Math 223, Homework 1: Sets and maps. Due Thursday September 14.

1. Let A, B, C be sets. Prove that $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

2. Let $f : A \rightarrow B$ be a function.
 (a) Prove that for A_1, A_2 subsets of A, $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$.
 Is the same statement true with \cup replaced with \cap?
 (b) Prove that $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$ for B_1, B_2 -subsets of B.
 Is the same statement true with \cup replaced with \cap?

3. Problem 1.1 from Jänisch

4. Problem 1.2 from Jänisch

5. Problem 1.3 from Jänisch

6. Let A and B be finite sets, and denote by B^A the set of all functions from A to B. Prove that $\#(B^A) = (\#B)^{\#A}$, where $\#A$ denotes the number of elements of A.

Practice problems, not for handing in.

7. Do the ”Test” for Chapter 1 (Section 1.3) in Jänisch.

8. Let $\mathcal{P}(A)$ be the set of all subsets of a set A (it is called the power set of A).
 (a) Let $A = \{\emptyset, 1, \{1\}\}$. List all the elements of $\mathcal{P}(A)$.
 (b) For a subset B of A, define the indicator function of B by
 \[
 \chi_B(x) := \begin{cases}
 1, & \text{if } x \in B \\
 0, & \text{if } x \notin B.
 \end{cases}

 Let $C = \{0, 1\}^A$ be the set of all functions from A to the set $\{0, 1\}$. Define a bijective function from $\mathcal{P}(A)$ to C.
 (c) Prove that for any set A, $\#\mathcal{P}(A) = 2^{\#A}$.