Math 223, Homework 1: Sets and maps. Due Thursday September 14.

1. Let A, B, C be sets. Prove that $A \times(B \cap C)=(A \times B) \cap(A \times C)$.
2. Let $f: A \rightarrow B$ be a function.
(a) Prove that for A_{1}, A_{2} subsets of $A, f\left(A_{1} \cup A_{2}\right)=f\left(A_{1}\right) \cup f\left(A_{2}\right)$.

Is the same statement true with \cup replaced with \cap ?
(b) Prove that $f^{-1}\left(B_{1} \cup B_{2}\right)=f^{-1}\left(B_{1}\right) \cup f^{-1}\left(B_{2}\right)$ for B_{1}, B_{2}-subsets of B. Is the same statement true with \cup replaced with \cap ?
3. Problem 1.1 from Jänisch
4. Problem 1.2 from Jänisch
5. Problem 1.3 from Jänisch
6. Let A and B be finite sets, and denote by B^{A} the set of all functions from A to B. Prove that $\#\left(B^{A}\right)=(\# B)^{(\# A)}$, where $\# A$ denotes the number of elements of A.

Practice problems, not for handing in.

7. Do the "Test" for Chapter 1 (Section 1.3) in Jänisch.
8. Let $\mathcal{P}(A)$ be the set of all subsets of a set A (it is called the power set of A).
(a) Let $A=\{\varnothing, 1,\{1\}\}$. List all the elements of $\mathcal{P}(A)$.
(b) For a subset B of A, define the indicator function of B by

$$
\chi_{B}(x):= \begin{cases}1, & \text { if } x \in B \\ 0, & \text { if } x \notin B\end{cases}
$$

Let $C=\{0,1\}^{A}$ be the set of all functions from A to the set $\{0,1\}$. Define a bijective function from $\mathcal{P}(A)$ to C.
(c) Prove that for any set $A, \# \mathcal{P}(A)=2^{\# A}$.

