
Extra credit assignment: harder problems.
You can hand in any number of these problems. Each one adds 0.5% to

your term mark.

1. Vandermonde Determinant. The goal of this problem is to compute
the determinant of the matrix A defined by aij = xji , for i, j = 0, . . . , n,
where x0, . . . , xn are variables (so it is an (n+ 1)× (n+ 1) -matrix).

We are going to prove that det(A) =
∏

0≤i<j≤n(xi − xj).

(a) Compute the 2× 2 and 3× 3 Vandermonde determinants.

Hint. We actually did this in lecture.

(b) Use column operations to make the first row have the form 1 0 . . . 0.
Record the resulting matrix.

(c) Now use induction to prove the result.

Remark. Many other proofs exist. One of my favourite ones uses the
properties of polynomials: fix the values of all the variables except for
x0, and think of x0 as a variable. Now if you plug any of the fixed values
xi for x0, the determinant clearly becomes 0. Then (by the properties
of polynomials that you will study in Math 323) the expression x0− xi
has to divide the determinant (viewed as a polynomial in the xi). Since
you could swap rows, this applies to every expression xi−xj. Now just
comparing the degrees and leading coefficients of these polynomials, we
obtain the result.

2. Operator calculus. Let A : V → V be a linear operator on a vector
space V over a field F (we are not assuming that V is finite-dimensional
in this problem). We define the powers An : V → V as the composition
of A with itself n times: An(v) = A(A(..(Av))..). Then given a polyno-
mial p(x) = anx

n + · · ·+a0, where ai ∈ F , we can define p(A) : V → V
to be the linear operator p(A) = anA

n + · · ·+ a0Id, where Id : V → V
is the identity. Suppose that v is an eigenvector for A with eigenvalue
λ, i.e, Av = λv, and v 6= 0.

(a) Prove that v is an eigenvector for An with eigenvalue λn.

(b) Prove that v is an eigenvalue for p(A) with eigenvalue p(λ).
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(c) Now let V be finite-dimensional. Fact: (You can use this fact
without proof). One can define matrix norm and the notion of
convergence for series of n × n-matrices. If a series of matrices∑∞

k=1Ak converges, you can work with it according to the same
rules as you would with absolutely convergent series of numbers,
e.g. multiply every term by scalar, add two such series, etc. For a
matrix A, define

eA := Id + A+
A2

2!
+ · · ·+ An

n!
+ . . . .

(Note that we just plugged in the matrix A into the usual Taylor
series for the exponential function). You can assume without proof
that the series converges.

Prove that if A is diagonalizable and A = CDC−1, where D is
the diagonal matrix with the eigenvalues λ1, . . . , λn of A on the
diagonal, then eA = CeDC−1, and eD is the diagonal matrix with
eλ1 , . . . , eλn on the diagonal.

(d) Now let A be a nilpotent matrix A =

0 1 0
0 0 1
0 0 0

. Compute eA.

Remark. In the same way, any function that is defined by a convergent
Taylor series can be applied easily to a diagonalizable matrix, and less
easily, to a general matrix.

3. Systems of linear differential equations. In this question, we
consider the simplest systems of differential equations with constant
coefficients. We typically denote an unknown function by x, and the
variable by t, so for example, the equation x′ = x has a general solution
x = cet, where c is a constant.

(a) Write the system of differential equations

x′1 = x1 + 4x2

x′2 = x1 + x2

in the matrix form.

(b) Suppose we have a system of differential equations written in the
form x′ = Ax, where x = (x1, . . . , xn) is an n-tuple of functions
of t, and A is a matrix of scalars. Suppose A diagonalizes (as in
the previous problem), and A = CDC−1, where D is a diagonal
matrix (with the eigenvalues of A on the diagonal). Prove that a
general solution to this system has the form x(t) = CeDtC−1B,
where we still think of x as an n-tuple of functions, the exponential
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is the matrix exponential as in the previous problem, and B is an
n-vector of constants.

Remark: This is not surprising, it basically says that the solution
has an expected form x = eAtB, analogously to the 1-dimensional
case.

(c) Using the previous part, solve the system from (a).

(d) Now suppose you have a higher order homogenous differential equa-
tion with constant coefficients, namely, an equation of the form

x(n) + an−1x
(n−1) + · · ·+ a1x

′ + a0x = 0.

Then it can be converted into a system of linear equations by the
following trick: let x1 = x, x2 = x′, x3 = x′′, ... xn = x(n−1) .
Rewrite the given equation as a linear system as above using this
notation, and write down the matrix for this system.

