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ABSTRACT. This brief paper gives an overview of the Pólya–Vinogradov inequality. The back-
ground, mathematical and historical, of the inequality is discussed. An abridged proof is provided.
Some well-known consequences concerning the distribution of the values Dirichlet characters take,
and the distribution of primitive roots in the multiplicative group are shown. Potential topics for
contemporary research related to the inequality are explored.

1. INTRODUCTION

The Pólya–Vinogradov inequality is a significant and famous bound on incomplete sums of
Dirichlet characters. There are a few different versions of it, with one very general example found
in [11, Chapter 9, p. 306], which states

M+N∑
n=M+1

χ(n) ≪ q1/2 log q.

uniformly for M,N for any nonprincipal Dirichlet character χ(n) of modulus q. Several varia-
tions of this statement can be found throughout the literature, some of which impose additional
restrictions on where the sum starts relative to the modulus q. For example [10] discusses partial
character sums of the form

∑
n≤x χ(n), and [8, Conjecture 2.6, p. 363] suggests that there are

different best-possible implicit constants depending on the starting point of the sum. While the
Pólya–Vinogradov bound is non-trivial for incomplete sums of Dirichlet characters, it is super-
seded in the trivial case when N is smaller than q1/2, since

∣∣∑M+N
n=M+1 χ(n)

∣∣ ≤ N .
The mathematical background required to understand the proof of the Pólya–Vinogradov in-

equality arises from the study of the basic properties of Dirichlet characters and Gauss sums.
While a complete explanation can be found in [11, Chapter 9], a brief overview will be given here.

In representation theory, a Dirichlet character χ (mod q) is a degree 1 representation of the group
(Z/qZ)×. Since the multiplicative group of q is abelian, every irreducible representation of the
multiplicative group of q is a Dirichlet character and every representation is its own character. In
analytic number theory, one treats a Dirichlet character χ(n) of modulus q as a function on the
integers which is based on a representation of (Z/qZ)× as described above. Hence χ(n) maps n to
the representation of its residue modulo q if it lies in the multiplicative group and maps n to zero
otherwise. As a function of the integers, χ(n) has period q and is totally multiplicative. It inherits
the orthogonality properties of the representation theory characters.

Central to the proof of the inequality is the Gauss sum τ(χ): an inner product of the (mul-
tiplicative) Dirichlet characters modulo q and the additive characters e(a/q) = e2π(a/q)i, with
τ(χ) =

∑q
a=1 χ(a)e(a/q). From the study of Gauss sums and Dirichlet characters the relation

χ(n) = τ(χ̄)−1
∑q

a=1 χ̄(a)e(an/q) arises for any primitive character χ modulo q [11, Corollary
9.8, p. 288].



The inequality was proven by Pólya and Vinogradov independently of each other in 1918 [8,
p.357]. Since its statement, various improvements to it have been made. Unconditionally, the
implicit constant has been computed explicitly and refined [4, 9, 3].

It has also been shown [10, Theorem 2, p. 70] that under the assumption of “GRH,” the General-
ized Riemann Hypothesis (the condition that all non-trivial zeroes of all L(s, χ) have real part 1/2),
the bound can be improved. There have also been unconditional refinements for some characters
[8, 5, 6] that satisfy certain conditions but not others.

Theorem 2 from [10] is worth examining in further detail. It states that assuming GRH, the sum∑
n≤x χ(n) ≪ q1/2 log log q for any nonprincipal character χ. Montgomery and Vaughan men-

tion that this is effectively the best possible such bound, as there is a result by Paley that shows
that there are infinitely many quadratic characters where |

∑
n≤x χ(n)| >

1
7
q1/2 log log q. High-

lighting the central importance of Gauss sums in terms of their relation to the Pólya–Vinogradov
inequality is that the primary technique in [10] involves convolutions of multiplicative functions
and approximations of additive characters.

In contrast, the paper [8] by Granville and Soundararajan contains several improvements in terms
of both explicit constants for the inequality and special cases where better bounds are possible. This
paper goes on to characterize the structure of characters whose incomplete sums are close to the
expected actual upper bound found when assuming GRH is true. Using the relatively recent theory
of “pretentious” characters, this paper inspired further research in this area using refinements of
their techniques.

One such refinement by Goldmakher [6] gives a superior unconditional bound (Theorem 2,
p. 127) for characters of odd order; the order of a character being the minimum g ∈ N such
that χ(n)g = 1 or 0 for all n ∈ Z. For a primitive character χ (mod q) which has odd order g,
|
∑

n≤x χ(n)| ≪g q
1/2(log q)1−δg+o(1) where δg = 1 − g

π
sin π

g
. A version with log log q instead

of log q was proven conditionally in the same Theorem, and in [7] Goldmakher and Lamzouri
demonstrated the conditional estimate was unconditionally the best possible estimate: a special
case of Paley’s lower bound.

