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ABSTRACT. In this overview, the impact of Rubinstein and Sarnak’s 1994 paper on the study of
comparative prime number theory is examined. The results of the paper itself are stated and ex-
amined, and placed in the historical context of both earlier and later results. The methods used to
acheive these results are also examined, from both a mathematical and historical perspective. The
impact of the paper on the study of prime number races since its publication is discussed, and it is
found to be a key foundation for much contemporary research.

1. INTRODUCTION AND OVERVIEW

This is an overview of the influential and significant 1994 paper “Chebyshev’s Bias” by Ru-
binstein and Sarnak [9]. In their paper, the two authors proved several results concerning prime
number races underneath two assumptions about the zeroes of the the Dirichlet L-functions (in-
cluding the Riemann zeta function): the Generalized Riemann Hypothesis (abbreviated “GRH”)
and Linear Independence (abbreviated “LI”). GRH asserts that all the nontrivial zeroes1 of every
Dirichlet L-function have real part 1/2. Likewise, LI holds that the imaginary components of the
nontrivial zeroes of every Dirichlet L-function are linearly independent over the rationals2. The
systematic manner in which the authors chose to frame and discuss the problem of prime num-
ber races in terms of a limiting multivariate distribution for the logarithmic density of certain sets
provided a framework for understanding the problem that is still used in contemporary research.

The study of prime number races began with Chebyshev in 1853, who made the observation
that it seemed that there were more primes 3 (mod 4) than 1 (mod 4) (see the discussion in [3, p.
227]). This phenomenon was called Chebyshev’s Bias. For any x easily calculable before the
arrival of digital computers it appeared that π(x; 4, 1) ≤ π(x; 4, 3). Likewise, it appeared that
π(x; 3, 1) ≤ π(x; 3, 2). However, it was shown by Littlewood [6] that there are infinitely many
x for which the previous inequalities (individually) hold but also infinitely many x for which the
previous inequalities (individually) do not hold. The first x for which π(x; 4, 1) > π(x; 4, 3) was
computed by Leech to be 26, 861 [5] and the first x for which π(x; 3, 1) > π(x; 3, 2) was computed
by Bays and Hudson to be 608, 981, 813, 029 [1].

Over the course of the 20th century, a field of study generalizing this problem took form, called
comparative prime number theory. Chebyshev’s bias was generalized into the concept of biased
prime number races. In a prime number race, one considers a modulus q ≥ 3 and the set of reduced
residue classes Aq of q. In the general form chosen by Rubinstein and Sarnak, let a1, . . . , ar ∈ Aq
be distinct, and let Pq;a1,...,ar be the set of real x ≥ 2 such that π(x; q, a1) > · · · > π(x; q, ar). In

1A nontrivial zero is a ρ ∈ C where L(ρ, χ) = 0 and 0 < <ρ < 1. The zeroes ρ of L(s, χ) with χ nonprimitive
and <ρ = 0 are not nontrivial zeroes.

2In their paper, Rubinstein and Sarnak call this assumption the Grand Simplicity Hypothesis due to the implication
that each zero must be simple and 1/2 must not be a zero. In this overview LI will be used due to becoming in the
years since the more standard term.



this terminology, the results of Littlewood [6] determine that the sets P4;3,1, P4;1,3, P3;2,1 and P3;1,2
are unbounded.

In the limit, the logarithmic density of primes belonging to a specific reduced residue class
modulo q approaches 1/ϕ(q) of the total number of primes in accordance with the prime number
theorem for arithmetic progressions [8], but the phenomenon where the sets where some reduced
residue classes modulo q produce more primes than others over large ranges of x is what gives rise
to the notion of a prime number race among the residue classes a1, . . . , ar. Using the general form
chosen here one can extend questions about a bias in a pair of residue classes to questions about
biases of entire orderings of the prime number race among residue classes.

To formally study the existence of such biases, Rubinstein and Sarnak proved statements about
the density of sets Pq;a1,...,ar . Earlier research by Wintner [11] determined some sets of this form
have logarithmic densities under certain assumptions. The logarithmic density of a set P ⊆ [2,∞)
is defined to be δ(P ) = limX→∞

1
logX

´
t∈(P∩[2,X])

dt
t

with δ(P ) and δ(P ) being the lim sup and
lim inf respectively.

