Homework 4: Linear transformations, Part 1.

1. Let V and W be vector spaces over a field F. Let $A: V \rightarrow W$ be a linear transformation that has an inverse function $B: W \rightarrow V$. Prove that B has to be a linear transformation.
2. Problem 4.1 from Jänisch
3. Think of \mathbb{C} as a 2 -dimensional vector space V over \mathbb{R}, and let $A: V \rightarrow V$ be the linear transformation of V given by the multiplication by $1+2 i$ in \mathbb{C}. Write the matrix of A with respect to the standard basis of V.
4. Let $V=\mathbb{R}^{n}$. Prove that every linear functional $f: V \rightarrow \mathbb{R}$ is of the form $f\left(x_{1}, \ldots, x_{n}\right)=a_{1} x_{1}+\cdots+a_{n} x_{n}$ for some constants $a_{1}, \ldots, a_{n} \in \mathbb{R}$.
(Hint: think of what it does to the standard basis vectors).
Remark: This shows that, in fact, the space $V^{*}:=\operatorname{Hom}_{\mathbb{R}}(V, \mathbb{R})$ of all linear functionals on V is isomorphic to V (for every finite-dimensional space V). For infinite-dimensional spaces this is, generally, not true.
5. Consider the linear space V polynomials of degree not greater than n over a field $F \subset \mathbb{C}$ (that is, the space of all functions $f: F \rightarrow F$ of the form $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$, where $\left.a_{0}, \ldots, a_{n} \in F\right)$. Let $D: V \rightarrow V$ be the linear map $D(f)=f^{\prime}$ (the derivative). Find the kernel and image of D.
6. Let V be an arbitrary vector space over a field F, and let $P: V \rightarrow V$ be a linear operator with the property that $P^{2}=P$ (here by P^{2} we mean P composed with itself). Such linear operators are called projectors.
(a) Prove that $V=\operatorname{ker}(P) \oplus \operatorname{Im}(P)$.
(b) Make an example of such a linear operator on \mathbb{R}^{3}.
