Homework 4: Linear transformations, Part 1.

- 1. Let V and W be vector spaces over a field F. Let $A: V \to W$ be a linear transformation that has an inverse function $B: W \to V$. Prove that B has to be a linear transformation.
- 2. Problem 4.1 from Jänisch
- 3. Think of \mathbb{C} as a 2-dimensional vector space V over \mathbb{R} , and let $A: V \to V$ be the linear transformation of V given by the multiplication by 1+2i in \mathbb{C} . Write the matrix of A with respect to the standard basis of V.
- 4. Let $V = \mathbb{R}^n$. Prove that every linear functional $f: V \to \mathbb{R}$ is of the form $f(x_1, \ldots, x_n) = a_1 x_1 + \cdots + a_n x_n$ for some constants $a_1, \ldots, a_n \in \mathbb{R}$. (*Hint: think of what it does to the standard basis vectors*).

Remark: This shows that, in fact, the space $V^* := \text{Hom}_{\mathbb{R}}(V, \mathbb{R})$ of all linear functionals on V is isomorphic to V (for every finite-dimensional space V). For infinite-dimensional spaces this is, generally, not true.

- 5. Consider the linear space V polynomials of degree not greater than n over a field $F \subset \mathbb{C}$ (that is, the space of all functions $f: F \to F$ of the form $f(x) = a_n x^n + \cdots + a_1 x + a_0$, where $a_0, \ldots, a_n \in F$). Let $D: V \to V$ be the linear map D(f) = f' (the derivative). Find the kernel and image of D.
- 6. Let V be an arbitrary vector space over a field F, and let $P: V \to V$ be a linear operator with the property that $P^2 = P$ (here by P^2 we mean P composed with itself). Such linear operators are called *projectors*.
 - (a) Prove that $V = \ker(P) \oplus \operatorname{Im}(P)$.
 - (b) Make an example of such a linear operator on \mathbb{R}^3 .

1