For a residue q where all sets of the form Pq;a1,...,ar have a logarithmic density, one could say
a prime number race among the reduced residue classes a1, . . . , ar ∈ Aq for some modulus q is
unbiased if and only if for any b1, . . . , br which is a reordering of 1, . . . , r, with δ(Pq;a1,...,ar) =
δ(Pq;ab1 ,...,abr ) = 1

r! . To state what Rubinstein and Sarnak prove for such sets precisely one last
concept is needed. Let ~Eq;a1,...,ar : [2,∞)→ Rr be the vector-valued function

~Eq;a1,...,ar(x) = log x√
x
〈ϕ(q)π(x; q, a1)− π(x), . . . , ϕ(q)π(x; q, ar)− π(x)〉.

With this function defined, it is now possible to state Rubinstein and Sarnak’s first theorem.

Theorem 1.1. [9, Theorem 1.1] Assume GRH. Then ~Eq;a1,...,ar has a limiting distribution µq;a1,...,ar
on Rr. That is

lim
X→∞

1
logX

ˆ X

2
f(Eq;a1,...,ar(x)) dx

x
=
ˆ
Rr
f(x) dµq;a1,...,ar(x)

for all bounded continuous functions f on Rr.

Earlier results for special cases do exist (see [10]) but this is the first statement that gives the ex-
istence of a distribution to all prime number races. Note that this statement is not quite sufficient to
prove the logarithmic densities exist (since characteristic functions are not continuous). However,
if the measure µq;a1,...,ar(x) is absolutely continuous, then

δ(Pq;a1,...,ar) = µq;a1,...,ar
(
{x ∈ Rr : x1 > . . . > xr}

)
.

Conveniently, LI implies that µq;a1,...,ar(x) is absolutely continuous, and thus implies the loga-
rithmic densities of all sets of the form Pq;a1,...,ar exist so our earlier definition of what it means for
a prime number race to be unbiased extends to all possible prime number races. The question of
which races are biased or unbiased then comes down to an examination of the limiting distributions
of µq;a1,...,ar assuming both GRH and LI. Define

c(q, a) = −1 + #{b ∈ Z : 0 ≤ b ≤ q, b2 ≡ a (mod q)}, (1.1)

which is −1 if a is a quadratic nonresidue modulo q and is positive when a is a quadratic residue
modulo q and q > 33.

3Trivially, c(1, 1) = c(2, 1) = 0.
2



The next result requires making a careful distinction in order to place it into the correct historical
context. If a1, . . . , ar ∈ Aq is such that for any reordering b1, . . . , br ∈ Aq the the limiting dis-
tribution µq;a1,...,ar = µq;ab1 ,...,abr , the corresponding prime number race among a1, . . . , ar is said
to be unbiased in distribution. A prime number race being unbiased in distribution implies being
unbiased, but Rubinstein and Sarnak did not prove the converse.

Theorem 1.2. [9, Theorem 1.4] Assume GRH and LI. The prime number race (q; a1, . . . , ar) is
unbiased in distribution if and only if r = 2 with c(q, a1) = c(q, a2) or r = 3 where there is some
ρ 6= 1 such that ρ3 ≡ 1 (mod q), a2 ≡ ρa1 (mod q), a3 ≡ ρ2a1 (mod q).

While Rubinstein and Sarnak suggest that unbiased in distribution is equivalent to the race itself
being unbiased, the absence of a definitive proof has served to inspire later researchers. Lamzouri
[4] provides an overview of this area of research, and additionally shows that there exist biased
r-way races if q is sufficiently large compared to r.

Next, Rubinstein and Sarnak show that despite all other races being biased, there are bounds on
how biased they can be.

Theorem 1.3. [9, Theorem 1.5]. Assume GRH and LI. Then for any fixed r,

lim
q→∞

max
a1,...,ar∈Aq

∣∣∣∣δ(Pq;a1,...,ar)− 1
r!

∣∣∣∣ = 0.

In particular, this means that as q grows in size, any prime number races among a fixed number
of participants becomes less biased.