2. PROOF OF THE INEQUALITY

This section will present a proof of Pólya–Vinogradov Inequality following [11, p. 306]. The
proof will use the following identity [11, Corollary 9.8, p. 288]): for a primitive Dirichlet character
χ modulo q,

χ(m) =
1

τ(χ)

q∑
a=1

χ(a)e(am/q). (1)

Theorem 2.1 (The Pólya–Vinogradov Inequality). Let χ be a nonprincipal Dirichlet character
modulo q, and let M,N be any integers with N > 0. Then

M+N∑
n=M+1

χ(n) ≪ √
q log q.

Proof. Without loss of generality, assume q > 1 and assume first that χ is primitive. By (1),
M+N∑

n=M+1

χ(n) =
1

τ(χ)

q∑
a=1

χ(a)
M+N∑

n=M+1

e(an/q). (2)
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Observe that, for α /∈ Z,
M+N∑

n=M+1

e(nα) =
e((M +N + 1)α)− e((M + 1)α)

e(α)− 1
= e((2M +N + 1)α/2)

sin(πNα)

sin(πα)
. (3)

When α ∈ Z, the inner sum in (2) is just N . But in our case, α = a/q is not an integer as long as
1 < a < q. For a = q the inner sum doesn’t contribute since χ(q) = 0. So, combining (2) and (3)
one may write:

M+N∑
n=M+1

χ(n) =
1

τ(χ)

q∑
a=1

χ(a)e

(
a(2M +N + 1)

2q

)
sin(πaN/q)

sin(πa/q)
.

By Theorem 9.7 in [11, p. 287], for a primitive character modulo q, |τ(χ)| = √
q. Therefore, by

triangle inequality, ∣∣∣∣∣
M+N∑

n=M+1

χ(n)

∣∣∣∣∣ < 1
√
q

q−1∑
a=1

(a,q)=1

1

sin(πa/q)
. (4)

Since sin(πa/q) = sin(π − πa/q) = sin(π(q − a)/q), the first half and the second half of the
above sum’s range are symmetric. Therefore, it suffices to compute two times the sum over the
first half 1 ≤ a ≤ (q − 1)/2 when q is odd and 1 ≤ a ≤ q/2 when q is even. Observe that
when q is even then 4 | q because there are no primitive characters modulo q for q ≡ 2 (mod 4).
Therefore, (q/2, q) > 1, and hence the range of the sum will be 1 ≤ a ≤ q/2− 1. Both cases may
be combined to write (4) as∣∣∣∣∣

M+N∑
n=M+1

χ(n)

∣∣∣∣∣ < 2
√
q

∑
1≤a≤(q−1)/2

1

sin(πa/q)
. (5)

Here the right-hand side involves the function f(t) = sin(πt). In the interval [0, 1/2], f is concave
downward and hence lies above the chord through the points (0, 0) and (1/2, 1). Therefore, f(t) ≥
2t for all t ∈ [0, 1/2]. Therefore,∣∣∣∣∣

M+N∑
n=M+1

χ(n)

∣∣∣∣∣ < 2
√
q

∑
1≤a≤(q−1)/2

q

2a
=

√
q

∑
1≤a≤(q−1)/2

1

a
<

√
q

∑
1≤a≤(q−1)/2

log
1 + 1/2a

1− 1/2a

=
√
q

∑
1≤a≤(q−1)/2

log
2a+ 1

2a− 1
=

√
q

∑
1≤a≤(q−1)/2

(
log(2a+ 1)− log(2a− 1)

)
≤ √

q log q.

This completes the proof of the theorem for a primitive Dirichlet character. Let χ be any nonprin-
cipal character induced by χ∗ modulo d. Let r be the product of those primes dividing q but not d.
Then

M+N∑
n=M+1

χ(n) =
M+N∑

n=M+1
(n,r)=1

χ∗(n) =
M+N∑

n=M+1

χ∗(n)
∑
k|(n,r)

µ(k)

=
∑
k|r

µ(k)
∑

M<n≤M+N
k|n

χ∗(n) =
∑
k|r

µ(k)χ∗(k)
∑

M/k<m≤(M+N)/k

χ∗(m),
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where µ is the Möbius function and µ⋆ 1(n) is 1 when n = 1 and 0 otherwise. The last step makes
a change of variable n = mk. Since χ∗ is primitive and the inequality is proved for primitive
characters, the inner sum is ≪

