
Tangent planes to surfaces in space

For a graph of a function of two variables, we have two main approaches
to writing the equation of the tangent plane at a given point. It is impor-
tant to understand that these two ways agree. (There is also a third way,
summarized at the end, which also gives the same answer, of course).

Here is a table summarizing the situation:

equation of the surface point on it
A normal vector

to the tangent plane
graph of f(x, y): z = f(x, y) (a, b, f(a, b)) 〈−fx(a, b),−fy(a, b), 1〉

equation F (x, y, z) = 0 (a, b, c) with F (a, b, c) = 0
∇F |(a,b,c)

= 〈Fx(a, b, c), Fy(a, b, c), Fz(a, b, c)〉

The point is that the first line is a special case of the second line. If our
surface is the graph of f(x, y), then it has the equation z = f(x, y). Let
us make a new function: F (x, y, z) = z − f(x, y). Note: F (x, y, z) is a
function of 3 variables, while f(x, y) is a function of 2 variables!

Then our graph is also given by the equation F (x, y, z) = 0. The gradient
of F is exactly ∇F = 〈−fx,−fy, 1〉.

This leads to the same equation of the tangent plane that we get from
linearization: we learned earlier in this course that the tangent plane to the
graph of f(x, y) is given by:

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

A normal vector to this plane is: 〈−fx(a, b),−fy(a, b), 1〉, which (of course!)
agrees with the gradient ∇F .

The same equation using the cross product. We also discussed that
if you take the graph z = f(x, y) and consider its cross-sections with the
planes x = a and y = b, you get two curves, called the traces of f(x, y) on
these planes. The tangent vectors to these curves are: v1 = 〈1, 0, fx(a, b)〉
and v2 = 〈0, 1, fy(a, b)〉. Why so: consider for example the plane x = a.
The trace of f(x, y) on this plane is the graph of the function of y, let us
call it h(y) := f(a, y) that we obtain by plugging in x = a into f . The slope
of the tangent line to this graph at y = b is h′(b) = fy(a, b). The slope is
the ratio of the z-component to the y-component here; we can choose the
y-component to be 1. Then we get that our tangent vector should have the
z-component equal to fy(a, b). Its x-component is 0 because it lies in the
plane x = a (a vertical plane parallel to the y-axis; all vectors in it have zero
x-component). Thus we get the vector 〈0, 1, fy(a, b)〉.

Now the tangent plane to the graph z = f(x, y) at (a, b) must contain
both these tangent vectors v1 and v2, so we can use the usual method for
finding an equation of a plane containing a given point and parallel to two
given vectors. Its normal is n = v1 × v2. Computing the cross product, we
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get:

n = 〈1, 0, fx(a, b)〉 × 〈0, 1, fy(a, b)〉 = 〈−fx(a, b),−fy(a, b), 1〉.
This gives us the same equation of the plane as line 1 in the table above.


