Today: 1) isometries (orthogonal transformations) (8.3)

2) Eigenvalues and eigenvectors (9.1-9.2)

Recall: last time we defined isometries:
\[A : V \to W \text{ is an isometry if } \forall x, y \in V, \quad (Ax, Ay) = (x, y) \]

Today: 1) some properties of isometries.

1) "Isometry" means: preserves length

Prop: \(A \) is an isometry \(\iff \) \(\forall v \in V \)
\[\| Av \|_W = \| v \|_V \]

Proof: think of \((v+w, v+w) = \| v+w \|^2 \)
we can write it as
\[\| v+w \|^2 = (v+w, v+w) = (v, v) + 2(v, w) + (w, w) \]
\[= \| v \|^2 + 2(v, w) + \| w \|^2 \]

Is \(A \) preserves lengths, then \(\| A(v+w) \|^2 \)
\[= \| v+w \|^2 \]
\[= \| v \|^2 + 2(Av, Aw) + \| w \|^2 \]
and we get that \(2(Av, Aw) = 2(v, w) \).

Picture: \(v \rightarrow w \) if \(\| v \| \) and \(\| w \| \) are preserved, the length of the third side is preserved, the angle \(\alpha \) must be preserved, too.
Definition: A square matrix A is called **orthogonal** if $AA^t = I_d$

Proposition: Let V be a Euclidean space, let (v_1, \ldots, v_n) be an orthonormal basis in V. Then $A : V \to V$ is an isometry. (\square)

The matrix of A with respect to this basis is orthogonal.

Proof: It is part of the theorem below the example.

Example: Isometries in \mathbb{R}^2:

- **Reflections**
 - $R_{\text{horizontal}} : \mathbb{R}^2 \to \mathbb{R}^2$
 - $R_{\text{vertical}} : \mathbb{R}^2 \to \mathbb{R}^2$

- **Rotations**
 - $\text{Id} : \mathbb{R}^2 \to \mathbb{R}^2$
 - Reflections

- **Dilations**
 - $\text{Id} \times k : \mathbb{R}^2 \to \mathbb{R}^2$
 - $\text{Id} \times k : \mathbb{R}^2 \to \mathbb{R}^2$

- **Shear Transform**
 - See the book (or not)

Note: The above examples illustrate various types of isometries in two-dimensional space. Isometries preserve distances and angles, and they are fundamental in geometry and linear algebra.
We will be able to classify all \(\text{lin. transf.} \colon \mathbb{R}^2 \to \mathbb{R}^2 \)
(and even generally \(F^n \to F^n \)) without complete proof.

Prop: \(A \colon V \to V \)

\[A \text{ is orthogonal (i.e., an isometry)} \implies A \text{ is bijective} \]

\[\ker(A) = \{0\} \]

and \(\text{rk}(A) = \text{dim} V \)

Pf: \((Av, Av) = (v, v) \)

So \(Av = 0 \implies (Av, Av) = 0 \implies (v, v) = 0 \implies v = 0. \)

So \(\ker(A) = \{0\} \). Then \(\text{rk}(A) = \text{dim} V \).

Theorem: The following conditions are equivalent:

1. \(A \colon V \to V \) is an isometry
2. \(A \) takes an orthonormal basis to an orthonormal basis

Now let \(A \) also be the matrix of this linear transform with respect to an orthonormal basis.

4. \(AA^t = \text{Id} \)
5. \(A^t A = \text{Id} \)
6. The columns of \(A \) form an orthonormal basis
7. The rows of \(A \) form an orthonormal basis

Sketch of the proof: \((1) \implies (2) \) - by definition

\((2) \implies (1) \): Suppose \(\{e_1, \ldots, e_n\} \) is an orthonormal basis.
we want to prove: \((v, w) = (Av, Aw) \) for all \(v, w \in V \).

Let \(v = \sum_{i=1}^{n} a_i e_i \) and \(w = \sum_{i=1}^{n} b_i e_i \). (because the basis \(\{e_i\} \) is orthonormal)

Then \((v, w) = \sum_{i=1}^{n} a_i b_i \).

Thus \((Av, Aw) = \left(\sum_{i=1}^{n} a_i A(e_i), \sum_{i=1}^{n} b_i A(e_i) \right) \)

\[= \sum_{i,j=1}^{n} a_i b_j (A(e_i), A(e_j)) = \sum_{i=1}^{n} a_i b_i = (v, w) \]

by (2)

(2) \(= \) (6) - by definition of a matrix of a linear transform. (the columns of \(A \) are the images of the basis vectors)

(6) \(\iff \) (5) - columns of \(A \) are rows of \(A^t \).

Thus, \(A^t A = \left[\begin{array}{c} \text{ith column of } A \\ \text{jth column of } A \end{array} \right] \left[\begin{array}{c} A_t \\ J_A \\ \vdots \text{jth col. of } A \end{array} \right] \)

\[= \left[\delta_{ij} \right] = I_d \]

because columns of \(A \) are orthonormal and of length 1.
(5) (c) (4) by taking transposes
(7) (a) (6): A is orthogonal (5) A^t is orthogonal (by (4) and (5))
so we can apply our statement to A^t,
and get that A^t has orthogonal columns
$\therefore A$ is an isometry.
But the columns of A^t are the rows of A.

