ASYMPTOTIC FORMULAS FOR TWO-WAY PRIME NUMBER RACE LOGARITHMIC DENSITIES

Recall: under GRH,

$$\begin{split} E(x;q,a,b) &:= \phi(q) \frac{\pi(x;q,a) - \pi(x;q,b)}{\sqrt{x}/\log x} \\ &= c(q,b) - c(q,a) + \sum_{\chi \bmod q} (\overline{\chi}(b) - \overline{\chi}(a)) \sum_{\gamma_{\chi}} \frac{x^{i\gamma_{\chi}}}{\frac{1}{2} + i\gamma_{\chi}} + o(1), \\ c(q,a) &:= \#\{k \bmod q : k^2 \equiv a \bmod q\}. \end{split}$$

Also, $E(e^y; q, a, b)$ has a limiting distribution $\mu_{q;a,b}$. It is the probability measure associated with a random variable $X_{q,a,b}$.

We are interested in $\delta(q; a, b)$, the logarithmic density of the set $\{x > 0 : E(x; q, a, b) > 0\}$, that is the "probability" that $\pi(x; q, a) - \pi(x; q, b)$. Under GRH and LI, we have

$$\delta(q; a, b) = \mathbb{P}[X_{q; a, b} > 0].$$

Our goal is to find an asymptotic formula for $\delta(q; a, b)$ as $q \to \infty$. This was done by F. and Martin.

Under GRH+LI,

$$X_{q;a,b} \stackrel{d}{=} c(q,b) - c(q,a) + \sum_{\chi \bmod q} |\overline{\chi}(b) - \overline{\chi}(a)| \sum_{\gamma_{\chi} > 0} \frac{X_{\gamma_{\chi}}}{\sqrt{\frac{1}{4} + \gamma_{\chi}^{2}}},$$

where $X_{\gamma_{\chi}} = \Re e^{2\pi i Y}$ are i.i.d., $Y \sim U[0, 1]$.

$$\mathbb{E}[X_{q;a,b}] = c(q,b) - c(q,a);$$

$$\mathbb{V}[X_{q;a,b}] = \sum_{\chi \bmod q} |\overline{\chi}(b) - \overline{\chi}(a)|^2 \sum_{\gamma_\chi} \frac{1}{\frac{1}{4} + \gamma_\chi^2}$$

Note : $\mathbb{E}[X_{q;a,b}] = q^{o(1)}$, $\mathbb{V}[X_{q;a,b}] = q^{1-o(1)}$.

Recall : under GRH+LI, the logarithmic density $\delta(q; a, b)$ of the set $\{x > 0 : E(x; q, a) > 0\}$ exists and equals $\mathbb{P}(X_{q;a,b} > 0)$. By independence of the X_{γ_x} ,

$$\begin{split} \widehat{X}_{q;a,b}(\xi) &:= \mathbb{E}[e^{i\xi X_{q;a,b}}] = \mathbb{E}[e^{i\xi(c(q,b)-c(q,a))}] \mathbb{E}[e^{i\sum_{\chi,\gamma_{\chi}} \frac{\chi(b)-\chi(a)|X_{\gamma_{\chi}}}{\sqrt{\frac{1}{4}+\gamma_{\chi}^{2}}}}] \\ &= e^{i\xi\mathbb{E}[X_{q;a,b}]} \prod_{\chi \bmod q} \prod_{\gamma_{\chi}>0} \mathbb{E}[e^{i\xi|\overline{\chi}(b)-\overline{\chi}(a)|\frac{X_{\gamma_{\chi}}}{\sqrt{\frac{1}{4}+\gamma_{\chi}^{2}}}}] \\ &= e^{i\xi\mathbb{E}[X_{q;a,b}]} \prod_{\chi \bmod q} \prod_{\gamma_{\chi}>0} J_{0}\Big(\frac{2\xi|\overline{\chi}(b)-\overline{\chi}(a)|}{\sqrt{\frac{1}{4}+\gamma_{\chi}^{2}}}\Big). \end{split}$$

The last step follows from the identity $J_0(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ix \cos t} dt$.

THE BESSEL FUNCTION

BERRY-ESSEEN

How to recover the CDF (at 0) of $X_{q;a,b}$ from this formula? One can do it via Berry-Esseen. Let $\Phi(t)$ be the CDF of the Gaussian.

Theorem (Berry-Esseen)

Let Y be a real-valued random variable. For T > 0,

$$\sup_{t\in\mathbb{R}}|F_Y(t)-\Phi(t)|\ll \int_{|\xi|< T}\frac{|\widehat{Y}(\xi)-e^{-\frac{\xi^2}{2}}|}{\xi}d\xi+\frac{1}{T}.$$

We will pick
$$Y=(X_{q;a,b}-\mathbb{E}[X_{q;a,b}])/\mathbb{V}[X_{q;a,b}]^{\frac{1}{2}}$$
. Note that
$$\delta(q;a,b)=\mathbb{P}[Y>-\mathbb{E}[X_{q;a,b}]/\mathbb{V}[X_{q;a,b}]^{\frac{1}{2}}].$$

ESTIMATING THE CHARACTERISTIC FUNCTION

To use Berry-Essen, we need bounds on the characteristic function $\widehat{Y}(\xi) = e^{-i\xi \mathbb{E}[X_{q:a,b}]} \widehat{X}(\xi/V^{\frac{1}{2}})$, where $V := \mathbb{V}[X_{q:a,b}] = q^{1-o(1)}$.

