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Introduction and notations

q ≥ 3 and 2 ≤ r ≤ ϕ(q) are integers.

P and E will denote the probability and the expectation respectively.

Ar (q) is the set of ordered r -tuples (a1, . . . , ar ) of distincts residue
classes modulo q that are coprime to q.

Rubinstein and Sarnak (1994)

Assume GRH and LI. Let Pq;a1,...,ar be the set of real numbers x ≥ 2 such
that

π(x ; q, a1) > π(x ; q, a2) > · · · > π(x ; q, ar ).

The logarithmic density of Pq;a1,...,ar defined by

δq;a1,...,ar := lim
x→∞

1

log x

∫
t∈Pq;a1,...,ar∩[2,x]

dt

t
,

exists and is positive.
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Throughout we assume GRH and LI.

Let {γχ} be the set of the imaginary parts of the non-trivial zeros of
L(s, χ) and Γ =

⋃
χ 6=χ0 mod q{γχ > 0}.

It follows from the work of Rubinstein and Sarnak that

δq;a1,...,ar = P(X(q, a1) > X(q, a2) > · · · > X(q, ar )).

where

X(q, a) := −c(q, a) +
∑
χ 6=χ0

χ (mod q)

Re
(

2χ(a)
∑
γχ>0

U(γχ)√
1
4 + γ2

χ

)
,

and c(q, a) := −1 + |{n (mod q) : n2 ≡ a (mod q)}|, and
{U(γχ)}γχ∈Γ is a sequence of independent random variables uniformly
distributed on the unit circle S1.

In the notation of G. Martin’s notes, the random variable Xq;a,b has
the same distribution as X(q, a)− X(q, b) defined above. Hence

δq;a,b = P(Xq;a,b > 0) = P(X(q, a) > X(q, b)).
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Rubinstein and Sarnak (1994)

In an r -way race with r ≥ 2 fixed, all biases dissolve when q →∞.

More
precisely

∆r (q) := max
(a1,a2,...,ar )∈Ar (q)

∣∣∣∣δq;a1,...,ar −
1

r !

∣∣∣∣→ 0, as q →∞.

Ideas of the proof

Show that the Fourier transform (properly normalized) of the joint
distribution of the random vector (X(q, a1), . . . ,X(q, ar )) converges
to the Fourier transform of a standard multivariate Gaussian vector
(Z1, . . . ,Zr ) (i.e. the Zj are I. I. D and ∼ N (0, 1)).

By Levy’s Continuity Theorem we deduce that

δq;a1,...,ar = P(X(q, a1) > · · · > X(q, ar ))→ P(Z1 > · · · > Zr ) =
1

r !
.
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Asymptotic formulas for the densities when q →∞

The case r = 2 : Fiorilli and Martin (2013)

If a1 is a non-square and a2 is a square modulo q, then

δq;a1,a2 =
1

2
+

c(q, a2)− c(q, a1)

2
√
πV (q)

(1 + o(1)),

where

V (q) := 2
∑
χ 6=χ0
χ mod q

∑
γχ>0

1
1
4 + γ2

χ

∼ ϕ(q) log q.

Corollary (Fiorilli and Martin, 2013)

∆2(q) =
1

q1/2+o(1)
.
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The case r ≥ 3

While the behaviour of the densities δq;a1,a2 is governed by the means
of the random variables X(q, a1) and X(q, a2), the behaviour of
δq;a1,a2,...,ar for r ≥ 3 will be governed by the correlations of the
X(q, aj)’s.

Definition

The covariance matrix of the random vector (X1, . . . ,Xr ) is the r × r
matrix K whose entries are

Ki ,j = E
(
(Xi − E(Xi ))(Xj − E(Xj))

)
.

