Nov. $3^{\text {rd }}$
Review

$$
m\left({ }_{n}\right) \longrightarrow \text { lin. } \operatorname{map}, A: F^{n} \rightarrow F^{m}
$$

Kernel of lin. map \longleftrightarrow null space of a matrix
\longleftrightarrow the space of solutions to a system of eqns with

$$
A x=\overline{0}
$$

Image \hookrightarrow the space spanned by the col. of A
Tools:
Row reduction, $\operatorname{det}(A)$
egg.
Suppose

$$
v_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad v_{2}=\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right) \quad v_{3}=\left(\begin{array}{l}
1 \\
0 \\
a
\end{array}\right)
$$

For what $a \in \mathbb{R}$ do these v NOT form a basis of \mathbb{R}^{3} ?
check for linear dependence

- put in rows of a matrix \rightarrow row reduction cols

Find a basis for the space spanned by them? space spanned by $V_{1} V_{2} V_{3}$ - when put into col.s. we get a map : $\mathbb{R}^{3} \rightarrow V$

$$
\left\{\begin{array}{l}
e_{1} \longmapsto v_{1} \\
e_{2} \longmapsto v_{2} \\
e_{3} \longmapsto v_{3}
\end{array}\right.
$$

Find a

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 0 & 1 \\
1 & 0 & a
\end{array}\right) \underset{R_{3}-R_{1}}{R_{2}-2 R_{1}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & -2 & -1 \\
0 & -1 & a-1
\end{array}\right) \stackrel{\underset{R_{2} R_{3}}{\text { swap }}\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 1-a \\
0 & -2 & -1
\end{array}\right) \xrightarrow{R_{3}+2 R_{2}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 1-a \\
0 & 0 & 1-2 a
\end{array}\right)}{1-2 a=0 \rightarrow a=\frac{1}{3}}
\end{aligned}
$$

alternatively, compute $\operatorname{det}(A)=0$, expand in last low

$$
\operatorname{det} A=1\left|\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right|+a\left|\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right|=1-2 a=0 \rightarrow a=\frac{1}{2}
$$

\longrightarrow Nor. $3^{\text {rd }}$
\rightarrow e.g.
Variation

$$
v_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad v_{2}=\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right) \quad v_{3}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

assume v_{1}, v_{2}, v_{3} are lin. dep
consider the plane given by $\quad \lambda v_{1}+\mu v_{2}+\nu v_{3}$
Find a basis for this plane $\rightarrow V_{1}, V_{2}$
an equation for this plane (cross product)

$$
s v_{1}+t v_{2} \rightarrow \text { in } A x+B y+C z+D=0
$$

New question

$$
v_{1}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right) \quad v_{2}=\left(\begin{array}{l}
2 \\
0 \\
0 \\
1
\end{array}\right) \quad v_{3}=\left(\begin{array}{l}
2 \\
0 \\
0 \\
1
\end{array}\right)
$$

Consider 3-space

$$
r v_{1}+s v_{2}+t v_{3} \longrightarrow a x_{1}+b x_{2}+c x_{3}+d x_{4}=0
$$

- a point in space looks like

$$
\begin{aligned}
& \left(\begin{array}{c}
r+2 s+2 t \\
t \\
r \\
c+t
\end{array}\right) \\
\rightarrow & a(r+2 s+2 t)+b t+c r+d(s+t)=0 \quad \forall r, s, t \\
& (a+c) r+(2 a+d) s+(2 a+b+d) t=0 \\
& \left\{\begin{array}{l}
a+c=0 \\
2 a+d=0 \\
2 a+b+d=0
\end{array}\right.
\end{aligned}
$$

- consider matrix : $\mathbb{R}^{3} \xrightarrow{A} \mathbb{R}^{4}$ (not surjective), $\operatorname{Im} A=$ parametric space

$$
\left(\begin{array}{lll}
1 & 2 & 2 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

* transpose
condition:

$$
\begin{aligned}
& b=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) \in \operatorname{Im} A \\
& \therefore\left(\begin{array}{lll|l}
1 & 2 & 2 & x_{1} \\
0 & 0 & 1 & x_{2} \\
1 & 0 & 0 & x_{3} \\
0 & 1 & 1 & x_{4}
\end{array}\right) \xrightarrow{R R} \cdots \quad \text { equation }=\text { row of } 0^{\prime} s
\end{aligned}
$$

\rightarrow Nov. $3^{\text {rd }}$
Question.
Suppose

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 0 & 2 \\
-1 & 2 & 7
\end{array}\right)
$$

find a basis for $\operatorname{Ker} A$

- consider row reducing (augmented matrix)

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 2 & 3 & 0 \\
-1 & 0 & 2 & 0 \\
-1 & 2 & 7 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 5 / 2 \\
0 & 0 & 0
\end{array}\right) \\
& \therefore\left\{\begin{array}{l}
x_{1}=2 t \\
x_{2}=-\frac{5}{2} t \\
x_{3}=t
\end{array}\right.
\end{aligned}
$$

