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ABSTRACT. The topic of this paper is the problems of Pólya and Turán. We will introduce Pólya’s
problem and Turán’s problem. Then we proceed to discuss about connection between of Lα(x) =∑

n≤x
λ(n)
nα to the Riemann hypothesis. Finally, we will illustrate some special cases of Lα(x) and

the conclusion.

1. PRELIMINARIES

First, let’s recall the definition of the Liouville function and the sum of the Liouville function;
also, the lemma of Perron’s formula.

Definition 1.1. Let λ(n) denote the Liouville function, defined by λ(1) = 1 and λ(n) = (−1)k

if n is composed of k not necessarily distinct prime factors (i.e., if n =
∏k

i=1 p
αi
i then λ(n) =∏k

i=1(−1)pαi
i ).

Notation 1.2. The Liouville function λ(n) is completely multiplicative.

Definition 1.3. [3] The Dirichlet series for the Liouville function is related to the Riemann zeta
function by

∞∑
n=1

λ(n)

ns
=
ζ(2s)

ζ(s)
=
∏
p

(1 +
1

ps
)−1 (1.1)

if σ > 1, where s = σ + it.

Definition 1.4. The sum of the Liouville function L(x), defined by L(x) =
∑

n≤x λ(n).

Lemma 1.5. [3] Let f(s) =
∑∞

n=1
an
ns (σ > 1), where an = O(ψ(n)), ψ(n) being non-decreasing,

and
∞∑
n=1

|an|
nσ

= O(
1

(σ − 1)α
)

as σ → 1. Then if c > 0, σ + c > 1, x is not an integer, and N is the integer nearest to x,∑
n≤x

an
ns

=
1

2πi

ˆ c+iT

c−iT

f(s+w)
xw

w
dw+O(

xc

T (σ + c− 1)α
)+O(

ψ(2x)x1−σ log x

T
)+O(

ψ(N)x1−σ

T |x−N |
).

If x is an integer, the corresponding result is

x−1∑
n=1

an
ns

+
ax
2xs

=
1

2πi

ˆ c+iT

c−iT

f(s+w)
xw

w
dw+O(

xc

T (σ + c− 1)α
)+O(

ψ(2x)x1−σ log x

T
)+O(

ψ(N)x−σ

T
).



2. PÓLYA’S PROBLEM

Pólya’s problem, named after the Hungarian mathematician George Pólya in 1919[4], concerns
the behaviour of the sum of the Liouville function. He observed that

L(x) =
∑
n≤x

λ(n) ≤ 0 (for x ≥ 2). (2.1)

Also, L(x) tells us the difference between the number of prime factors with an even number and
those with an odd number of elements up to x. According to Pólya, the Riemann hypothesis would
follow if L(x) eventually has the constant sign.

Problem 2.1 (Pólya’s problem). Show that L(x) changes sign infinitely often, and determine the
smallest x ≥ 2 where L(x) > 0.

Notation 2.2. Figure 2.1 is a graph comparing L(x) and y = 0 for x ≤ 1, 000, 000 to make people
believe Pólya’s problem is true.

FIGURE 2.1. The function L(x).

Pólya’s problem remained open for many years until it was disproved by the British mathemati-
cian Alan Haselgrove in 1958[2], which was a surprising result. He constructed a counter-example
to the problem based on Ingham’s results in 1942[1]. With the Riemann hypotheses and the sim-
plicity of the zeroes, he defined two function

A(u) = L(eu)e−
u
2 (2.2)

and

A∗
T (u) = α0 + 2ℜ

∑
0<γn<T

(1− |γn|
T

)αne
iγnu, (2.3)
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where n = 1, 2, · · · , and T > 0, α0 = 1/ζ(1/2), γ0 = 0 and γn runs through the imaginary parts
of the zeros ρn = 1/2 + iγn of ζ , and αn = ζ(2ρn)/ρnζ

′(ρn).

Theorem 2.3. [1] Let

F (s) =

ˆ ∞

0

A(u)e−sudu,

where A(u) is absolutely integrable over every finite interval 0 ≤ u ≤ U , and the integral is
convergent in some half-plane σ > σ1 ≥ 0.
Let A∗(u) be a real trigonometrical polynomial

A∗(u) =
N∑

n=−N

αne
iγnu (γn real, γ−n = −γn, α−n = ᾱn)

and let

F ∗(s) =

ˆ ∞

0

A∗(u)e−sudu =
N∑
−N

αn

s− iγn
(σ > 0)

Suppose that F (s)−F ∗(s) (suitably defined outside the half-plane σ > σ1) is regular in the region
σ ≥ 0,−T ≤ t ≤ T , for some T > 0 (or, more generally, continuous in this region and regular in
the interior).

