Math 223, Basics Quiz.

NAME

Short answer section: In Questions 1-3 no proof is required but if you want you can add a line of explanation.

- 1. Decide if the following statements are True/False.
 - (a) Any vector space can be made into a field.
 - (b) If F is a field, it can be thought of as a 1-dimensional vector space over itself.
 - (c) Any vector space over \mathbb{C} can be thought of as a vector space over \mathbb{R} .
 - (d) Any vector space over \mathbb{R} can be thought of as a vector space over \mathbb{C} .
 - (e) If U_1 , U_2 are linear subspaces of a vector space V, then $U_1 \cap U_2$ is also a linear subspace.
 - (f) If U_1 , U_2 are linear subspaces of a vector space V, then $U_1 \cup U_2$ is also a linear subspace.
 - (g) \mathbb{R} (with its usual operations of addition and multiplication) is an infinitedimensional vector space over \mathbb{Q} .
 - (h) \mathbb{Q} (with its usual operations of addition and multiplication) is an infinitedimensional vector space over the finite field \mathbb{F}_p .
 - (i) In any vector space, vectors v_1, v_2 and $v_3 = v_1 v_2$ are linearly dependent.
 - (j) In any vector space, any collection of vectors that contains $\overline{0}$ is linearly dependent.
 - (k) Any vector space over \mathbb{R} contains at least three linearly independent vectors.
- 2. Find $(3+2i)^{-1}$ in \mathbb{C} .
- 3. Describe all the linear subspaces of \mathbb{R}^3 .

Proof Question: proof required.

4. Let V be an n-dimensional vector space over a field F. Prove that a collection of n vectors $\{v_1, \ldots, v_n\}$ forms a basis of V if and only if it is linearly independent.