ON SIEGEL EXCEPTIONAL ZEROS AND SIEGEL’S THEOREM
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ABSTRACT. In this note, we will review Siegel zeros, sketch the proof of Siegel’s theorem which
gives an estimation of the values of exceptional zeros, and summarize some results concerning their
existence.

1. PRELIMINARIES

Let’s first recall the definitions of Dirichlet character and Dirichlet L-functions.
The following definitions are taken from [1] chapter 4 and chapter 1.

Definition 1.1. [1] A Dirichlet character modulo ¢ is a function y : Z — C satisfying:
1. x is periodic with period ¢;

2. x(n) # 0 if and only if (n,q) = 1;

3. x 1s totally multiplicative.

Definition 1.2. [1] A Dirichlet character y modulo ¢ is called principal, if x(n) = 1 when (n, q) =
1 and x(n) = 0 otherwise. We denote such a character by x,. Note that x still depends on g.

A Dirichlet character y modulo ¢ is called imprimitive, if there exists d|q,d < ¢ such that
x(m) = x(n) whenever m = n(mod d) and (mn, ¢) = 1. If x is not imprimitive, then we say that
X 1s primitive.

Definition 1.3. [1] Let y be a Dirichlet character modulo q. Its Dirichlet L-function is defined as

L(s,x) = Q

for R(s) > 1. It can be proved that L(s,x) can be analytically continued to a meromorphic
function on C. Furthermore, its only pole is at s = 1 when Y is a principal character, and is entire
when Y is non-principal.

Note that when y(n) = 1 for all n € N, in other words, a Dirichlet character modulo 1, then the
L-function is the Riemann zeta function ((s).

Definition 1.4. [1] We call a Dirichlet character y quadratic, if x? is a primitive character. Equiva-
lently, we can define it as a Dirichlet character that only takes real values, so it is also called a real
character.

Notation 1.5. [1] For s € C, we denote the real part of s by o, and the imaginary part of s by ¢.
We also denote 7 = |t| + 4.

2. DEFINITION OF EXCEPTIONAL ZEROS

It has been proved that the Dirichlet L-function has no zeros in a classical zero-free region,
except for a special case which we will discuss below. Such a zero is called an exceptional zero.



Theorem 2.1. ([1] p.360, theorem 11.3) There is an absolute constant ¢ > 0 such that if x is a
Dirichlet character modulo q, then the region

R,={s:0>1- ‘

}

contains no zero of L(s,x) unless x is a quadratic character, in which case L(s, x) has at most
one, necessarily real, zero f < 1in R,.

log qt

Definition 2.2. Zeros of L(s, x) located in the region R, above are called Siegel zeros, or excep-
tional zeros. These two terms are used interchangeably.

Remark 2.3. Note that this absolute constant ¢ does not depend on ¢ or x. For each single ¥,
since there is at most one exceptional zero, we can change the constant ¢ so that the region doesn’t
contain any zero. However, this c is an absolute constant, so we are not necessarily able to change
the constant c in this way to avoid exceptional zeros for all ¢ and .

Also note that it has not been proved whether exceptional zeros exist or not, so these zeros are
hypothetical zeros. Many people believe that the generalized Riemann hypothesis is true, in other
words, all zeros of L(s, x) have real part 1/2, which means that exceptional zeros do not exist.

Now we sketch the proof of theorem 2.1, which is mainly based on [1] p.360-362, theorem 11.3.

Proof. Here we only sketch the proof when y is a complex character, in other words not a real
character.
Lemma 11.1 in [1] tells us that for 5/6 < o < 2, we have
L E(] (X) 1
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where the sum is over the zeros p of L(s, x) in a certain region, and Fy(y) = 1 if y is principal
and O otherwise.
Using a trigonometric identity, lemma 11.2 in [1] shows that for ¢ > 1, we have
L L L

_a= Y : b 9
SFE( 3L(0,X0) 4L(0+zt,x) L(U+21t,x)>20,

Roughly speaking, if L has a zero at s = 3y + i, by plugging in appropriate values of ¢ and t,

the second term —4% (o+1it, x) gives a pole of residue —4. Observe that the only way to contribute
Eo(x0) Eo(x?)
s—1

a positive residue is in and =4, therefore the first term contributes a residue at most 3.
The third term cannot contribute a positive residue because y? is non-principal since y is complex,
which is why we need this assumption. Hence we have reached our desired contradiction, as the
error term is negligible in our desired classical zero-free region. U

3. ESTIMATIONS OF EXCEPTIONAL ZEROS AND L(s, x)

In this section, we sketch the proof of Siegel’s theorem, which gives an upper bound of the value
of L(1, x) and the exceptional zeros, if they exist. In other words, they cannot stay too close to 1.