Then, when u→ ∞ (T fixed)

lim inf A(u) ≤ lim inf A∗
T (u)

lim supA∗
T (u) ≤ lim supA(u)

(2.4)

where

A∗
T (u) =

∑
|γn|<T

(1− |γn|
T

)αne
iγnu = α0 + 2ℜ

∑
0<γn<T

(1− |γn|
T

)αne
iγnu

Proof. See, e.g., [1], Theorem 1, p.315-316. □

Based on theorem 2.3, if we can find T, u such thatA∗
T (u) > 0, it will follow that lim supA∗

T (u) >
0, it will follow that lim supA(u) from equation (2.4). Hence, that A(u) > 0, it will follow that
L(eu)e−

u
2 > 0 ⇒ L(eu) > 0 for some u, i.e. that Pólya’s problem is false. If the Riemann hypoth-

esis fails, Pólya’s problem would be false, so it does not matter whether Ingham bases his argument
on Riemann’s assumption. With the help of electronic computers, Haselgrove determinedA∗

T (u) is
positive. Then he got the table 2.1 ofA∗

T (u) when T = 1000 and u = 831.800 to u = 831.859. This
result would lead us to suspect that L(eu) becomes positive in the neighbourhood of u = 831.847.
Therefore, Pólya’s problem is false.
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u A∗
T (u) u A∗

T (u) u A∗
T (u) u A∗

T (u)

831.800 −0.43329 831.801 −0.42140 831.802 −0.41040 831.803 −0.40181
831.804 −0.439640 831.805 −0.39382 831.806 −0.39287 831.807 −0.39220
831.808 −0.39097 831.809 −0.38918 831.810 −0.38762 831.811 −0.38723
831.812 −0.38853 831.813 −0.39107 831.814 −0.39325 831.815 −0.39265
831.816 −0.38674 831.817 −0.37380 831.818 −0.35378 831.819 −0.32850
831.820 −0.30119 831.821 −0.27534 831.822 −0.25347 831.823 −0.23640
831.824 −0.22333 831.825 −0.21269 831.826 −0.20305 831.827 −0.19370
831.828 −0.18445 831.829 −0.17512 831.830 −0.16518 831.831 −0.15397
831.832 −0.14152 831.833 −0.12920 831.834 −0.11960 831.835 −0.11547
831.836 −0.11807 831.837 −0.12600 831.838 −0.13514 831.839 −0.13999
831.840 −0.13583 831.841 −0.12063 831.842 −0.09590 831.843 −0.06610
831.844 −0.03705 831.845 −0.01395 831.846 0.00014 831.847 0.00495
831.848 0.00265 831.849 −0.00328 831.850 −0.00950 831.851 −0.01404
831.852 −0.01693 831.853 −0.01981 831.854 −0.02493 831.855 −0.03390
831.856 −0.04698 831.857 −1.56321 831.858 −0.08124 831.859 −0.10024

TABLE 2.1. Table of A∗
T (u) when T = 1000[2]

In 1960, Sherman Lehman[9] found the smaller value of u whenA⋆
T (u) is positive is 79.28 (T =

1000) using an IBM 701 at the University of California. He used numerical computation to find
the first explicit counter-example and saw L(906, 180, 359) = 1. It was 20 years later that Minoru
Tanaka[6] concluded Pólya’s problem was true when 2 ≤ x ≤ 2, 906, 150, 256. Accordingly,
L(x) > 0 for x = 906, 150, 257 is the smallest counter-example (shown in figure 2.2).

FIGURE 2.2. Counter example of Pólya’s problem.
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3. TURÁN’S PROBLEM

Turán’s problem, named after the Hungarian mathematician Paul Turán in 1948[8], concerns
some properties of a weighted sum involving the Liouville function. He observed that

T (x) =
∑
n≤x

λ(n)

n
≥ 0 (for x ≥ 1). (3.1)

Notation 3.1. Figure 3.1 is a graph comparing T (x) and y = 0 for x ≤ 1, 000, 000 to make people
believe Turán’s problem is true.

Problem 3.2 (Turán’s problem). Show that T (x) changes sign infinitely often, and determine the
smallest x ≥ 1 where L(x) < 0.

Alan Haselgrove in 1958[2] also used the result of Ingham[1] to show T (x) change sign in-
finitely often, same as L(x). In 2008, Borwein, Ferguson and Mossinghoff determined that the
smallest x where T (x) < 0 is x = 72, 186, 376, 951, 205 by the theorem 3.3 from them.

Theorem 3.3. [7] Let T (x) denote them sum
∑x

n=1 λ(n)/n. The smallest positive integer x for
which T (x) < 0 is x = 72, 186, 376, 951, 205, and the minimal value of T (x) for x ≤ 7.5 × 1013

is T (72, 186, 376, 951, 205) ≈ −2.0757641× 10−9.

FIGURE 3.1. The function T(x).

