Homework 4: Linear transformations, Part 1.

1. Let V and W be vector spaces over a field F. Let $A : V \to W$ be a linear transformation that has an inverse function $B : W \to V$. Prove that B has to be a linear transformation.

2. Problem 4.1 from Jänisch

3. Think of \mathbb{C} as a 2-dimensional vector space V over \mathbb{R}, and let $A : V \to V$ be the linear transformation of V given by the multiplication by $1 + 2i$ in \mathbb{C}. Write the matrix of A with respect to the standard basis of V.

4. Let $V = \mathbb{R}^n$. Prove that every linear functional $f : V \to \mathbb{R}$ is of the form $f(x_1, \ldots, x_n) = a_1x_1 + \cdots + a_nx_n$ for some constants $a_1, \ldots, a_n \in \mathbb{R}$.

 (Hint: think of what it does to the standard basis vectors).

 Remark: This shows that, in fact, the space $V^* := \text{Hom}_\mathbb{R}(V, \mathbb{R})$ of all linear functionals on V is isomorphic to V (for every finite-dimensional space V). For infinite-dimensional spaces this is, generally, not true.

5. Consider the linear space V polynomials of degree not greater than n over a field $F \subset \mathbb{C}$ (that is, the space of all functions $f : F \to F$ of the form $f(x) = a_nx^n + \cdots + a_1x + a_0$, where $a_0, \ldots, a_n \in F$). Let $D : V \to V$ be the linear map $D(f) = f'$ (the derivative). Find the kernel and image of D.

6. Let V be an arbitrary vector space over a field F, and let $P : V \to V$ be a linear operator with the property that $P^2 = P$ (here by P^2 we mean P composed with itself). Such linear operators are called projectors.

 (a) Prove that $V = \text{ker}(P) \oplus \text{im}(P)$.

 (b) Make an example of such a linear operator on \mathbb{R}^3.