√
d log d. Since |µ(k)χ∗(k)| = 1 whenever k is a product of

distinct primes dividing r, by the Pólya–Vinogradov inequality for primitive characters,∣∣∣∣∣
M+N∑

n=M+1

χ(n)

∣∣∣∣∣ ≪ 2ω(r)
√
d log d, (6)

where ω(r) is the number of distinct prime factors of r. But 2ω(r) ≤ σ(r), where σ(r) denotes the
number of positive divisors of r including 1 and itself. Note that there is a one–one correspondence
d 7→ r/d between the first σ(r)/2 divisors of r, when ordered by theirs size, and the remaining
σ(r)/2. Since min{d, r/d} ≤

√
r, σ(r)/2 ≤

√
r. Therefore σ(r) ≪

√
r ≤

√
q/d. Also, clearly

log d ≤ log q. Combining this with (6),∣∣∣∣∣
M+N∑

n=M+1

χ(n)

∣∣∣∣∣ ≪ √
q/d

√
d log d ≤ √

q log q

for any nonprincipal character χ modulo q. □

3. SOME APPLICATIONS

This section will present some applications of the Pólya–Vinogradov inequality, based on mate-
rial found in [11, pp. 308–309].

Corollary 3.1. Let χ be a nonprincipal character modulo p and nχ be the smallest natural number
n such that χ(n) ̸= 1. Then nχ ≪ε p

1/(2
√
e)+ε.

Proof. Let ψ(x, y) denote the number of integers n ∈ [1, x] all of whose prime factors are smaller
than y. Clearly, ψ(x, y) = [x] = x + o(1) whenever y ≥ x. Suppose that χ(n) = 1 for all n ≤ y.
Then χ(n) = 1 whenever all prime factors of n are smaller than y. Whenever n ≤ x has a prime
factor q bigger than y, then χ(n) = χ(q)χ(n/q). If y < x < y2, n/q < y and hence χ(n) = χ(q)
for all n ≤ x < y2 such that q | n. Therefore,∑

n≤x

χ(n) = ψ(x, y) +
∑

y<q≤x

χ(q)[x/q].

Therefore,∣∣∣∣∣∑
n≤x

χ(n)

∣∣∣∣∣ ≥ ψ(x, y)−
∑

y<q≤x

[x/q] = [x]− 2
∑

y<q≤x

[x/q] = x

(
1− 2 log

log x

log y

)
+O

(
x

log x

)
.

If x =
√
p(log p)2, by the Pólya–Vinogradov inequality, the sum on the left-hand side is ≪

√
p log p and hence is o(

√
p(log p)2) = o(x), while if y > x1/

√
e+ε, then the lower bound on

the right hand side is ≫ εx. Thus nχ ≪ε x
1/

√
e+ε. □

The next corollary gives an estimate on the number of primitive roots of unity in any interval
[M + 1,M + N ] of length N > 0. It is well-known that there are exactly φ(p − 1) primitive
roots modulo p in an interval of length p. If the primitive roots were uniformly distributed then the
answer for an interval of length N would be φ(p−1)N/p. The Corollary below is somewhat close
to this expectation:
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Corollary 3.2. The number of primitive roots modulo p in [M + 1,M +N ] is

φ(p− 1)
N

p
+O(p1/2+ε).

The proof is long and beyond the scope of this article. See Corollary 9.20 in [11, pp. 308–309]
for further details.

4. FURTHER RESEARCH

In this final section, topics of interest in contemporary research will be discussed. Granville
and Soundararajan [8] provided several suggestions. Two conjectures in their paper are stronger
than their best conditional results. A component of both conjectures is that

∣∣∑
n≤x χ(n)

∣∣ ≤ ( e
γ

π
+

o(1))q1/2 log log q for all characters χ (mod q), effectively stating that Paley’s lower bound is sharp.
The second conjecture provides a set of conditions under which the upper bounds in the first
conjecture become equalities. Likely, progress towards the above conjectures would be through
the refinement of the explicit constants for the inequality. Such work is in progress, with [4, 9, 3]
as examples of such.

Another avenue of research is finding classes of characters with even smaller upper bounds than
the odd characters discussed in [8]. For example, Goldmakher [5] discusses stronger upper bounds
for characters modulo friable numbers.

For incomplete sums of characters where the number of integers to be summed over is much
smaller than the modulus q, there are few unconditional improvements on trivial bound given
by the number of relatively prime to q integers summed, though there is some work [2] on this
problem. If one assumes GRH, then

∑
n≤t χ(n) ≪ϵ t

1/2qϵ [1, p. 427].
On the whole, while the general shape of the Pólya–Vinogradov inequality has been relatively

static over the years, research on the inequality is active and progress is steadily being made to
refine it, improve it, and explore special cases where better bounds are possible.
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