In particular the diagonal entries of K are the variances of the Xj ’s, namely

Kj ,j = Var(Xj).
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Exercise 1

Let C = Cq;a1,...,ar be the covariance matrix of the random vector(
X(q, a1), . . . ,X(q, ar )

)
. Show

Ci ,j =

{
V (q) if i = j

Bq(ai , aj) if i 6= j ,

where

V (q) = 2
∑
χ 6=χ0
χ mod q

∑
γχ>0

1
1
4 + γ2

χ

∼ ϕ(q) log q,

and

Bq(a, b) =
∑
χ 6=χ0
χ mod q

∑
γχ>0

χ( a
b ) + χ(ba )
1
4 + γ2

χ

.
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Proposition

For a, b such that 1 ≤ |a|, |b| ≤ q/2 we have

Bq(a, b) = −ϕ(q)

(
`(a, b) log 2 +

Λ(s1)

s1
+

Λ(s2)

s2

)
+ O

(
(|a|+ |b|)(log q)2

)
,

where `(a, b) = 1 if b = −a and equals 0 otherwise , and where s1 and s2

denote the least positive residues of ba−1 and ab−1 modulo q,
respectively.

In particular, we have max(a,b)∈A2(q) |Bq(a, b)| � ϕ(q), and hence

max
(a,b)∈A2(q)

|Bq(a, b)|
V (q)

� 1

log q
.

However, we have |Bq(a, b)| � log q on average over all
(a, b) ∈ A2(q).
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Theorem 1 (L., 2013)

Let q be large. In the range 2 ≤ r = o((log q/(log log q))1/2, we have
uniformly for all (a1, . . . , ar ) ∈ Ar (q)

δq;a1,...,ar =

(
1 + O

(
r4(log r)2

(log q)2

)) 1

r !
+

∑
1≤j<k≤r

βj ,k(r)
Bq(aj , ak)

V (q)

,

where

βj ,k(r) :=
1

(2π)r/2

∫
x1>···>xr

xjxk exp
(
− x2

1 + · · ·+ x2
r

2

)
dx1 . . . dxr .

Exercise 2

Show that
∑

1≤j<k≤r |βj ,k(r)| � (log r)/(r − 1)!, and deduce that
the secondary term is smaller than the main term in the given range.

Show that β1,2(2) = 0 and for r ≥ 3 that β1,r (r) < 0 and
βr−1,r (r) > 0.
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xjxk exp
(
− x2

1 + · · ·+ x2
r

2

)
dx1 . . . dxr .

Exercise 2

Show that
∑

1≤j<k≤r |βj ,k(r)| � (log r)/(r − 1)!, and deduce that
the secondary term is smaller than the main term in the given range.

Show that β1,2(2) = 0 and for r ≥ 3 that β1,r (r) < 0 and
βr−1,r (r) > 0.

Youness Lamzouri (IECL) Prime number races with three or more competitors March 20th, 2023



Theorem 1 (L., 2013)

Let q be large. In the range 2 ≤ r = o((log q/(log log q))1/2, we have
uniformly for all (a1, . . . , ar ) ∈ Ar (q)

δq;a1,...,ar =

(
1 + O

(
r4(log r)2

(log q)2

)) 1

r !
+

∑
1≤j<k≤r

βj ,k(r)
Bq(aj , ak)

V (q)

,
where

βj ,k(r) :=
1

(2π)r/2

∫
x1>···>xr

xjxk exp
(
− x2

1 + · · ·+ x2
r

2

)
dx1 . . . dxr .

Exercise 2

Show that
∑

1≤j<k≤r |βj ,k(r)| � (log r)/(r − 1)!, and deduce that
the secondary term is smaller than the main term in the given range.

Show that β1,2(2) = 0 and for r ≥ 3 that β1,r (r) < 0 and
βr−1,r (r) > 0.

Youness Lamzouri (IECL) Prime number races with three or more competitors March 20th, 2023



Consequences of the asymptotic formula

Recall that

∆r (q) := max
(a1,a2,...,ar )∈Ar (q)

∣∣∣∣δq;a1,...,ar −
1

r !

∣∣∣∣.
Rubinstein and Sarnak (1994): If r ≥ 2 is fixed, then

∆r (q)→ 0 as q →∞.

Fiorilli and Martin (2013) If q is large, then

∆2(q) =
1

q1/2+o(1)
.

Corollary 1 (L., 2013)

Let r ≥ 3 be a fixed integer. If q is large, then

∆r (q) �r
1

log q
.
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Biased races

Rubinstein and Sarnak (1994): The two-way {q; a, b} race is biased
if and only if a is a quadratic residue and b is a quadratic non-residue
(or vice-versa).

