Math 223, Homework 3: Linear dependence; bases.

1. Let V be a vector space over a field F. Prove that the a set of vectors $\left\{v_{1}, \ldots, v_{n}\right\}$ forms a basis of V if and only if the following condition holds:
for every $v \in V$, there exists unique collection of coefficients
$\lambda_{1}, \ldots, \lambda_{n} \in F$ such that

$$
v=\lambda_{1} v_{1}+\cdots+\lambda_{n} v_{n}
$$

2. Problem 3.1 from Jänisch
3. Problem 3.2 from Jänisch
4. If U_{1} and U_{2} are complementary subspaces of V (see Jänisch, Problem 3.2), then we write $V=U_{1} \oplus U_{2}$. Prove that $V=U_{1} \oplus U_{2}$ if and only if the following condition holds:
for every $v \in V$, there exist unique vectors $v_{1} \in U_{1}$ and $v_{2} \in U_{2}$ such that $v=v_{1}+v_{2}$.
5. Let V be an n-dimensional vector space over the field of complex numbers \mathbb{C}. Consider it as a real vector space (with the same operation of addition, and for scalar multiplication, only pay attention to the multiplication by the real scalars; this is called restricting the scalars). What is the dimension of V as a vector space over \mathbb{R} ?
(Hint: First, think of a 1-dimensional vector space over \mathbb{C}; then use the last problem of the supplementary problems below; or use Problem 1 above).

Supplementary problems, do not hand in.

1. From Curtis: Problems 4.1, 4.3 and 4.4 on pp. 32-33.
2. Using the notation of the Problem 4, prove that $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V if and only if

$$
V=L\left(v_{1}\right) \oplus \cdots \oplus L\left(v_{n}\right)
$$