The following theorem allows us to estimate the value of the exceptional zero [3;, by estimating
the value of L(1, x).

Theorem 3.1. ([1] p.362-364, theorem 11.4) Let x be a non-principal character modulo q, let c

be the constant in theorem 2.1, and suppose that o > 1 — ¢/(21og qT).
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If L(s,x) has no exceptional zero, or if 31 is an exceptional zero of L(s,x) but |s — (1| >
1/log q, then

< logqr.

1
L(s, x)
Alternatively, if B is an exceptional zero of L(s, x) and |s — 1| < 1/log q, then
|s = Bl < |L(s,x)| < |s = Bi](log q)”.
Proof. See [1] p. 362-364, theorem 11.4. L]

Remark 3.2. The first case is what we hope to happen: having no exceptional zeros, or the ex-
ceptional zeros are not too close to 1. If the second case happens, the above theorem tells us that
|s— 1| and | L(s, x)| are only two log’s away from each other, so we only need to estimate L(1, ),
to estimate 3.

Using Mellin transform, Page showed the following results.

Theorem 3.3. ([1] p. 370, theorem 11.11) If x is a quadratic character modulo q, then L(1, x) >
~1/2
q =

Proof. See [2] p. 117, or [1] p. 370, theorem 11.11. [

On the other hand, Siegel showed the following theorems, which improves the previous theorem
of ¢~/? to an arbitrary negative power of ¢.

Theorem 3.4. ([1] p. 372-373, theorem 11.14) (Siegel) For each positive number € there is a
positive constant C(€) such that if x is a quadratic character modulo q, then

L(1,x) > Cle)g.
Before giving the proof of this theorem, which is mainly based on [1] p. 372-373, theorem

11.14, we need the following two lemmas, whose proofs can be found in [1] as cited below.

Lemma 3.5. ([1] p. 350, lemma 10.15) Let x be a non-principal character modulo q, and suppose
that 6 > 0 is fixed. Then

Loy 1
L(s,x) < (1+(g7)" )mm(m,log qr)

uniformly for 6 < o < 2.

Remark 3.6. Note that this lemma is different from theorem 3.1. Theorem 3.1 gives an estima-
tion of L(s, x) in terms of f;, so that we can transform our problem to an estimation of L(s, ),
while this lemma gives an upper bound of L(s, x) only in terms of s and x, by estimating the
L-function directly from its formula. Such an upper bound is helpful, because we will, as we did
in theorem 2.1, pair L(1, x) with some other L-functions, which we need an upper bound.

Lemma 3.7. ([1] p. 370, lemma 11.13) (Estermann) Suppose that f(s) is analytic for |s—2| < 3/2,
and that |f(s)| < M for s in this disc. Suppose also that

F(s) = ((s)f(s) = Y r(nn™
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for o > 1, that r(1) = 1, and that r(n) > 0 for all n. If there is a 0 € [19/20,1) such that
f(o) >0, then

(1—o)M—30-9),

] =

f(1) =

Remark 3.8. On one hand, lemma 3.5 gives us an upper bound for L(s, y). On the other hand, sup-
pose there is a zero o € [19/20, 1) for f, which we will later plug in some L-functions, lemma 3.7
gives a lower bound for f. Although these bounds don’t contradict each other, in other words
cannot help us rule out exceptional zeros, there will be ¢ and L(1, x) involved to help us estimate.
Usually, if we have a zero (3; close to 1, and if the function L(s, x) is nice enough, we would
expect L(1,x) cannot be too large. However, this lemma gives us a surprise: a close zero gives
a large lower bound! Its proof is based on Landau’s theorem ([1] theorem 1.7), which gives a
singularity of a Dirichlet series of nonnegative coefficients, which are the (n) in this theorem.

Now we prove theorem 3.4, which is mainly following [1] p. 372, theorem 11.14. In the proof of
theorem 2.1, we paired a character with its conjugate. This time, we still need to pair the character
x with another character, namely, a fixed character with an exceptional zero.

Proof. The case where there’s no exceptional zero or all exceptional zeros are far from 1 is rela-
tively easy, as well as generalizing the result from primitive characters to imprimitive characters.
So we assume that y is primitive and that there is a character y; modulo ¢; such that L(s, x;) has
areal zero 0; > 1 — €/4.