Feuerverger and Martin (2000)

The races {8; 3, 5, 7} and {12; 5, 7, 11} are biased.

Corollary 2 (L., 2013)

Fix r ≥ 3. There exists a constant q0(r) such that if q ≥ q0(r) is a
positive integer, then

There exist distinct residue classes a1, . . . , ar mod q, with (ai , q) = 1,
a1, . . . , ar are squares modulo q and the race {q; a1, . . . , ar} is biased.

There exist distinct residue classes b1, . . . , br mod q, with (bi , q) = 1,
b1, . . . , br are non-squares modulo q and the race {q; b1, . . . , br} is
biased.
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Explicit constructions

Biased races with r squares:
Let q be positive integer with (q, 6) = 1. Consider the race
{q; 1, 64, 66, . . . , 62(r−1), 4}. If q is large, then

δ(q; 1, 64, 66, . . . , 62(r−1), 4) >
1

r !
> δ

(
q; 64, 66, . . . , 62(r−1), 1, 4

)
.

Biased races with r non-squares:
Let q ≡ 3 mod 4 be a prime. Then −1 is a non-square modulo q.
Consider the race {q;−1,−64,−66, . . . ,−62(r−1),−4}. If q is large,

δ(q;−1, . . . ,−62(r−1),−4) >
1

r !
> δ(q;−64, . . . ,−62(r−1),−1,−4).
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Ingredients of the proof of Theorem 1: Multidimensional
normal approximation, a result from probability

Let S = {b1, . . . , br} be a finite set.

Let m ≥ 2 be a integer and (Vk)1≤k≤m be a sequence of independent
complex valued random variables with mean 0.

Let
(
ck(bj)

)
1≤j≤r

1≤k≤m
be complex numbers.

We consider the following vector of random variables
W = (W1, . . . ,Wr ) where

Wj = Re

(
m∑

k=1

ck(bj)Vk

)
.

Our goal to approximate the distribution of W by a multivariate
Gaussian with the same covariance matrix, uniformly in all
parameters.
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Theorem (Reinert-Röllin (2009), Harper (2013))

Let Y = (Y1, . . . ,Yr ) be a multivariate normal random vector with the
same covariance matrix as W = (W1, . . . ,Wr ). Let C := maxj ,k |ck(bj)|
and assume that E

(
|Vk |4

)
≤ K4

m2 for all 1 ≤ k ≤ m and some K ≥ 1.

Then, for any three times differentiable function h : Rr → R we have

∣∣E(h(W))− E(h(Y))
∣∣� (KC )2r2|h|2 + (KC )3r3|h|3√

m
,

where

|h|2 := sup
1≤i ,j≤r

∣∣∣∣∣∣ ∂2

∂xi∂xj
h
∣∣∣∣∣∣
∞
, and |h|3 := sup

1≤i ,j ,k≤r

∣∣∣∣∣∣ ∂3

∂xi∂xj∂xk
h
∣∣∣∣∣∣
∞
.

Harper (2013) deduced this theorem from a general multivariate normal
approximation result of Reinert and Röllin (2009), which they established
using Stein’s method of exchangeable pairs.
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We will apply this result the random vector W = (W1, . . . ,Wr ) where

Wj :=
X(q, aj) + c(q, aj)√

V (q)
=

∑
χ 6=χ0

χ (mod q)

Re
(
χ(aj)Vχ

)
,

where

Vχ :=
2√
V (q)

∑
γχ>0

U(γχ)√
1
4 + γ2

χ

,

and as before {U(γχ)}γχ∈Γ is a sequence of independent random variables
uniformly distributed on the unit circle S1.

Here ck(bj) = χ(aj) and m = |{χ 6= χ0, χ (mod q)}| = ϕ(q)− 1.

Exercise 3

Show that for any χ 6= χ0 (mod q) we have

E
(
|Vχ|4

)
� (log q)2

V (q)2
� 1

m2
.
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Hence we have C = maxj ,χ |χ(aj)| = 1 and we can take K to be a fixed
constant.

