1,...,x_r) = \left(1 + O\left(\frac{r^2 R^4}{(\log q)^2}\right)\right) \frac{1}{(2\pi)^{r/2}} \exp\left(-\frac{||\mathbf{x}||_2^2}{2}\right) \left(1 + \sum_{1 \le j \le k \le r} c_{j,k} x_j x_k\right).$

Therefore, we deduce that

$$f(x_1,...,x_r) = \left(1 + O\left(\frac{r^2 R^4}{(\log q)^2}\right)\right) \frac{1}{(2\pi)^{r/2}} \exp\left(-\frac{||\mathbf{x}||_2^2}{2}\right) \left(1 + \sum_{1 \le j < k \le r} c_{j,k} x_j x_k\right).$$

To complete the proof we choose $R = c_1 \sqrt{r \log r}$ for some large constant $c_1 > 0$ and insert this last estimate in the asymptotic formula

$$\mathbb{P}(\mathbb{Y}_1 > \cdots > \mathbb{Y}_r) = \int_{\substack{x_1 > \cdots > x_r \\ ||\mathbf{x}||_2 \le R}} f(x_1, \ldots, x_r) dx_1 \cdots dx_r + O\left(\exp\left(-\frac{R^2}{5}\right)\right)$$

Therefore, we deduce that

$$f(x_1,...,x_r) = \left(1 + O\left(\frac{r^2 R^4}{(\log q)^2}\right)\right) \frac{1}{(2\pi)^{r/2}} \exp\left(-\frac{||\mathbf{x}||_2^2}{2}\right) \left(1 + \sum_{1 \le j < k \le r} c_{j,k} x_j x_k\right).$$

To complete the proof we choose $R = c_1 \sqrt{r \log r}$ for some large constant $c_1 > 0$ and insert this last estimate in the asymptotic formula

$$\mathbb{P}(\mathbb{Y}_1 > \cdots > \mathbb{Y}_r) = \int_{\substack{x_1 > \cdots > x_r \\ ||\mathbf{x}||_2 \le R}} f(x_1, \dots, x_r) dx_1 \cdots dx_r + O\left(\exp\left(-\frac{R^2}{5}\right)\right)$$

Indeed the result follows upon completing the integrals and noting that

$$\frac{1}{(2\pi)^{r/2}}\int_{x_1>\cdots>x_r}\exp\Big(-\frac{||\mathbf{x}||_2^2}{2}\Big)dx_1\dots dx_r=\frac{1}{r!},$$

and

$$\frac{1}{(2\pi)^{r/2}}\int_{x_1>\cdots>x_r}x_jx_k\exp\Big(-\frac{||\mathbf{x}||_2^2}{2}\Big)dx_1\ldots dx_r=\beta_{j,k}(r).$$

Question (Feurverger and Martin, 2000)

• Is there a function $r_0(q) \to \infty$ as $q \to \infty$ such that for $r \ge r_0$ we have

 $\limsup_{q\to\infty} \max_{(a_1,\ldots,a_r)\in\mathcal{A}_r(q)} r! \delta_{q;a_1,\ldots,a_r} = \infty$

and

$$\liminf_{q\to\infty}\min_{(a_1,\ldots,a_r)\in\mathcal{A}_r(q)}r!\delta_{q;a_1,\ldots,a_r}=0?$$

A B K A B K

Question (Feurverger and Martin, 2000)

• Is there a function $r_0(q) \to \infty$ as $q \to \infty$ such that for $r \ge r_0$ we have

 $\limsup_{q\to\infty} \max_{(a_1,\ldots,a_r)\in\mathcal{A}_r(q)} r! \delta_{q;a_1,\ldots,a_r} = \infty$

and

$$\liminf_{q\to\infty}\min_{(a_1,\ldots,a_r)\in\mathcal{A}_r(q)}r!\delta_{q;a_1,\ldots,a_r}=0?$$

 If so how quickly must r₀(q) grow with q for these phenomena to emerge?

Conjecture (Ford and L., 2011)

1. If $2 \le r \le (\log q)^{1-\varepsilon}$, then

$$\lim_{q\to\infty}\max_{a_1,\ldots,a_r}\max_{({\rm mod } q)}|r!\delta(q;a_1,\ldots,a_r)-1|=0.$$

Youness Lamzouri (IECL) Prime number races with three or more comp

э

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Conjecture (Ford and L., 2011)

1. If $2 \le r \le (\log q)^{1-\varepsilon}$, then

$$\lim_{q\to\infty}\max_{a_1,\ldots,a_r\pmod{q}}|r!\delta(q;a_1,\ldots,a_r)-1|=0.$$

2. If $(\log q)^{1+\varepsilon} \leq r \leq \varphi(q)$, then

 $\lim_{q\to\infty}\max_{a_1,\ldots,a_r\pmod{q}}r!\delta(q;a_1,\ldots,a_r)=\infty,$

$$\lim_{q\to\infty}\min_{a_1,\ldots,a_r} \min_{(\text{mod }q)} r!\delta(q;a_1,\ldots,a_r)=0.$$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ ∽ Q ()~

Theorem (Harper and L., 2018)

The first part of the Ford-Lamzouri Conjecture is true in the extended range $r = o((\log q)/(\log \log q)^4)$. More precisely, we have uniformly for $(a_1, \ldots, a_r) \in \mathcal{A}_r(q)$

$$\delta_{q;a_1,\ldots,a_r} = \frac{1}{r!} \left(1 + O\left(\frac{r(\log r)^4}{\log q}\right) \right).$$

Theorem (Harper and L., 2018)

The first part of the Ford-Lamzouri Conjecture is true in the extended range $r = o((\log q)/(\log \log q)^4)$. More precisely, we have uniformly for $(a_1, \ldots, a_r) \in \mathcal{A}_r(q)$

$$\delta_{q;a_1,\ldots,a_r} = \frac{1}{r!} \left(1 + O\left(\frac{r(\log r)^4}{\log q}\right) \right).$$

Theorem (Ford, Harper and L., 2019)

The second part of the Ford-Lamzouri Conjecture is true as soon as $r/\log q \to \infty$. More precisely, in this range we have

$$\lim_{q\to\infty}\max_{a_1,\ldots,a_r\pmod{q}}r!\delta(q;a_1,\ldots,a_r)=\infty,$$

$$\lim_{q\to\infty}\min_{a_1,\ldots,a_r}\min_{(\text{mod }q)}r!\delta(q;a_1,\ldots,a_r)=0.$$

Thank you very much for your attention!