Math 223, Homework 2: Vector spaces. Due Monday September 25.

1. Let V be a real vector space. Prove that:
(a) Prove that for $x \in V, 0 \cdot x=\overline{0}$.
(b) Prove that $\lambda x=\overline{0}$ if and only if $x=\overline{0}$ or $\lambda=0$.
(c) Prove that $(-1) x=-x$.
2. Problem 2.2 from Jänisch
3. Problem 2.3 from Jänisch
4. (a) Prove that all the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the differential equation

$$
f^{\prime \prime}(x)-f(x)=0
$$

form a vector space.
(b) Prove that the solutions to this differential equation satisfying $f(\pi)=0$ form its linear subspace.
(c) Now consider the differential equation $f^{\prime}(x)=f(x)^{2}$. Do its solutions form a linear subspace of the space of all differentiable functions?
5. (a) Let S be the set of all functions $f:[0,1] \rightarrow \mathbb{R}$ such that f is integrable and $\int_{0}^{1} f(x) d x=0$. Is the set S a linear subspace of the space of all functions?
(b) Let W be the set of integrable functions from $[0,1] \rightarrow \mathbb{R}$ defined by the condition $\int_{0}^{1} f(x) d x=1$. Is the set W a linear subspace of the space of all functions?
6. Find all the complex numbers z such that $z^{3}=1$.
7. Prove that the set $F:=\{a+b \sqrt{5} \mid a, b \in \mathbb{Q}\} \subset \mathbb{R}$ forms a field (with respect to the operations of addition and multiplication that it inherits from \mathbb{R}) (it is denoted by $\mathbb{Q}(\sqrt{5})$).