For the last theorem, the situation concerning the race of all quadratic nonresidues against all
quadratic residues is considered for q being an odd prime power, 2 times an odd prime power, or
4. Define πN(x; q) as the number of primes ≤ x which are nonresidues modulo q and πR(x; q) as
the number of primes which are residues ≤ x. Let

Eq;N,R(x) = πN(x; q)− πR(x; q),
and let Pq;N,R be the set of x ≥ 2 where Eq;N,R(x) > 0.

Theorem 1.4. [9, Theorem 1.6] Assume GRH and LI. Let µ̂q;N,R be the limiting distribution of

Eq;N,R(x)
log q

.

Then µ̂q;N,R converges in measure to the standard normal distribution as q goes to infinity.

The above results are proven in the next two sections of their work. Afterwards, they conduct nu-
merical investigations and prove the existence of some densities for a a few specific prime number
races.

2. APPLICATIONS OF THE GENERALIZED RIEMANN HYPOTHESIS

In this section, a summarized proof of Theorem 1.1 by Rubinstein and Sarnak will be provided.
The idea is to show that each entry of Eq;a1,...,ar can be estimated by an approximation using a
finite number of zeros ρ of the Dirichlet L-function L(s, χ). Lastly, by application of Lemma 2.2
the existence of a limiting distribution of the approximation of an entry of Eq;a1,...,ar is guaranteed.

Recalling some notations from Section 1, set

E(x, q, a) = (ϕ(q)π(x; q, a)− π(x)) log x√
x
.

3



Also, set
ψ(x, χ) =

∑
n≤x

χ(n)Λ(n),

for which

ψ(x, χ) = −
∑
|γ|≤X

xρ

ρ
+O

(
x log2(xX)

X
+ log x

)
(2.1)

by [2]. The sum is over all nontrivial zeros ρ = β + iγ of the associated L(s, χ) with |γ| ≤ X .
Since GRH is assumed, taking β = 1

2 for all zeros ρ, it follows that

ψ(x, χ) = −
√
x
∑
|γ|≤X

xiγ

1
2 + iγ

+O
(x log2(xX)

X
+ log x

)
. (2.2)

Using equation (2.2), the following lemma will be proven.

Lemma 2.1. As x→∞,

E(x, q, a) = −c(q, a) +
∑
χ 6=χ0

χ̄(a)ψ(x, χ)√
x

+O

(
1

log x

)
,

where the constant c(a, q) is as defined in equation (1.1).

Proof. Start by letting
θ(x; q, a) =

∑
p≤x

p≡a (mod q)

log p

and
ψ(x; q, a) =

∑
n≤x

n≡a (mod q)

Λ(n).

Rewrite ψ(x; q, a) as

ψ(x; q, a) =
∑
p≤x

p≡a (mod q)

log p+
∑
p2≤x

p2≡a (mod q)

log p+
∑
k≥3

∑
pk≤x

pk≡a (mod q)

log p. (2.3)

The first sum in equation (2.3) is θ(x; q, a). Also, that
∑

p≤
√
x log p = θ(

√
x). By the prime

number theorem, θ(
√
x) ∼

√
x. Hence, it follows that∑

p2≤x
p2≡a (mod q)

log p =

( ∑
b2≡a (mod q)

1

) √
x

ϕ(q)
+O

( √
x

log x

)
,

by Dirichlet’s density theorem and counting each residue class b which is a solution to b2 ≡
a (mod q). The third sum in equation (2.3) can be incorporated in the error term O(

√
x

log x). There-
fore,

ψ(x; q, a) = θ(x; q, a) +

( ∑
b2≡a (mod q)

1

) √
x

ϕ(q)
+O

( √
x

log x

)
. (2.4)
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Furthermore,

ψ(x; q, a) = 1
ϕ(q)

∑
χ

χ̄(a)ψ(x, χ) (2.5)

and

π(x; q, a) =
ˆ x

2

dθ(t; q, a)
log t

. (2.6)

Using equations (2.5) and (2.6) and solving equation (2.4) for θ(x; q, a), it follows that

π(x; q, a) = 1
ϕ(q)

ˆ x

2

dψ(t)
log t

+ 1
ϕ(q)

∑
χ 6=χ0

χ̄(a)
ˆ x

2

dψ(t, χ)
log t

− 1
ϕ(q)

( ∑
b2≡a (mod q)

1

) √
x

log x
+O

( √
x

log2 x

)
. (2.7)

Equation (2.7) can be simplified using integration by parts. It is worth pointing out the main part
of the calculation. Let

G(x, χ) =
ˆ x

2
ψ(t, χ)dt.