Let $|\xi| > 200 V^{\frac{1}{2}}$. From the bounds $|J_0(u)| \le 1$, $|J_0(u)| \ll |u|^{-\frac{1}{2}}$, we can pick out a positive proportion of characters for which $|\chi(a) - \chi(b)| \ge \frac{1}{4}$ and the zeros for which $|\gamma_{\chi}| \le |\xi|/2V^{\frac{1}{2}}$ to deduce that

$$\widehat{Y}(\xi) \ll \prod_{\chi \in S_q} \prod_{0 < \gamma_{\chi} < |\xi|/2} \frac{(\frac{1}{4} + \gamma_{\chi}^2)^{\frac{1}{4}}}{(|\xi|/V^{\frac{1}{2}})^{\frac{1}{2}}} \ll e^{-c\phi(q)|\xi|/V^{\frac{1}{2}}},$$

where S_q is some subset of characters of positive proportion. This is exponentially small in q.

THE BESSEL FUNCTION

ESTIMATING THE CHARACTERISTIC FUNCTION

An exponentially small bound also holds for $V^{\frac{1}{2}}/200 < |\xi| \le 200 V^{\frac{1}{2}}$. Indeed, if κ is fixed and small enough $(\kappa = \frac{5}{24} \text{ will do}), |J_0(x)| \le |J_0(\kappa)|$ for all x > 0, so

$$\widehat{Y}(\xi) = \prod_{\chi \bmod q} \prod_{\gamma_{\chi} > 0} J_{0}\left(\frac{2\xi |\overline{\chi}(b) - \overline{\chi}(a)|}{\sqrt{V}\sqrt{\frac{1}{4} + \gamma_{\chi}^{2}}}\right)$$

$$\ll \prod_{\chi \bmod q} \prod_{\gamma_{\chi} > 0} \left|J_{0}\left(\frac{|\overline{\chi}(b) - \overline{\chi}(a)|}{100\sqrt{\frac{1}{4} + \gamma_{\chi}^{2}}}\right)\right|,$$

which is exponentially small in q by the same arguments as before.

TAYLOR SERIES

Fact : each coefficient of the Taylor series $\log J_0(u) = -\frac{u^2}{2} - \frac{u^4}{64} + ...$ is negative.

Hence, for $|\xi| < V^{\frac{1}{2}}/200$,

$$\begin{split} \log \widehat{Y}(\xi) &= \sum_{\chi \bmod q} \sum_{\gamma_{\chi} > 0} \log J_0 \Big(\frac{2\xi |\overline{\chi}(b) - \overline{\chi}(a)|}{V^{\frac{1}{2}} \sqrt{\frac{1}{4} + \gamma_{\chi}^2}} \Big) \\ &= -\frac{\xi^2}{V} \sum_{\chi \bmod q} \sum_{\gamma_{\chi} > 0} \frac{|\overline{\chi}(b) - \overline{\chi}(a)|^2}{\frac{1}{4} + \gamma_{\chi}^2} + O\Big(\frac{\xi^4 \phi(q)}{V^2} \Big) \\ &= -\frac{\xi^2}{2} + O\Big(\frac{\xi^4 \phi(q)}{V^2} \Big). \end{split}$$

Moreover, in the same range, $\log \widehat{Y}(\xi) \le -\frac{\xi^2}{2}$, so $|\widehat{Y}(\xi)| \ll e^{-\xi^2/2}$.

APPLYING BERRY-ESSEEN

Combining these bounds, we have proved:

$$|\widehat{Y}(\xi)| \ll e^{-cq^{\frac{1}{3}}} \qquad (|\xi| > V^{\frac{1}{4}});$$

$$\widehat{Y}(\xi) = e^{-\frac{\xi^2}{2}} e^{O(\frac{\xi^4 \phi(q)}{V^2})} = e^{-\frac{\xi^2}{2}} \left(1 + O(\frac{\xi^4 \phi(q)}{V^2}) \right) \qquad (|\xi| \le V^{\frac{1}{4}}).$$

Plugging this into Berry-Esseen:

$$\begin{split} \sup_{t \in \mathbb{R}} |F_{Y}(t) - \Phi(t)| &\ll \int_{|\xi| < q^{2}} \frac{|\widehat{Y}(\xi) - e^{-\frac{\xi^{2}}{2}}|}{\xi} d\xi + \frac{1}{q^{2}} \\ &\ll \int_{|\xi| < V^{\frac{1}{4}}} \frac{|\widehat{Y}(\xi) - e^{-\frac{\xi^{2}}{2}}|}{\xi} d\xi + \int_{V^{\frac{1}{4}} < |\xi| < q^{2}} e^{-cq^{\frac{1}{3}}} d\xi + \frac{1}{q^{2}}. \end{split}$$