Corollary 3

Let Y = (Y1, . . . ,Yr ) denote a multivariate normal random vector whose
components have mean zero, variance 1, and correlations

E(YjYk) := E(WjWk) =
Bq(aj , ak)

V (q)
.

Then for any three times differentiable function h : Rn → R we have

∣∣E(h(W))− E(h(Y))
∣∣� r2|h|2 + r3|h|3√

ϕ(q)
.

Now we need to find a nice choice of the function h that approximates the
characteristic function of the set {(x1, . . . , xr ) ∈ Rn : x1 > x2 > · · · > xr}.
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The choice of the function h

Let δ > 0 be a parameter to be chosen. Let g : R→ R be a three
times differentiable function such that

g(x) =


1 if x ≥ δ,
∈ [0, 1] if 0 < x ≤ δ,
0 if x ≤ 0,

and such that g (`)(x)� (1/δ)` for 1 ≤ ` ≤ 3.

Note that such g exists since the interval on which g changes from 0
to 1 has length δ.

Let h−δ , h
+
δ : Rr → R be three times differentiable functions defined by

h−δ (x1, . . . , xr ) :=
∏

1≤i<j≤r
g(xi − xj),

and
h+
δ (x1, . . . , xr ) :=

∏
1≤i<j≤r

g(xi − xj + δ).
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times differentiable function such that

g(x) =


1 if x ≥ δ,
∈ [0, 1] if 0 < x ≤ δ,
0 if x ≤ 0,

and such that g (`)(x)� (1/δ)` for 1 ≤ ` ≤ 3.

Note that such g exists since the interval on which g changes from 0
to 1 has length δ.

Let h−δ , h
+
δ : Rr → R be three times differentiable functions defined by

h−δ (x1, . . . , xr ) :=
∏

1≤i<j≤r
g(xi − xj),

and
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Exercise 4

a. Show that E
(
h−δ (W)

)
≤ P(W1 >W2 > · · · >Wr ) ≤ E

(
h+
δ (W)

)
,

and that the same holds for Y.

b. Let δ1, . . . , δr be such that |δj | ≤ δ. Show that

|P(W1 + δ1 > · · · >Wr + δr )− P(W1 > · · · >Wr )| � r2δ,

and that the same holds for Y.

c. Use 1) and 2) to show that∣∣E (h±δ (W)
)
− P(W1 >W2 > · · · >Wr )

∣∣� r2δ, and that the same
holds for Y.

d. Show that

|h−δ |2 �
r2

δ2
, and |h−δ |3 �

r3

δ3
,

and that the same bounds hold for h+
δ .
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Corollary 4

Let Y = (Y1, . . . ,Yr ) denote a multivariate normal random vector whose
components have mean zero, variance 1, and correlations

E(YjYk) := E(WjWk) =
Bq(aj , ak)

V (q)
.

Then we have

|δq;a1,...,ar − P(Y1 > · · · > Yr )| � r3

ϕ(q)1/8
.

Proof : First, recall that

δq;a1,...,ar = P(X(q, a1) > · · · > X(q, ar ))

= P

(
X(q, a1)√

V (q)
> · · · > X(q, ar )√

V (q)

)
.
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Moreover, we have

Wj =
X(q, aj) + c(q, aj)√

V (q)
=

X(q, aj)√
V (q)

+ O(q−1/2+o(1)).

Hence by Exercise 4b we deduce that

|δq;a1,...,ar − P(W1 > · · · >Wr )| � r2

q1/2−o(1)
. (1)

Furthermore, by Corollary 3 and Exercise 4d we have∣∣E(h±δ (W))− E(h±δ (Y))
∣∣� r2|h|2 + r3|h|3√

ϕ(q)
� r4/δ2 + r6/δ3√

ϕ(q)
.

We now use Exercise 4c to get

|P(W1 > · · · >Wr )− P(Y1 > · · · > Yr )| � r4/δ2 + r6/δ3√
ϕ(q)

+ r2δ.