Using equation (2.2), integrating and letting X →∞, it follows that

G(x, χ) = −
∑
γ

x3/2+iγ

(1/2 + iγ)(3/2 + iγ)
+O(x log x).

Using the formula for N(X,χ) it follows that the series above is absolutely convergent. There-
fore, G(x, χ)� x3/2, and in conclusion,

π(x; q, a)− π(x)
ϕ(q)

= −c(q, a)
√
x

ϕ(q) log x
+ 1
ϕ(q) log x

∑
χ 6=χ0

χ̄(a)ψ(x, χ) +O

( √
x

log2 x

)
.

This finishes the proof. �

Now, computing E(x, q, a) using the estimate (2.1) for ψ(x, χ) and Lemma 2.1 yields

E(x, q, a) = −c(q, a)−
∑
|γ|≤X

xiγ

1/2 + iγ
+ εa(x,X),

where the error term εa(x,X) can be made arbitrarily small by makingX large enough. Therefore,
for a1, . . . , ar ∈ Aq, the quantity E(x, q, aj) can be estimated by

E
(X)
j (y) = −c(q, aj)−

∑
χ (mod q)
χ 6=χ0

χ̄(aj)
∑
|γχ|≤X

xiγχy

1/2 + iγχ
,

where γχ refers to the imaginary components of the nontrivial zeros ρ of L(s, χ).
Hence, Eq;a1,...,ar can be estimated by

E(X)(y) = 〈E(X)
1 (y), E(X)

2 (y), · · · , E(X)
r (y)〉

Lastly, this section is concluded by stating a lemma (without proof) which guarantees a proba-
bility measure for E(X)(y), and hence, a probability measure µ for Eq;a1,...,ar .
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Lemma 2.2. For each X , there is a probability measure νX on Rr such that

νX(f) =
ˆ
Rr
f(x)dνX(x) = lim

Y→∞

1
Y

ˆ Y

log 2
f(E(X)(y))dy,

for all bounded continuous functions f on Rr. In addition, there exists a constant c = c(q) such
that the support of νX lies in the ball B(0, c log2X).

3. IMPLICATIONS OF LINEAR INDEPENDENCE

In the third section of their paper, Rubinstein and Sarnak prove Theorem 1.4, Theorem 1.3, and
Theorem 1.2 in that order. Theorems 1.4 and 1.3 are proven directly. Theorem 1.2 is proven from
a proposition concerning the symmetry of the limiting distribution µq;a1,...,ar . However, before
starting the proofs of the three theorems, they first obtain a formula for the characteristic function
µ̂q;a1,...,ar of the limiting distribution after assuming both GRH and LI.

Rubinstein and Sarnak apply the Kronecker–Weyl Theorem and the same logic as previously
found in Lemma 2.3 to show that for ξ = 〈ξ1, . . . , ξr〉 ∈ Rr (with ξ ⊥ 〈1, . . . , 1〉 if r = ϕ(q)),

µ̂q;a1,...,ar(ξ) = lim
N→∞

exp
(
i

r∑
m=1

c(q, am)ξm
) N∏

j=1

µ̂γj(ξ),

where γ1, . . . , γN are the imaginary parts of the first N nontrivial zeroes of any L(s, χ) with non-
principal χ (mod q) in the upper half-plane, and µγ(ξ) is the distribution function of the vector

Eχ(y) = −
〈
χ̄(a1)eiγy

1
2 + iγ

+ χ(a1)e−iγy
1
2 − iγ

, . . . ,
χ̄(ar)eiγy
1
2 + iγ

+ χ(ar)e−iγy
1
2 − iγ

〉
,

which is a typical term in the sum E(T )(y) as expressed in Lemma 2.3.
Rubinstein and Sarnak split χ and χ̄ into their real and imaginary parts, expressing the vector as

a sum of sines and cosines. They then use the derivative of arcsine to find the density function of
Eχ(y) and after some symbolic manipulation find that

