Math 223, Basics Quiz.

NAME

Short answer section: In Questions 1-3 no proof is required but if you want you can add a line of explanation.

1. Decide if the following statements are True/False.
(a) Any vector space can be made into a field.
(b) If F is a field, it can be thought of as a 1-dimensional vector space over itself.
(c) Any vector space over \mathbb{C} can be thought of as a vector space over \mathbb{R}.
(d) Any vector space over \mathbb{R} can be thought of as a vector space over \mathbb{C}.
(e) If U_{1}, U_{2} are linear subspaces of a vector space V, then $U_{1} \cap U_{2}$ is also a linear subspace.
(f) If U_{1}, U_{2} are linear subspaces of a vector space V, then $U_{1} \cup U_{2}$ is also a linear subspace.
(g) \mathbb{R} (with its usual operations of addition and multiplication) is an infinitedimensional vector space over \mathbb{Q}.
(h) \mathbb{Q} (with its usual operations of addition and multiplication) is an infinitedimensional vector space over the finite field \mathbb{F}_{p}.
(i) In any vector space, vectors v_{1}, v_{2} and $v_{3}=v_{1}-v_{2}$ are linearly dependent.
(j) In any vector space, any collection of vectors that contains $\overline{0}$ is linearly dependent.
(k) Any vector space over \mathbb{R} contains at least three linearly independent vectors.
2. Find $(3+2 i)^{-1}$ in \mathbb{C}.
3. Describe all the linear subspaces of \mathbb{R}^{3}.

Proof Question: proof required.

4. Let V be an n-dimensional vector space over a field F. Prove that a collection of n vectors $\left\{v_{1}, \ldots, v_{n}\right\}$ forms a basis of V if and only if it is linearly independent.
