This test has 4 questions on 6 pages, for a total of 30 points.

Duration: 45 minutes

- Write your name on every page.
- you need to show enough work to justify your answers.
- Continue on the back of the previous page if you run out of space.
- This is a closed-book examination. A one-sided cheat sheet is allowed. Electronic devices of any kind (including calculators, cell phones, etc.) are NOT allowed.

Full Name (including all middle names):	Solutions.		
	•		
Student-No:			
Signature:	·		
Section number/time of class:			
Name of the instructor:			

Question:	1	2	3	4	Total
Points:	9	5	6	10	30
Score:					

1. In a lab experiment, a small fish is placed at the point with coordinates (1, 2, 3) in a tank with salt water. The salinity of the water at the point with coordinates (x, y, z) is given by the formula

$$f(x, y, z) = 35(1 - e^{-2x-y-z})$$
 parts per thousand.

2 marks

(a) Find the gradient of f at the point (1, 2, 3).

$$f_x = 35.2e^{-2x-y-2}$$

 $f_y = 35e^{-2x-y-2}$
 $f_z = 35e^{-2x-y-2}$

$$f_x = 35.2e^{-2x-y-2}$$
 at $(1,2,3)$.
 $f_y = 35e^{-2x-y-2}$ $\boxed{\nabla f_{(1,2,3)}} = \langle 2,1,1 \rangle \cdot 35e^{-7}$
 $f_z = 35e^{-2x-y-2}$

2 marks

(b) Find the directional derivative of f(x, y, z) in the direction of the vector (3, 4, 5).

$$D_{\tilde{u}}l = \overline{D}_{1}^{1} \cdot \tilde{u} = 35e^{-7} \cdot \frac{1}{5\sqrt{2}} (2.3 + 4+5)$$

$$= \left[\frac{7e^{-7}}{\sqrt{2}} \cdot 15 \right]$$

2 marks

(c) In which direction should the fish swim from the point (1, 2, 3) to experience the fastest decrease of salinity?

3 marks

(d) Find the rate of change of salinity (in parts per thousand/sec) the fish will experience as it starts swimming from the point (1,2,3) with velocity $\bar{\mathbf{v}} = (3,4,5)$ (where the components are measured in cm/sec).

mponents are measured in cm/sec).

By chair rule,
$$\frac{df}{dt} = \nabla f \cdot \vec{v} = \frac{35e^{-7} \cdot 15}{= 525e^{-7}}$$

This page has been left blank for your workings and solutions.

3 marks

2. (a) Find a vector normal to the curve $x^3y - y^4x^2 = -14$ at the point (1, 2).

2 marks

(b) Find the equation of the tangent line to this curve at the point (1,2).

Let
$$f(x,y) = x^3y - y^4x^2 + 14$$
; $f_x = 3x^2y - 2y^4x$
 $\overline{O}f_1 = \langle -26, -31 \rangle$ $f_y = x^3 - 4y^3x^2$

and this vector is normal to the curve.

6):
$$[-26(x-i)-31(y-2)=0.]$$

6 marks

3. Find and classify the critical points of

$$f(x,y) = xy^2 - y - 4x + 6.$$

$$f_{x} = y^{2} - 4$$

 $f_{y} = 2xy - 1$

$$y = \pm 2$$

 $y = 2$: $4x - 1 = 0$
 $x = \frac{1}{4}$

$$y_2-2: -4x-1=0$$
 $x=-\frac{1}{4}$

$$f_{xx} = 0$$

$$f_{xy} = 2y$$

$$f_{yy} = 2x$$

Then both critical points are (saddles)

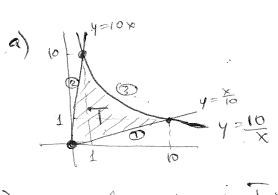
4. Let $f(x,y) = xy^2 - y - 4x + 6$ (the same function as in the previous problem). Let T be the (closed) region bounded by the lines y = 10x, $y = \frac{x}{10}$, and the hyperbola $y = \frac{10}{x}$.

2 marks

(a) Sketch T.

8 marks

(b) List all the points in T where absolute maximum or minimum of f could occur (do not evaluate the function at these points).



(b) 1. Critical points in T: from problem (3), the critical points are
$$(-\frac{1}{4},-2)$$
 and $(\frac{1}{4},2)$.

The point $(\frac{1}{4},2)$ lies in T

2. boundary: 0 the the
$$y = \frac{x}{10}$$
, $0 \le x \le 10$
 $\Re(x) = \Im(x, \frac{x}{10}) = x \cdot \frac{x^2}{100} - \frac{x}{10} - 4x + 6$

$$g(1/x) = \frac{x^3}{100} - \frac{41}{10}x + 6$$

$$g(1/x) = \frac{1}{100} \cdot 3x^2 - \frac{41}{10} \cdot g(1/x) = 0$$

$$\frac{3x^2}{100} - \frac{41}{10}x + 6$$

$$X = \pm \sqrt{\frac{410}{3}}$$

$$- \text{ outside [0,10]}$$

The line
$$y = 10x$$
, $0 \le x \le 1$
 $g_2(x) = f(10x, x) = 100x^3 - 10x - 4x + 6$

$$92(x) = 300 x^2 - 14$$
 $x = \pm \sqrt{\frac{14}{300}} = \frac{1}{10}\sqrt{\frac{14}{3}}$
get a 416 ical point $\left(\frac{1}{10}\sqrt{\frac{14}{3}}, \sqrt{\frac{14}{3}}\right)$

(3) The hyperbola
$$y = \frac{10}{x}$$
, $1 \le x \le 10$
 $f(x, \frac{10}{x}) = f(x, \frac{10}{x}) = x \cdot \frac{100}{x^2} - \frac{10}{x} - 4x + 6 = \frac{90}{x} - 4x + 6$