APPLYING BERRY-ESSEEN

By the Taylor series expansion, the first integral is

$$\ll \int_{|\xi| < q^{\varepsilon}} e^{-\frac{\xi^2}{2}} \frac{\xi^4 \phi(q)}{V^2 \xi} d\xi \ll_{\varepsilon} \frac{1}{q^{1-\varepsilon}}.$$

Finally, what we are really looking for is

$$\mathbb{P}[X_{q;a,b} > 0] = \mathbb{P}[Y > -\mathbb{E}[X_{q;a,b}]/V^{\frac{1}{2}}] = F_Y(-\mathbb{E}[X_{q;a,b}]/V^{\frac{1}{2}}),$$

which by Berry-Esseen is equal to $\Phi(-\mathbb{E}[X_{q;a,b}]/V^{\frac{1}{2}}) + O_{\varepsilon}(1/q^{1-\varepsilon})$. However, applying Taylor series.

$$\begin{split} \frac{1}{\sqrt{2\pi}} \int_{-\mathbb{E}[X_{q;a,b}]/V^{\frac{1}{2}}}^{\infty} e^{-\frac{u^2}{2}} du &= \frac{1}{2} + \frac{1}{\sqrt{2\pi}} \int_{-\mathbb{E}[X_{q;a,b}]/V^{\frac{1}{2}}}^{0} e^{-\frac{u^2}{2}} du \\ &= \frac{1}{2} + \frac{\mathbb{E}[X_{q;a,b}]}{(2\pi V)^{\frac{1}{2}}} + O_{\varepsilon}(1/V^{1-\varepsilon}). \end{split}$$

MORE PRECISE FORMULAS

To summarize, we have shown that

$$\delta(q;a,b) = \frac{1}{2} + \frac{\mathbb{E}[X_{q;a,b}]}{(2\pi V)^{\frac{1}{2}}} + O_{\varepsilon}\left(\frac{1}{V^{1-\varepsilon}}\right).$$

The error term is actually $O_{\varepsilon}(V^{-\frac{3}{2}-\varepsilon})$ We can do even better (F. and Martin) : for any fixed K,

$$\delta(q; a, b) = \frac{1}{2} + \frac{\mathbb{E}[X_{q; a, b}]}{(2\pi V)^{\frac{1}{2}}} + \cdots + O_K(\frac{1}{V^K}).$$

This can be done via (Rubinstein-Sarnak, Feueuverger-Martin)

$$\begin{split} \delta(q;a,b) &= \frac{1}{2} + \frac{1}{2\pi} \int_{\mathbb{R}} \frac{\sin(\xi V^{-\frac{1}{2}}(c(q,a) - c(q,b)))}{\xi} \\ &\times \prod_{\chi \bmod q} \prod_{\gamma_{\chi} > 0} J_{0}\Big(\frac{2\xi |\overline{\chi}(b) - \overline{\chi}(a)|}{V^{\frac{1}{2}}\sqrt{\frac{1}{4} + \gamma_{\chi}^{2}}}\Big) d\xi. \end{split}$$

MORE PRECISE FORMULAS

From our earlier bounds, the part of the integral with $|t| > V^{\frac{1}{2}}/200$ is exponentially small. The same is true for the integral in the range $V^{\frac{1}{4}} < |t| < V^{\frac{1}{2}}/200$, since in this range $\widehat{Y}(\xi) \ll e^{-\xi^2/2}$.

In the range $|t| < V^{\frac{1}{4}}$, we can apply Taylor series, both for $\sin(t)/t$ and for the product of Bessel functions.

CUMULANTS

The cumulant generating function:

$$\log \widehat{Y}(\xi) = \sum_{\chi \bmod q} \sum_{\gamma_{\chi} > 0} \log J_0 \left(\frac{2\xi |\overline{\chi}(b) - \overline{\chi}(a)|}{V^{\frac{1}{2}} \sqrt{\frac{1}{4} + \gamma_{\chi}^2}} \right)$$

$$= -\frac{\xi^2}{2} + \sum_{\ell=4}^{\infty} \frac{\alpha_{\ell} \xi^{\ell}}{V^{\ell/2}} \sum_{\chi \bmod q} \sum_{\gamma_{\chi} > 0} \frac{|\chi(a) - \chi(b)|^{\ell}}{(\frac{1}{4} + \gamma_{\chi}^2)^{\ell/2}}.$$

It turns out that the double sum is $= V^{1+o(1)}$. This can be multiplied by that of $\sin(t)/t$ and integrated, giving an asymptotic series for $\delta(q; a, b)$.

ALL DENSITIES FOR $q \le 1000$

Here is a plot of all values of $\delta(q; a, b)$ with $q \le 1000$. Notice the square-root decay.

Note : $c(q, a) - c(q, b) = 2^k$ with $k = \omega(q) - 1, \omega(q)$ or $\omega(q) + 1$. Those are the bands in the graph.

Thank you!