(e) Now recall the method of solving higher-order differential equa-
tions using the characteristic equation: take a dummy variable r,
and replace every derivative with the corresponding power of r,
obtaining the polynomial equation rn + an−1r

n−1 + · · · + a0 = 0
(this is called the characteristic equation of the given DE). Let
λ1, . . . , λn be the roots of the characteristic equation (assume they
are distinct). Prove that λi are the eigenvalues of the matrix you
obtained in the previous part of the problem. (In other words, the
characteristic equation is the characteristic polynomial of that ma-
trix). Derive the general form of the solution to this differential
equation.

Hint: remember from homework, we had a “Frobenius companion
matrix” for a given characteristic polynomial).

(f) Finally, an example of the situation when there is a repeated eigen-
value. Consider the system

x′1 = λx1 + x2

x′2 = λx2

Show that (teλt, eλt) is a solution. Derive a general form of the
solution.

Remark: the matrix of this system is a 2 × 2-Jordan block. We
will not go in-depth of this, but it shows concretely that the Jordan
form of the matrix of the system of the differential equations plays
a key role in determining how many associated vectors of the form
tkeλt to consider.

4. Linear recurrences. Let V be the complex vector space of all se-
quences x̄ = (x0, x1, . . . , xn, . . . ) with xi ∈ C (it is infinite-dimensional).
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We say that a sequence x̄ ∈ V satisfies a linear relation of degree
k if there exist coefficients c0, . . . , ck−1 ∈ C with c0 6= 0 such that
xn+k =

∑k−1
i=0 cixn+i for all n ≥ 0. The goal of this problem is to ex-

plore how to find all the sequences satisfying a given linear recurrence
relation of degree k. We define the characteristic polynomial of a linear
recurrence relation by

p(t) = tk −
k−1∑
i=0

cit
i.

(a) Write down in this form the linear relation defining the Fibonacci
sequence. What is its degree?

(b) Explain why we require c0 6= 0.

(c) Let L : V → V be the left shift operator : L(x0, x1, . . . ) = (x1, x2, . . . ).
Prove that a sequence x̄ ∈ V satisfies a linear recurrence relation if
and only if it lies in the kernel of the linear operator p(L) : V → V
(see the above problem for the meaning of p(L)).

(d) Prove that a sequence satisfying a linear recurrence of degree k
is determined by the k initial values x0, . . . , xk−1. Conclude that
ker p(L) has dimension k.

(e) Assuming that p(t) has k distinct roots λ1, . . . , λn, find a basis for
ker p(L).

(f) Let (F0, F1, . . . , Fk−1) be any numbers. Show that the system of k
equations

∑k−1
i=0 Aiλ

j
i = Fj (1 ≤ j ≤ k) in the unknowns Ai has a

unique solution.

(g) Show that for any recurrence relation of degree k, any initial k-tuple
of values extends to a unique solution of the recurrence relation.

(h) Find a non-recursive formula for the n-th Fibonacci number.

Remark. In fact, the problem on linear recurrences can be viewed as
a “discrete version” of the previous problem on differential equations.

5. Fourier series. In this problem we use the standard inner prod-
uct (f, g) =

∫ π
−π f(x)g(x)dx on the space of continuous functions on

(−π, π).

(a) Show that
{

1√
2π

}
∪
{

1√
π

cos(nx), 1√
π

sin(nx)
}∞
n=1

is an orthonormal

system there.

(b) Let a0, an, bn be the coefficient of f(x) = 2π |x| − x2 with respect
to 1√

2π
, 1√

π
cos(nx), 1√

π
sin(nx). Find these.
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(c) Show that for any x, the series 1√
2π
a0+

1√
π

∑∞
n=1 (an cos(nx) + bn sin(nx))

is absolutely convergent.

Facts: 1. The system above is complete, in that the only function
orthogonal to the span is the zero function. If we denote the partial
sums (SNf) (x) = a0

1√
2π

+ 1√
π

∑N
n=1 (an cos(nx) + bn sin(nx)), this

shows SNf −−−→
N→∞

f “on average” in the sense that ‖f − SNf‖2L2(−π,π) =∫ π
−π |f(x)− (SNf) (x)|2 dx −−−→

N→∞
0 (in fact, this holds for any f

such that
∫ +π

−π |f(x)|2 dx <∞).

2. For any x ∈ (−π, π) if the sequence of real numbers {(SNf) (x)}∞N=1

converges, and if f is continuous at x, then limit of the sequence is
f(x).

(d) Conclude that
∑∞

n=1
1
n2 = π2

6
, a discovery of Euler’s.