µ̂γ(ξ) = J0

(2
∑r

j=1 χ(aj)ξj√
1
4 + γ2

)
,

where J0 is the Bessel function of the first kind. Consequently,

µ̂q;a1,...,ar(ξ) = exp
(
i

r∑
m=1

c(q, am)ξm
) ∏
χ (mod q)
χ 6=χ0

∏
γχ>0

J0

(2
∑r

j=1 χ(aj)ξj√
1
4 + γ2

)
. (3.1)

This is the equation of the characteristic function of the limiting multivariate distribution µq;a1,...,ar ,
which fully determines all properties of the limiting distribution. However, as can be seen from
the discussion above, it is only known to be true if one assumes GRH and LI. They also derive two
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related equations

µ̂q;R,N(ξ) = eiξ
∏
γχ1>0

J0

(
2ξ√
1
4 + γ2

)
, (3.2)

(
π(x)− Li(x)

) log x√
x

= −1−
∑
|γ|<X

xiγ

1
2 + iγ

+O

(√
x log(Xx)2

X
+ 1

log x

)
, (3.3)

where for the first equation χ1 is the quadratic character modulo q, and for the second X ≥ 1 and
x ≥ 2, and γ refers to the imaginary parts of the zeroes of ζ(s).

Their first application of the above formulas is equation (3.2) to characterize µ̂q;R,N(ξ) in terms
of its symmetries and from that derive various implications about prime number races. Note that
in this case q is odd prime power, 2 times an odd prime power, or 4, so χ1 is a primitive character.

Using the well-known property that J0 is an even function they determine
∏

γχ1>0 J0
(

2ξ√
1
4+γ2

)
is also even. Thus it follows that the density function µq;R,N(t) is symmetric about t = −1. From
this Rubinstein and Sarnak conclude that δ(Pq;R,N) =

´∞
0 dµq;R,N(t) < 1

2 . Under the assumption
of GRH and LI, this shows that quadratic residues lose the race against quadratic nonresidues more
often than not, for any modulus q which is an odd prime power, 2 times an odd prime power, or 4.

Rubinstein and Sarnak next move to prove Theorem 1.4. They expand µ̂q;R,N(ξ/
√

log q) using
(3.2) and power series expansions of J0 and exp. This yields for |ξ| ≤ A with A > 0 a fixed
constant that

µ̂q;R,N

(
ξ√

log q

)
= iξ√

log q
− ξ2

log q

(∑
|γ|>0

1
1
4 + γ2

)
+O

(
A4

(log q)2
∑
|γ|>0

1
(14 + γ2)2

)
,

where γ refers to the zeroes of L(s, χ1). They then use an argument of Littlewood’s to express the
sum over the zeroes in terms of L′

L
(1, χ1), and then estimate the size of the error term, ultimately

yielding that

lim
q→∞

log µq;R,N
(

ξ√
log q

)
= −1

2
ξ2

uniformly for |ξ| ≤ A. Rubinstein and Sarnak then apply Lévy’s Theorem to this result to show the
measures µ̃q;N,R converge in measure to the standard multivariate normal distribution as q goes to
infinity. An immediate consequence is that δ(Pq;N,R)→ 1

2 as q →∞, which proves Theorem 1.4.
Theorem 1.3 is proven by similar means, but more work is required to deal with nonprimitive

characters. This is mostly handled by elementary methods (such as the observation that the number
β(q) of primitive characters a modulus is such that under Dirichlet convolution β ∗ 1 = ϕ) and
some basic properties relating L(s, χ) and L(s, χ∗).

Ultimately, Rubinstein and Sarnak show by an application of Lévy’s Theorem that µ̃q;a1,...,ar
converges to the standard multivariate Gaussian on Rr, where µ̃q;a1,...,ar is the measure on Rr with
Fourier transform µ̂q;a1,...,ar

(
ξ√

ϕ(q) log q

)
. They then deduce that for any D ⊆ Rr, and for any

permutation σ of the r coordinates, that

lim
q→∞
|µ̃q;a1,...,ar(D)− µ̃q;a1,...,ar(Dσ)| = 0.