The result follows upon making the optimal choice δ = r/ϕ(q)1/8 and
combining this estimate with (1).
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The joint distribution of weakly correlated Gaussians

Let Y = (Y1, . . . ,Yr ) denote a multivariate normal random vector
whose components have mean zero, variance 1, and correlations

E(YjYk) =
Bq(aj , ak)

V (q)
� 1

log q
.

Let C = (cj ,k)1≤j ,k≤r be the covariance matrix of Y. Then cj ,j = 1
and cj ,k = E(YjYk)� 1

log q , if j 6= k .

Let C−1 = (c̃j ,k)1≤j ,k≤r . The joint density function of the random
vector Y is given by

f (x1, . . . , xr ) =
1

(2π)r/2
√

det(C)
exp

(
−1

2
xTC−1x

)
=

1

(2π)r/2
√

det(C)
exp

(
− 1

2

∑
1≤j ,k≤r

c̃j ,kxjxk

)
.
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Lemma (L., 2012)

Let r ≥ 2 be an integer and 0 < ε ≤ 1/(2r). Let Mr (ε) be the set of
r × r symmetric matrices whose diagonal entries are 1, and whose
off-diagonal entries have absolute value at most ε.

Then for any
A = (ai ,j) ∈Mr (ε) we have

a. det(A) = 1 + O(ε2r2).

b. A is invertible and if we denote by ãj ,k the entries of the inverse
matrix A−1 then we have

ãj ,k =

{
1 + O(ε2r2) if j = k

−aj ,k + O(ε2r2) if j 6= k .

Proof : Exercise.
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We have C ∈ Mr (ε) where ε = c/ log q for some constant c > 0.

Therefore we obtain

det(C) = 1 + O
(

r2

(log q)2

)
.

If C−1 = (c̃j ,k)1≤j ,k≤r , then

c̃j ,k =

1 + O
(

r2

(log q)2

)
if j = k ,

−cj ,k + O
(

r2

(log q)2

)
if j 6= k .
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Hence we get

f (x1, . . . , xr ) =
1

(2π)r/2
√

det(C)
exp

(
− 1

2
xTC−1x

)
=

(
1 + O

(
r2

(log q)2

))
1

(2π)r/2
exp

(
− 1

2

∑
1≤j ,k≤r

c̃j ,kxjxk

)
=

(
1 + O

(
r2

(log q)2

))
× 1

(2π)r/2
exp

(
− ||x ||

2
2

2
+

∑
1≤j<k≤r

cj ,kxjxk + O
( r3||x||22

(log q)2

))
,

since cj ,k = ck,j and

∑
1≤j ,k≤r

|xjxk | ≤ r
r∑

j=1

|xj |2 = r ||x||22,

by the Cauchy-Schwarz inequality.
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Recall that cj ,j = E(|Yj |2) = 1 and cj ,k = E(YjYk)� 1
log q , if j 6= k .

Exercise 5

If r = o
(
(log q))2/3

)
show that

f (x1, . . . , xr )� 1

(2π)r/2
exp

(
− ||x||

2
2

4

)
.

Deduce that

P(||Y||2 > R)� exp

(
−R2

4
+ O(r)

)
.
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We now have all the ingredients to prove our theorem.

Theorem 1 (L., 2013)

Let q be large. In the range 2 ≤ r = o((log q/(log log q))1/2, we have
uniformly for all (a1, . . . , ar ) ∈ Ar (q)

δq;a1,...,ar =

(
1 + O

(
r4(log r)2

(log q)2

)) 1

r !
+

∑
1≤j<k≤r

βj ,k(r)
Bq(aj , ak)

V (q)

,
where

βj ,k(r) :=
1

(2π)r/2

∫
x1>···>xr

xjxk exp
(
− x2

1 + · · ·+ x2
r

2

)
dx1 . . . dxr .
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Proof of Theorem 1

By Corollary 4 we have

|δq;a1,...,ar − P(Y1 > · · · > Yr )| � r3

ϕ(q)1/8
.