4. THE CONNECTION BETWEEN Lα(x) AND THE RIEMANN HYPOTHESIS

In this section, we present some lemma and theorem that reveal the profound relationship be-
tween Lα(x) (defined below) and the Riemann hypothesis. For α ≥ 0, we defines:

Lα(x) =
∑
n≤x

λ(n)

nα
, (4.1)
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so that L0(x) = L(x) and L1(x) = T (x).

Using the Euler product, we have the following:
∞∑
n=1

λ(n)

nα
=
∏
p

(1− 1
pα
)

(1− 1
p2α

)
=
∏
p

(1 +
1

pα
)−1 (4.2)

If α > 1, then Lα(x) converges absolutely to ζ(2α)/ζ(α) > 0. As a result, this situation can only
result in a finite number of sign changes. Hence, we just consider for case where 0 ≤ α ≤ 1.

Theorem 4.1. [5] If the Riemann hypothesis hold then for all α ∈ (1/2, 1] and all ε > 0

Lα(x) =
ζ(2α)

ζ(α)
+O(x

1
2
−α+ε)

As well as conversely if

lim
x→∞

Lα(x) =
ζ(2α)

ζ(α)

for all α ∈ (1/2, 1], then the Riemann hypothesis is true.

Proof. Using lemma 1.5 on the function

f(s) =
∑
n≥1

λ(n)

nα+s
=
ζ(2(α + s))

ζ(α + s)

for σ > 1− α, we obtain some valuable information on Lα(x). It follows that for α ∈ [0, 1],

Lα(x) =
1

2πi

ˆ 2+iT

2−iT

ζ(2(α + z))xz

ζ(α + z)z
dz +O

(
x2/T

)
This leads us to the following:

Lα(x) =
1

2πi

(ˆ 1
2
−α+δ−iT

2−iT

+

ˆ 1
2
−α+δ+iT

1
2
−α+δ−iT

+

ˆ 2+iT

1
2
−α+δ+iT

)
ζ(2(α + z))xz

ζ(α + z)z
dz +

ζ(2α)

ζ(α)
+O

(
x2

T

)
where 0 < δ < α−1/2. If the Riemann hypothesis holds, then ζ(σ+it) = O(tε) as well as 1/ζ(σ+
it) = O(tε). So the first and third integrals are O(T−1+εx2) and the second is O(x1/2−α+δT ε).
Putting this all together we recover that Lα(x) is equal to

ζ(2α)

ζ(α)
+O(x1/2−α+δT ε) +O(T−1+εx2)

Letting T = x3 produces the estimate from the theorem 4.1. Conversely, if the function Lα

converges for α in the desired range, then Ls(x) converges uniformly in the half plane σ ≥ σ0 >
1/2 and so it is an analytic function in this region. The limit of which is ζ(2α)/ζ(α) when σ > 1.
We verify using the Euler product for the zeta function, so it must also be true for σ > 1/2. □

Theorem 4.2. [5] If the Riemann hypothesis holds, then for all α ∈ [0, 1/2] and all ϵ > 0,

Lα(x) = O(x
1
2
−α+ϵ)

Conversely, if this estimate holds for some α ∈ [0, 1/2], then the Riemann hypothesis is true.

Proof. See, e.g., [5], Theorem 2.2, p.160. □
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Now, let’s try to prove that constancy in the sign of Lα(x) implies both the Riemann hypothesis
and the simplicity of the zeros of the zeta function. For 0 ≤ α ≤ 1, we define Lα(x) by

Lα(x) =


Lα(x) if 0 ≤ α < 1/2 or α = 1,

Lα(x)− log x
2ζ(1/2)

if α = 1/2,

Lα(x)− ζ(2α)
ζ(α)

if 1/2 < α < 1.

Also, define
Aαu = Lα(e

u)eα−1/2u

for u ≥ 0, and for complex s set

fα(s) =
ζ(1 + 2s)

(s− α + 1/2)ζ(s+ 1/2)
. (4.3)

Finally,

Fα(s) =


fα(s) if 0 ≤ α < 1/2 or α = 1,

fα(s)− 1
2ζ(1/2)s2

if α = 1/2,

fα(s)− ζ(2α)
ζ(α)(s−α+1/2)

if 1/2 < α < 1.

(4.4)

Lemma 4.3. [5] Let α ∈ [0, 1]. With Fα(s) and Aα(u) defined as above,

Fα(s) =

ˆ ∞

0

Aα(u)e
−sudu,

and this integral converges for σ > 1/2. Further, under the Riemann hypothesis, it converges for
σ > 0.

Proof. Using the theorem 4.1 and theorem 4.2 to prove this lemma. See, e.g., [5], Lemma 2.3,
p.161-162. □

We have the following main theorem by the lemma 4.3 and Landau’s theorem.