From this equation it is trivial to show that each ordering of the prime number race result must
converge to a fair one, which requires the limiting density limq→∞ δ(Pq;a1,...,ar) = 1

r! , proving
Theorem 1.3.
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Next, Rubinstein and Sarnak prove the following proposition, which will ultimately be used to
prove Theorem 1.2.

Proposition 3.1. [9, Proposition 3.1] The density function µq;a1,...,ar is symmetric in (x1, . . . , xr) if
and only if
• r = 2 and c(q, a1) = c(q, a2), or
• r = 3 and there exists ρ 6= 1 such that ρ3 ≡ 1 (mod q), a1ρ ≡ a2 (mod q), a1ρ2 =
a3 (mod q).

The proof of the proposition is done in two steps. The first is to observe that by (3.1) that the term
exp

(
i
∑r

m=1 c(q, am)ξm
)

yields by taking the derivative of µ̂ that the distribution of µq;a1,...,ar has
mean value (c(q; a1), . . . , c(q; ar)). In order for the distribution to be symmetric, its mean value
must be invariant under permutation, which requires c(q; a1) = . . . = c(q; ar).

That each c(a, aj) be equal is thus a necessary condition of the density function being symmetric.
Thus to prove the proposition, the symmetries of the terms inside the Bessel function J0 must be
characterized. This is done by the following Lemma:

Lemma 3.2. [9, Lemma 3.2] The expression Bχ(ξ1, . . . , ξr) =
∣∣∑r

j=1 χ(aj)ξj
∣∣ is symmetric in

(η1, . . . , ηr) if and only if one of the two conditions of the above proposition hold.

When r = 2, simply observe

Bχ(ξ1, ξ2) =
∣∣χ(a1)ξ1 + χ(a2)ξ2

∣∣ =
∣∣χ̄(a1)χ̄(a2)(χ(a1)ξ1 + χ(a2)ξ2)

∣∣
= |χ(a2)ξ1 + χ(a1)ξ2| = Bχ(η2, η1).

When r = 3 and ρ as described above exists, if τ = χ(ρ), it follows that since |τ | = 1,

Bχ(ξ1, ξ2, ξ3) =
∣∣ξ1 + τξ2 + τ 2ξ3

∣∣ =
∣∣τ k(ξ1 + τξ2 + τ 2ξ3)

∣∣
which freely permutes the sum in a cycle, since τ 3 = χ(τ 3) = χ(1) = 1. By taking the conjugate
of the interior of the sum, it becomes clear that one can exchange the positions of ξ2 and ξ3.
Combined, this produces every possible permutation, showing Bχ(ξ1, ξ2, ξ3) is symmetric.

An argument showing the converse is then demonstrated for r = 3. The case where r ≥ 4 is
excluded because of this converse argument, since it will imply the above relation for any three
residues, which contradicts the uniqueness of a1, a2, a3.

The remainder of this section formally proves the rest of the proposition, demonstrating that if
the condition in the lemma fails, a contradiction results if the limiting distribution is symmetric.

4. A SURVEY OF THE NUMERICAL INVESTIGATIONS

In the fourth section of their paper, Rubinstein and Sarnak give a detailed description of the
computations that lead to the following numbers.

δ(P comp
1 ) = 0.99999973 · · · δ(P3;N ;R) = 0.9990 · · ·

δ(P4;N ;R) = 0.9959 · · · δ(P5;N ;R) = 0.9954 · · ·
δ(P7;N ;R) = 0.9782 · · · δ(P11;N ;R) = 0.9167 · · ·
δ(P13;N ;R) = 0.9443 · · ·

This involves evaluating the integrals δ(Pq;N,R) =
´ 1
−∞ dωq;R,N(t) and δ(P comp

1 ) =
´ 1
−∞ dω1(t).
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To show how these integrals were evaluated, some notation must first be defined. Let fq;N,R(t)
and f1(t) be the density functions of µq;N,R and µ1 respectively. Here, the authors observe that
it is more convenient to work with the distribution ω whose density function is given by g(t) :=
f(t− 1), with Fourier transform

ω̂(ξ) =
∏
γ>0

J0

(
2ξ√

1/4 + γ2

)
. (4.1)

Since gq;N,R is symmetric about 0,

δ(Pq;N,R) = 1
2

+ 1
2

ˆ 1

−1
dωq;N,R(t) = 1

2
+ 1

2π

ˆ ∞
−∞

sinu
u

ω̂q;N,R(u) du, (4.2)

where the second equality above is obtained using the inversion formula for characteristic func-
tions. The evaluation of the integrals in the above expression essentially involves three steps.
Firstly, the integral is replaced with a sum. The second step involves replacing the infinite summa-
tion by a large but finite sum. Lastly, the third step involves replacing the infinite product for ω̂ by
a finite product. The first step will be explained in detail and an outline of the second and the third
steps will be given.

