Math 223, Basics Quiz.

NAME

Short answer section: In Questions 1-3 no proof is required but if you want you can add a line of explanation.

1. Decide if the following statements are True/False.

(a) Any vector space can be made into a field.
(b) If \(F \) is a field, it can be thought of as a 1-dimensional vector space over itself.
(c) Any vector space over \(\mathbb{C} \) can be thought of as a vector space over \(\mathbb{R} \).
(d) Any vector space over \(\mathbb{R} \) can be thought of as a vector space over \(\mathbb{C} \).
(e) If \(U_1, U_2 \) are linear subspaces of a vector space \(V \), then \(U_1 \cap U_2 \) is also a linear subspace.
(f) If \(U_1, U_2 \) are linear subspaces of a vector space \(V \), then \(U_1 \cup U_2 \) is also a linear subspace.
(g) \(\mathbb{R} \) (with its usual operations of addition and multiplication) is an infinite-dimensional vector space over \(\mathbb{Q} \).
(h) \(\mathbb{Q} \) (with its usual operations of addition and multiplication) is an infinite-dimensional vector space over the finite field \(\mathbb{F}_p \).
(i) In any vector space, vectors \(v_1, v_2 \) and \(v_3 = v_1 - v_2 \) are linearly dependent.
(j) In any vector space, any collection of vectors that contains \(\vec{0} \) is linearly dependent.
(k) Any vector space over \(\mathbb{R} \) contains at least three linearly independent vectors.

2. Find \((3 + 2i)^{-1}\) in \(\mathbb{C} \).

3. Describe all the linear subspaces of \(\mathbb{R}^3 \).

Proof Question: proof required.

4. Let \(V \) be an \(n \)-dimensional vector space over a field \(F \). Prove that a collection of \(n \) vectors \(\{v_1, \ldots, v_n\} \) forms a basis of \(V \) if and only if it is linearly independent.