Wednes day, March 29
Selting: r-woy prime aze among $\pi\left(x_{j} q_{j} x_{1}\right), \ldots, \pi\left(x ; q_{j} q_{r}\right)$. For any pemutation $\left(v_{1}, \ldots, \delta_{r}\right)$ of $\left(\alpha_{1}, \ldots, a_{r}\right)$, consider
(k) $\left\{x>0: \pi\left(x ; q_{0} \sigma_{p}\right)>\ldots>\pi\left(x ; q, \sigma_{r}\right)\right\}$.

Definition: We say this prive number voce iso

- exhaustive of (x) is unboundel above for evey pemutation;
- indusive if the logarithmic density
of CA existos an is szrectly positivej
- strongly inclusive if the limizily
loganthmic distribution of $\left.\left(E L_{x_{j}} q_{s}, x_{1}\right), \ldots, z_{2} z_{j}, j, d\right)$ hos full support on \mathbb{R}^{r}.
Notec strongly inclusite θ inclusilve a exhoustive

New odditian: We say the Bre is weakly inchusive of the logariblumic density of (क) exisls (bait moy be o).

- Mosilly sperimng "wearby inclushy" means the distribectia is "nice" absolutelb continuous WET Lebesgne meosur suffices.
- Incluside a weokly onelisive;
but noither of "exhoustive" and "weokly inclusive" implies the other.
- Rubiestein/Sarnak proved: GREt + LI imply all soues ar strongly inchasive.
- On the other how, Foad/konyagin/ Lomzoun' ("barriefs's showed that 3way roues might not be exhoustive if GRH is forse.

Gool far todey: discuss wark \& M. $-N_{s}$ ("Inclusive prime number rous") thot's between Rubinstern/Sarnok ard Ford/Kompgin/Lomzons.
Throughout, assume GRt.
Nototions lat $\Gamma(x)=\left\{\gamma>0: 1\left(\frac{1}{2}+i_{0} x\right)<0\right\}$ and $\Gamma(q)=\bigcup_{\substack{x(\operatorname{mon})\left(q^{0}\right) \\ x \neq x_{0}}} \Gamma(x)$.
Definition: \# $\gamma \in \Gamma(q)$, we say $\gamma^{\text {is }}$ seff-sunficient if $r \notin \operatorname{Spon}_{2}\left(\Gamma / q_{2} \backslash\{\gamma\}\right)$. Define $\Gamma^{S}(x)=\{r \in \Gamma(x): r$ is setf-sunf.\} a) $\Gamma^{s}(q)=\bigcup_{x \notin x_{0}} \Gamma^{s}(x)$.

Firit's twa-way soues between $\pi(x ; q, a)$ and $\pi(x ; q, b)$.
$\pi r^{n}\left(M-N_{3}\right)$

- If the $L(s, x)$ for which $x(a) \notin x(b)$ collectivelys hore ≥ 3 self-suffictent zeros, then the 2way race is westuly phecrive.
- There exiust a constoñt Whas sach that if $\sum_{x(a) \neq x(b)} \sum_{V \in \Gamma^{s}(x)} \frac{1}{\gamma} \geq W(q)$, thes the 2-way sore is inclesive.
- If $\sum \sum^{\sum} \frac{1}{r}$ diveges, then $x(a)+ \pm x(a) r \in \Gamma^{s}(x)$
the 2-way core is strongly inchusive.
Nete: $\Gamma(q)$ hos $\sim \frac{\phi(q)}{2 \pi} T \log T$ elements up to helpht T; bat even th $\Gamma^{s}(x)$ had $\varepsilon T / \log T$ orelinotis, $\Sigma \frac{1}{\gamma}$ still diveres.

Now results fo bits multiowiy rares:
Th w, If every nonprinalpol $L(s, x)$ hos $\geq 2 \phi(q)+1$ self-sufficlent revs, then every may roue (mo dp) is weakly inclusive.

- Devin improved 2d(a)t to $\$(q)$.
- There exists W(G) such that if
$\sum \frac{1}{\gamma} \geq W(q)$ for every nonprincepol x $r_{6} \Gamma^{5}(x)$ (moira), the every sale (mort) is inclusive.
- If $\sum_{r \in \Gamma^{s}(x)} \frac{1}{\gamma}$ diverges for every nomprinap $31 X($ mot 1$)$, the every rae (mart g is strongly Matrive.

For o particilos r-way dace with $2<r<\phi(Q)$, we heed "enough" characters with lats of self-sufficilent zeros.
Thin Suppose $x($ mora $)$,

$$
\left\{(x(a,), \ldots(a, r)): x \neq x_{0,} \sum_{\left.\gamma \in T^{s} /\right)^{r}}^{\gamma} \frac{1}{\gamma} \text { divers }\right\}
$$

spans \mathbb{I}^{r}. Then this r-wizy are is strongly inclusive.

Generl strobegy in "Inclsive ...":

- split up the explicit formiss aNo self-suffictent post and other past; $E\left(x, 9, y^{2}\right)=E^{S}\left(x_{j} 9, x\right) \rightarrow E^{N}\left(x_{j} 98\right)_{3}$
- use the full Kroncek-Weyl theorem. to show: distorlation of E is the simes os rondom veuble $\vec{X}=\vec{x}^{S}+\vec{x}^{N}$, whoe \vec{x}^{s} our \vec{x}^{N} are melepender.
- Thus, distaribution is a convolution $\mu=\mu^{S} k \mu^{N}$, with chroretersitic
functios $\hat{\mu}=\hat{\mu}^{S} \cdot \hat{\mu}^{N}$.
- We knaw boricilly nothry dbait μ^{N} !
- Howeves μ^{s} hos o fompliar shape becouse al $\Gamma^{S} Q$ is linasly melperdert. "LTI holds for $\Gamma^{s}(q)$
- The sapport of μ contans r branslian of the suppot of μ^{s}.