Set

φ(u) = 1
2π

sinu
u

ω̂(u) and φ̂(x) = 1
2
(
χ[−1,1] ∗ g

)
(x) = 1

2

ˆ x+1

x−1
g(u) du = 1

2

ˆ x+1

x−1
dω(u). (4.3)

By applying the Poisson summation formula to equation (??) to equations (4.3), and using a well-
known bound on the Bessel function J0, Rubinstein and Sarnak determine that

1
2π

ˆ ∞
−∞

sinu
u

ω̂(u)du = 1
2π
∑
n∈Z

ε
sin(nε)
nε

ω̂(nε)−
∑
n∈Z
n6=0

φ̂(n/ε) (4.4)

Hence, the error of replacing the integral in equation (4.2) with the sum as in equation (4.4) can
be estimated if an upper bound for φ̂(n/ε) is found. Using an upper bound for ω from [7] and
computed values for L(1, χ1), L′(1, χ1), and

∑
γχ1>0

1
γ2χ1+1/4 collected in Table 2 [9, p. 193], for

q = 1, 3, 4, 5, 7, 11, 13 and λ ≥ 2 the authors conclude that ω[λ,∞) ≤ exp
(
− 1

6(λ− 2)2
)
.

Hence, for n ≥ 1 and n/ε− 1 ≥ 2, it follows that

φ̂(n/ε) = 1
2

ˆ n/ε+1

n/ε−1
g(u) du ≤ 1

2
ω[n/ε− 1,∞) ≤ 1

2
exp
(
− 1

6
(n/ε− 3)2

)
.

Using the fact that φ̂ is symmetric about 0 and choosing ε = 1
20 , it follows∑

n∈Z
n 6=0

φ̂(n/ε) = 2
∞∑
n=1

φ̂(n/ε) ≤
∞∑
n=1

exp(−1
6

(20n− 3)2) < 2exp(−1
6

172) = 10−20.617···. (4.5)

Therefore, using equation (4.5) in equation (4.4), equation (4.2) becomes

δ(Pq;N,R) = 1
2

+ 1
2π
∑
n∈Z

ε
sin(nε)
nε

ω̂(nε) + E, (4.6)

where ε = 1
20 and the error term E satisfies |E| < 10−20.
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The second step involves replacing the sum in the second tern of equation (4.6) above by a
finite sum over −C < nε < C, where C is chosen to be sufficiently large such that the contri-
bution of the tail ends of the sum is small. Subsequently, the authors derive an upper bound for
1
2π
∑

n∈Z ε
sin(nε)
nε

ω̂(nε) and together with the calculations in Table 1 [9], they conclude that

δ(Pq;N,R) = 1
2π

∑
−25≤nε25

ε
sin(nε)
nε

∏
γχ>0

J0

(
nε√

1/4 + γ2χ1

)
+ 1/2 + error term. (4.7)

Lastly, the infinite product in equation (4.7) is replaced by a finite product and an approximating
polynomial. This leads to

δ(Pq;N,R) = 1
2π

∑
−25≤nε≤25

ε
sin(nε)
nε

(1 + b1(nε)2)
∏

0<γ≤9999

J0

(
2nε√

1/4 + γ2

)
+ 1/2 + error

where
b1 = T1(0) +

∑
0<γ≤9999

1
1/4 + γ2

.

Therefore, for different values of q, the corresponding δ values are obtained as was mentioned
in the beginning of this section. Similar treatment and calculations can be done to derive the
corresponding formula for δ(P comp

1 ) and δ(P comp
1 ) = 0.99999973 · · · is obtained.
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