Let x be a primitive quadratic character (recall that only quadratic characters may have excep-
tional zeros), and x # xi1. Let f(s) = L(s, x)L(s, x1)L(s, xx1) be the function f in lemma 3.7.
Then

log(C(s)f(s)) —10g( ( ) +log(L(s,x)) +log(L(s, x1)) + log(L(s, xx1))

Z o 2044 ) + () + 0 ()

Since (1 + x(n) + xa(n ) + XXl( ) = (L+ x(n)(1 + xa(n)), and x(n), xa(n) = 0,+1
because the characters are quadratic, so the coefficients of log(((s)f(s)) are nonnegative. Let
g(s) =log({(s)f(s)). To see that the coefficients of ((s) f(s) = exp g(s) in the Dirichlet series are
nonnegative, let g(s) = > o, a,n*. Then exp g(s) = > oo = (> | a,n~*)™. By expanding
the m-th power, we will get > a,, ... a,, (n1...n,)"* where the sum is over all m-tuples of pos-
itive integers nq, . . ., n,y,, which is stlll a Dirichlet series. This tells us that exp(g(s)) = ((s)f(s)
has nonnegative coefﬁc1ents. The condition on the first coefficient of ((s) f(s) is not important, as
we can scale f, because our estimation of f will contain a constant.

To find an upper bound M for f within the disk |s — 2| < 3/2, we claim that we can take
M = C3(qq,)*/? for some constant Cs. To see this, we apply lemma 3.5. Since o > 1/2 in this
disk, we know that 1 + (¢7)'~7 < ¢'/2 (note that 7 is bounded in this disk) by lemma 3.5. So
L(1,x) < ¢"*logq, L(1,x1) < ¢/*log g, and L(1, xx1) < (gg1)/?1og(¢q). Multiply them
together, we get our claim for M.

Now we have checked all hypotheses for lemma 3.7. Applying this lemma (with 0 = f;, and
recall that we are considering the case where 5; > 1 — €/4, and that ¢; is fixed), we get

F1) 2 $(Cslaq) )0 > 2 (Colaq) ) 2 Cula™

for some constant Cy(€). This gives a lower bound for f(1).
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To get an upper bound for L(1, x1)L(1, xx1), by lemma 3.5 again, noticing that x # x1 S0 xx1
is non-principal, we know that

F(1) = L(1,x)L(L, x1)L(L, xx1) < L(1,x) log(qar)?
Combining these two inequalities, we get L(1, x) > C5(e)q > for some constant C5(¢). This is
true for all x # x;.

When x = xi, since L(1,x1) # 0, we can just pick a constant C'(€) such that L(1,x;) >
C(€)q; . This finishes our proof. O

Remark 3.9. Note that the constant in theorem 3.3 is effective, meaning that there is a way to
compute the constant by following the proof. However, the constant in Siegel’s theorem 3.4 is
not effective. This is because the constant came out when we concluded L(1,y) > ¢ *¢ from
Cy(e)g¢ < L(1, x)(log qq1)?, noticing that ¢, is fixed. However, ¢, is hypothetical and we have
no way to compute its value, so there’s no way to compute the constant in the theorem. There is
no way to compute the constant for y; itself either.

By theorem 3.1, the estimation of L(1, y) easily gives the following bound on exceptional zeros.

Corollary 3.10. ([1] p. 373, corollary 11.15) For any € > 0 there is a positive number C(€) such
that if x is a quadratic character modulo q and (3 is a real zero of L(s, x), then 5 < 1 — C(e)q™".

4. RARITY OF SIEGEL ZEROS

The upper bound in the last section has many applications, including a better error term in the
prime number theorem on arithmetic progressions. However, it would be even better if we can
prove that exceptional zeros do not exist at all, which is believed by many people. Although this
has not been proved yet, there are some partial results: if they exist, they occur very rarely. See the
citations below for proofs.

Theorem 4.1. ([1] p. 368, corollary 11.8) For each positive integer q, there is at most one Dirichlet
character x modulo q such that L(s, x) has an exceptional zero.

Theorem 4.2. ([1] p. 368, corollary 11.9) For each positive number A there is a ¢(A) > 0 such
that if {q;} is a strictly increasing sequence of natural numbers with the property that for each
qi, there is a primitive quadratic character x; (mod g;) for which L(s, x;) has a zero [3; satisfying
B > 1—c(A)/log g, then gip1 > gi'.

Remark 4.3. Note that 7 = 4 because exceptional zeros are necessarily real, so this expression is
basically the same as the one in theorem 2.1 defining exceptional zeros, except that we may have
a different constant. In this case, we know that the next possible modulus for y is at least a certain
power of the previous one, so the possible moduli are rare. Also, theorem 4.1 shows that each
modulus gives at most one character with exceptional zeros, so exceptional zeros are rare.
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