Theorem 4.4. [5] Suppose that α ∈ [0, 1] is a fixed real number. If there exists a constant C
for which Aα(u) − C has constant sign for all sufficiently large u, then the Riemann hypothesis
follows, and all the zeros of the zeta function are simple. In addition, if there exists a constant C
for which L1/2(x) − C has constant sign for all sufficiently large x, then the Riemann hypothesis
follows, and each nontrivial zeros of the zeta function has order at most two.

Proof. Let’s choose some α ∈ [0, 1] and suppose some constant C exists as above. W.L.O.G.,
suppose that this bound is true for u ≥ 0. We now define a function Gα(s) for σ > 1/2 by

Gα(s) =

ˆ ∞

0

(C − Aα(t)) exp(−su)dt =
C

s
− Fα(s)

This equality follows from lemma 4.3. Since the integrand has a constant sign, we can extend its
domain to the left of σ = 1/2 to the first real singularity of C/σ − Fα(σ) via Landau’s theorem.
Since ζ(s) has no zeros on R+, it follows from equation (4.3) and (4.4) that the function Fα(σ)
will have its first real singularity when σ = 0. So, the expression above defines the analytic
continuation for σ > 0. Hence, Fα(s) is regular for these values of σ, which implies the Riemann
hypothesis. Moreover, we can estimate

|Gα(s)| ≤
C

σ
− Fα(σ)
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The function Fα(s) has only simple poles as σ → 0+ from which the right-hand sign of the
expression is O(1/σ). Thus, G(s) and F (s) have no multiple poles when σ = 0 which means that
all the zeros of the form 1/2 + iγn of ζ(s) are simple. To see that the order of the nontrivial zeros
will be at most of order two, we argue that if L1/2(x)−C has a constant sign for x ≥ 1 then when
σ > 1/2, we findˆ ∞

0

(C − L1/2(exp t)) exp(−st)dt =
1

2ζ(1/2)s2
+
C

s
− F1/2(s)

Again, via Landau’s theorem, we conclude the Riemann hypothesis, but the pole of order two at
s = 0 in f1/2(s) implies that the expression above is O(1/σ2) as σ → 0+. Thus, no zeros on the
critical line are of multiplicity greater than two. □

5. SPECIAL CASE OF Lα(x)

In the last section, we noted that there is some correspondence between the class of functions
Lα(x) and the Riemann hypothesis. Here, we present certain conjectures involving Lα(x) when
α ∈ [0, 1].

• In 2010, Timothy Trudgian[10] conjectured that when α = 1/2 such that

L 1
2
(x) =

∑
n≤x

λ(n)

n
1
2

≤ 0, (5.1)

for 17 ≤ x ≤ 1012 (shown in figure 5.1).

FIGURE 5.1. The functions L 1
2
(x) and conjectured upper bound
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• In 2012, Timothy Trudgian and Michael Mossinghoff [5] conjectured that when α = 1/4
such that

L 1
4
(x) =

∑
n≤x

λ(n)

n
1
4

< 0, (5.2)

for 11 ≤ x ≤ 1012 (shown in figure 5.2).

Also, they make the conjecture when α = 3/4 such that

L 3
4
(x) =

∑
n≤x

λ(n)

n
3
4

>
ζ(3/2)

ζ(3/4)
= −0.758161736 . . . , (5.3)

for 1 ≤ x ≤ 1012 (showed in figure 5.3).

Note: The smallest x where L 3
4
(x) < ζ(3/2)/ζ(3/4) is 835,018,639,060.

As we can see via the figures below, it seems plausible that these conjectures might be true. In
fact, it has been shown that they are valid in the given ranges of x via computational methods. We
conclude this section via a natural question that arises from this type of investigation:

Problem 5.1. Determine the smallest nontrivial value of x for each α ∈ [0, 1/2) where Lα(x) > 0
and for α ∈ [1/2, 1] where Lα(x) < 0.

Remark 5.2. It follows that any nontrivial sign crossing in problem 5.1 for these values of α must
occur for x > 1012.

FIGURE 5.2. The functions L 1
4
(x) and conjectured upper bound
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FIGURE 5.3. The functions L 3
4
(x)and conjectured lower bound

6. CONCLUSION

The summatory Liouville function and T (x), which are variants of Lα(x), play a role in un-
derstanding the distribution of prime numbers and the behaviour of the zeta function. Analytic
properties of these functions, such as logical continuation, functional equations, and the behaviour
of their zeros, can provide insights into the Riemann hypothesis. For example, T (x), a smoothed
version of the summatory Liouville function, has been used to investigate the correlation between
the zeros of the Riemann zeta function and the distribution of primes. Additionally, the connection
between Lα(x) functions and the Riemann hypothesis is reinforced through the study of the rela-
tionships between the Liouville function, the Möbius function, and the distribution of primes, all
of which are deeply intertwined with the Riemann zeta function and the behaviour of its zeros.
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