ASYMPTOTIC FORMULAS FOR TWO-WAY PRIME
NUMBER RACE LOGARITHMIC DENSITIES




TwO WAY PRIME NUMBER RACES

Recall : under GRH,

E(x;q.a b) = ¢(q)7r(x; q,\/a)_g/—loﬂg(i; q.b)

—og.b)-claa)+ Y (¥(b z X’f

1
x mod q §

¢(q,a) .= #{k mod g : k> = amod gJ.

Also, E(€”; g, a, b) has a limiting distribution xq.5p. It is the
probability measure associated with a random variable Xj 5.



TwO WAY PRIME NUMBER RACES

We are interested in §(q; a, b), the logarithmic density of the set
{x>0:E(x;q,a,b) > 0}, that is the "probability" that
n(x; q,a) — n(x; q, b). Under GRH and LI, we have

6(q: & b) = P[Xgap > 0.

Our goal is to find an asymptotic formula for §(g; a, b) as
g — 0. This was done by F. and Martin.



TwO WAY PRIME NUMBER RACES

Under GRH+LI,
X
anb—c(q’ Z IX |Z¢,
)(modq Y¢>0 %—i—'y;

where X, = Re*" areiid., Y ~ U[0,1].

E[Xgabl = ¢(q,b) - c(q, a);

V[Xq;a,b]: Z I/?(b) |QZ1

x mod q Yx

+7’x

Note : E[Xg.ab] = ¢, V[Xgap] = q' oM.



TwO WAY PRIME NUMBER RACES

Recall : under GRH+LI, the logarithmic density 6(q; a, b) of the
set {x > 0: E(x; g, a) > 0} exists and equals P(Xy.5» > 0). By
independence of the X, ,

W(b)H(@)Xy

Yq;a,b(é:) = E[e/Xaat] = E[e/-f(C(q,b)—C(qsa))]E[el N2 ]

X
i€l (b) i
— e=aerl [ [Ele K \/—m;]

x mod qy,>0

e loael [ ]_[J(Zfbc 4+7( )I)

x mod qv,>0

The last step follows from the identity Jo(x) = 5 [ eX<*tal.



THE BESSEL FUNCTION
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BERRY-ESSEEN

How to recover the CDF (at 0) of X;.5 from this formula? One
can do it via Berry-Esseen. Let ®(t) be the CDF of the
Gaussian.

Theorem (Berry-Esseen)

Let Y be a real-valued random variable. For T > 0,

2

sup |Fy(t) — o(1) < f Mdf + l
s lel<T & T

We will pick Y = (Xg.a6 — E[Xg.ab])/V[Xq.a6]2. Note that
5(q @ b) = PIY > —E[Xgap]/V[Xgas]?]-



ESTIMATING THE CHARACTERISTIC FUNCTION

To use Berry-Essen, we need bounds on the characteristic
function Y(¢) = e ¥ElXaasl X(£/V2), where
V = V[Xq'a’b] = 1 0(1).

Let ¢ > 200 V2. From the bounds [Jo(u)l <1,]do(U)l < U2, we
can pick out a positive proportion of characters for which

lv(a) - x(b)l > I and the zeros for which |y,| < |¢/2 V2 to
deduce that

1, .2
Vo <[] [] En

x€Sq 0<y,<lél/2 (|§|/ Vz)

1

ol [ =

where S, is some subset of characters of positive proportion.
This is exponentially small in g.



THE BESSEL FUNCTION
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ESTIMATING THE CHARACTERISTIC FUNCTION

An exponentially small bound also holds for
V%/2OO < |¢] <200 Vs, Indeed, if x is fixed and small enough
(k = 2 will do), [Jo(x)| < |Jo(«)| for all x > 0, so

Ve = [] [ 2§|)?(b)—_(3))

x mod qvy,>0 VvV V1 + ¥ 5%

« ] [T ol L2

x mod qy,>0 100 % 2

b

which is exponentially small in g by the same arguments as
before.



TAYLOR SERIES

Fact : each coefficient of the Taylor series
2 4 0 .
log Jo(U) = —% — gz + ... is negative.

Hence, for |¢| < V%/ZOO,

2£lx(b) - x(a)l
IogY Xanqu;OIogJ( 1—1_%( )

(b £4¢(q)
Xn;iqy;o 4+?’x +O( Ve )
4
-5 )

Moreover, in the same range, log \7(5) < —— , SO |Y(§)| < et
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APPLYING BERRY-ESSEEN

Combining these bounds, we have proved :

Y@l < e (g > Va);

S E oEsay 2 £'¢(q) 1
Ve = 2?0 — o7 (1+0(=0)) (s vh).
Plugging this into Berry-Esseen :
— 52
Vie) - oo
sup |Fy(t) - d(t)] <<f |(§)—ezld§+l2
teR El<q? '3

— &2
1Y(§) - e z| f —oq? 1
< ———dé+ e 1" dé + —.
jl;<vl & 5 V3 <lgl<c? ¢ 9?

11



APPLYING BERRY-ESSEEN

By the Taylor series expansion, the first integral is

4
<<f e‘éf ¢2(q) dé <, 11 .
lel<g® veg q'-¢

Finally, what we are really looking for is

X0 > 0) = IY > ~EDX a0l V] = Fr(-E{Xgasl/ V1),

which by Berry-Esseen is equal to
O(—E[Xg.ab)/ V%) + 0.(1/q'*). However, applying Taylor

series,
f 2 d 1 1 fo 2 d
N e 2au=—-+— e zau
V2r JoEXgaplv2 2 \or JBXgavE
1 E[Xgap
_1, B ’1] +0,(1/V'™).
2 (2zV)z
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MORE PRECISE FORMULAS

To summarize, we have shown that

6(g;a,b) = E[anb]JrO( ! )

2 @rv): Vi)

The error term is actually O,( V‘%‘S) We can do even better (F.
and Martin) : for any fixed K,

6(q; a,b) = 1 + Eaasl

2 (2n V)2

+---+OK(%).

This can be done via (Rubinstein-Sarnak, Feueuverger-Martin)

1 sin(fV‘l( (q,) c(q.b)))

s(giab) =t
2¢&y(b) — x(a)l
% 1_[ HJ( 1 — )df 13

2 2n
x mod qy,>0 1[2—}—




MORE PRECISE FORMULAS

From our earlier bounds, the part of the integral with

[t] > V%/2OO is exponentially small. The same is true for the
integral in the range Vi < [t] < vz /200, since in this range
Y(£) < e /2,

In the range || < V%, we can apply Taylor series, both for
sin(t)/t and for the product of Bessel functions.
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CUMULANTS

The cumulant generating function :

2¢x(b) - x(a)l
IogY Xn%qgologJ( " ‘1_‘4_),)( )

£ oad! w
:_E+;avi’/2 Z Z 5/2'

x mod qvy,>0

It turns out that the double sum is = V'+°(1) This can be
multiplied by that of sin(t)/t and integrated, giving an
asymptotic series for 6(q; a, b).

15



ALL DENSITIES FOR g < 1000

Here is a plot of all values of 6(q; a, b) with g < 1000. Notice the
square-root decay.
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Note : ¢(q. a) — ¢(q. b) = 2K with k = w(q) — 1, w(q) or w(q) + 1.
Those are the bands in the graph.
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Thank you'!
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