Hence, it suffices to prove the same asymptotic formula for
P(Y1 > · · · > Yr ).
Let R > c0

√
r be a parameter to be chosen, where c0 is a sufficiently large

constant. By Exercise 5 we have

P(Y1 > · · · > Yr )

= P(Y1 > · · · > Yr and ||Y||2 ≤ R) + O

(
exp

(
−R2

4
+ O(r)

))
=

∫
x1>···>xr
||x||2≤R

f (x1, . . . , xr )dx1 · · · dxr + O
(

exp
(
− R2

5

))
.
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Hence, it suffices to prove the same asymptotic formula for
P(Y1 > · · · > Yr ).
Let R > c0

√
r be a parameter to be chosen, where c0 is a sufficiently large

constant. By Exercise 5 we have

P(Y1 > · · · > Yr )

= P(Y1 > · · · > Yr and ||Y||2 ≤ R) + O

(
exp

(
−R2

4
+ O(r)

))
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Now if ||x||2 ≤ R then we have

f (x1, . . . , xr )

=

(
1 + O

(
r2

(log q)2

))
× 1

(2π)r/2
exp

(
− ||x||

2
2

2
+

∑
1≤j<k≤r

cj ,kxjxk + O
( r3||x||22

(log q)2

)

=

(
1 + O

(
r3R2

(log q)2

))
1

(2π)r/2
exp

−||x||22
2

+
∑

1≤j<k≤r
cj ,kxjxk



Moreover, we have

exp
( ∑

1≤j<k≤r
cj ,kxjxk

)
= 1 +

∑
1≤j<k≤r

cj ,kxjxk + O

(
r2||x||42
(log q)2

)
.
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Therefore, we deduce that

f (x1, . . . , xr )

=

(
1 + O

(
r2R4

(log q)2

))
1

(2π)r/2
exp

(
− ||x||

2
2

2

)(
1 +

∑
1≤j<k≤r

cj ,kxjxk

)
.

To complete the proof we choose R = c1
√
r log r for some large constant

c1 > 0 and insert this last estimate in the asymptotic formula

P(Y1 > · · · > Yr ) =

∫
x1>···>xr
||x||2≤R

f (x1, . . . , xr )dx1 · · · dxr + O
(

exp
(
− R2

5

))
.

Indeed the result follows upon completing the integrals and noting that

1

(2π)r/2

∫
x1>···>xr

exp
(
− ||x||

2
2

2

)
dx1 . . . dxr =

1

r !
,

and

1

(2π)r/2

∫
x1>···>xr

xjxk exp
(
− ||x||

2
2

2

)
dx1 . . . dxr = βj ,k(r).
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What happens if r is larger ?

Question (Feurverger and Martin, 2000)

Is there a function r0(q)→∞ as q →∞ such that for r ≥ r0 we have

lim sup
q→∞

max
(a1,...,ar )∈Ar (q)

r !δq;a1,...,ar =∞

and
lim inf
q→∞

min
(a1,...,ar )∈Ar (q)

r !δq;a1,...,ar = 0?

If so how quickly must r0(q) grow with q for these phenomena to
emerge?
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Conjecture (Ford and L., 2011)

1. If 2 ≤ r ≤ (log q)1−ε, then

lim
q→∞

max
a1,...,ar (mod q)

|r !δ(q; a1, . . . , ar )− 1| = 0.

2. If (log q)1+ε ≤ r ≤ ϕ(q), then

lim
q→∞

max
a1,...,ar (mod q)

r !δ(q; a1, . . . , ar ) =∞,

lim
q→∞

min
a1,...,ar (mod q)

r !δ(q; a1, . . . , ar ) = 0.
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Theorem (Harper and L., 2018)

The first part of the Ford-Lamzouri Conjecture is true in the extended
range r = o

(
(log q)/(log log q)4

)
. More precisely, we have uniformly for

(a1, . . . , ar ) ∈ Ar (q)

δq;a1,...,ar =
1

r !

(
1 + O

(
r(log r)4

log q

))
.

Theorem (Ford, Harper and L., 2019)

The second part of the Ford-Lamzouri Conjecture is true as soon as
r/ log q →∞. More precisely, in this range we have

lim
q→∞

max
a1,...,ar (mod q)

r !δ(q; a1, . . . , ar ) =∞,

lim
q→∞

min
a1,...,ar (mod q)

r !δ(q; a1, . . . , ar ) = 0.
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Thank you very much for your attention!
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