6. Applications of Cauchy-Schwarz inequality.

(a) Prove that if the series
∑∞

n=1 |an|2 and
∑∞

n=1 |bn|2 converge, then
the series

∑∞
n=1 anbn converges absolutely.

(b) If a1 + a2 + · · ·+ an = n show that a41 + · · ·+ a4n ≥ n.

Hint: Apply Cauchy-Schwarz twice.

7. Linear dual and the adjoint map. Recall that if V is a linear space
over R, its linear dual V ∗ is the space of linear functionals f : V → R.
We denote by 〈 , 〉 the map

〈 , 〉 : V ∗ × V → R, 〈f, v〉 = f(v).

(a) Prove that any inner product ( , ) on V defines an isomorphism
between V and V ∗ by the formula v 7→ (w 7→ (w, v)).

(b) Let V and W be linear spaces, and let A : V → W be a linear map.
Define the adjoint of A to be the map Aad : W ∗ → V ∗ defined by
the relation

〈Aad(f), v〉 = 〈f, A(v)〉 for all v ∈ V, f ∈ W ∗.

Prove that if V = W is a Euclidean space, then A is self-adjoint if
and only if Aad = A if we use the identification of V and V ∗ as in
Part (a).

8. Lorentz transformation. In the course of his researches on electro-
magnetism, Henri Poincaré wrote down the following map Lv : R2 → R2

which he called the “Lorentz transformation”:

Lv

(
x
t

)
= γv ·

(
x− vt
t− vx

)
.
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Here v is a real parameter such that |v| < 1 and γv is also a number,

defined by γv = (1− v2)−1/2.

(a) Suppose v = 0.6 so that γv = (1 − 0.62)−1/2 = 1.25. Calculate

Lv

(
3
2

)
, Lv

(
−1
1

)
and Lv

(
2
3

)
. Check that Lv

(
2
3

)
=

Lv

(
3
2

)
+ Lv

(
−1
1

)
.

(b) Show that Lv is a linear transformation and write down its matrix
(it should depend on v).

(c) (“Relativistic addition of velocities”) Let v, v′ ∈ (−1, 1) be two
parameters. Show that Lv ◦ Lv′ = Lu for u = v+v′

1+vv′
.

It is a fact that if v, v′ ∈ (−1, 1) then v+v′

1+vv′
∈ (−1, 1) as well.

Hint : Start by showing γvγv′ = γu
1+vv′

.

9. The quaternions and SO3(R). Let H be the 4-dimensional vector
space over R with the basis labelled 1, i, j, and k, so that an element
of H has the form a + bi + cj + dk. Define multiplication on H by the
rules:

1x = x for every x ∈ H.
i2 = j2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j.

These rules extend by distributivity to give multiplication for any two el-
ements of H. The real vector space H with this multiplication structure
is called the division algebra of the real quaternions. It was discovered
by William Rowan Hamilton in 1843.

(a) Define the quaternion norm by ‖a+bi+cj+dk‖2 = a2+b2+c2+d2.
Prove that ‖xy‖ = ‖x‖‖y‖ for any x, y ∈ H.

(b) Prove that for every x ∈ H there exists x−1 ∈ H such that xx−1 =
x−1x = 1.

(c) Recall that when we view C as a 2-dimensional real vector space,
multiplication by a complex number a+ bi in C corresponds to the
matrix

[
a −b
b a

]
. Write the 4 × 4 - matrix that corresponds to the

operation of multiplication by a+ bi + cj + dk on H.

(d) Recall that computation with rotations on R2 can be made easy if
we encode the rotations as multiplication by complex numbers of
absolute value 1. In the same spirit, it turns out that rotations in
R3 can be encoded using the quaternion multiplication. Namely,
let U = {q ∈ H : ‖q‖ = 1}. For every q ∈ U , we can define the
operation of conjugation by q on H by x 7→ qxq−1. Let W be the 3-
dimensional subspace of H consisting of the quaternions with zero
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real part, that is, of the form bi + cj + dk. Prove that for every
q, the conjugation by q is, in fact, a linear map from W to W .
Prove further that if we identify W with R3 with the standard dot
product, the conjugation by q is an isometry (i.e., corresponds to
an orthogonal matrix in the standard basis). Prove further that
the determinant of this matrix is 1.

Remark. In a fancy language, we just constructed a group ho-
momorphism from the group of unit quaternions U to the group
SO3(R). This homomorphism turns out to be surjective, and every
element of SO3(R) has exactly two preimages in U .

Acknowledgment: I am grateful to Professor Silberman for Problems
5 and 8.
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