Corollary (1) If A is an orthogonal matrix,
then $\det(A) = \pm 1$.

Note: If $\det(A) = 1$, A is called special orthogonal.

Notation
- $\mathbf{On}(\mathbb{R}) = \{ A \in M_n(\mathbb{R}) : A \text{ is orthogonal} \}$
- the group of orthogonal matrices
- $\mathbf{SO}_n(\mathbb{R})$ - the group of special orthogonal matrices.
(see § 8.4. - optional reading)

(2) A is orthogonal $\iff A^{-1} = A^t$
(This is because $AA^t = \text{Id}$)

Note: This means an interesting thing about minors of an orthogonal matrix:
remember the formula for A^{-1} using the adjugate
Next topic: eigenvalues, eigenvectors

"Spectral Theory" - the study of eigenvalues/eigenvectors.

Applications: everywhere!

Differential equations, quantum mechanics, signal processing, Fourier transform, computer science, AI, …
Suppose $A: V \rightarrow V$ - given lin. op. (from V to itself)

Def. A vector $v \in V$ is called an **eigenvector** for A with **eigenvalue** $\lambda \in F$ if $Av = \lambda v$.

We will prove next class that they exist if $F = \mathbb{C}$. Over arbitrary fields, a given lin. op. might not have eigenvalues in that field.

Our goal: Figure out how to find them when they exist.
And use them.

Example: for $A = \lambda \cdot \text{Id}$, every vector $v \in V$ is an eigenvector with eigenvalue λ.

Main observation: if $v \in V$ is an eigenvector for A with eigenvalue λ, then $v \in \ker (A - \lambda \text{Id})$

indeed, if $Av = \lambda v$, then $Av - \lambda v = 0$,

$$ (A - \lambda \text{Id})v $$

Then $\det (A - \lambda \text{Id}) = 0$

I write the matrix for $A - \lambda \text{Id}$ in any basis
(det does not depend on the choice of basis.)

Then the way to find eigenvalues is solve the equation $\det (A - \lambda \text{Id}) = 0$ for λ.

Example Let $A = \begin{bmatrix} 1 & 4 \\ 1 & 1 \end{bmatrix}$ - mean, the lin. op. given by this matrix in the standard basis of \mathbb{C}^2.

Let's find its eigenvalues and eigenvectors.
The matrix of $A - \lambda I$ (w.r.t. the standard basis)

$$
\begin{bmatrix}
1 - \lambda & 4 \\
1 & 1 - \lambda
\end{bmatrix}
$$

$$
\det \begin{bmatrix}
1 - \lambda & 4 \\
1 & 1 - \lambda
\end{bmatrix} = (1 - \lambda)^2 - 4 = 1 - 2\lambda + \lambda^2 - 4
= \lambda^2 - 2\lambda - 3.
$$

We want: the values of λ for which it is 0!

$$
\lambda_{1,2} = \frac{2 \pm \sqrt{4 + 12}}{2} = \frac{2 \pm 4}{2} = -1 \text{ or } 3.
$$

(This is why we are working over C; over \mathbb{R}, we don't have to have roots!)

This one has real roots.

How to find eigenvectors:

Now that we know the eigenvalues, we can make a system of equations:

for λ_1: $Av = \lambda_1 v$, or better: $(A - \lambda I)v = 0$.

\[-1: \begin{bmatrix}
1 - (-1) & 4 \\
1 & 1 - (-1)
\end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]

Solve as usual: \[
\begin{bmatrix}
2 & 4 \\
1 & 2
\end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]

It should have infinitely many solutions! (If it doesn't, your "eigenvalue" is wrong).

$x_1 + 2x_2 = 0$, so $x_1 = -2x_2$.\]
Pick a vector that spans $\text{ker} \ (A - \lambda I_d)$.
Here, $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$ works.

(Note: if v is an eigenvector for A with eigenvalue λ, then $a \cdot v$ with $a \neq 0$ also satisfies this.)

For λ_2: \[
\begin{bmatrix}
1 & -3 \\
1 & 1-3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
= \begin{bmatrix}
0 \\
0
\end{bmatrix}
\]

$x_1 - 2x_2 = 0 \quad x_1 = 2x_2$

get: $\begin{bmatrix} 2 \\ 1 \end{bmatrix} = v_2$.

So: for our A, $\lambda_1 = -1$, eigenvector is $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$; $\lambda_2 = 3$, eigenvector is $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

The matrix for A in the basis $\{v_1, v_2\}$ is $\begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix}$ - diagonal with eigenvalues on the diagonal.

So our A has an eigenbasis.

Next time: in general.
Recall: \(A = \begin{bmatrix} 1 & 4 \\ 1 & 1 \end{bmatrix} \). We figured out:
\[\lambda_1 = -1 \quad \text{eigenvalue} \]
\[\lambda_2 = 3 \quad \text{eigenvalue} \]
with eigenvectors \(v_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \)
determined \(v_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \)
up to a scalar.

What are eigenvectors geometrically?

We had \(A : \mathbb{R}^2 \to \mathbb{R}^2 \)

in the \((v_1, v_2) \) basis, \(A \) has matrix:
\[\begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix} \]
eigenvalues on the diagonal.

How do we know \(A \)? — We could try to say what it does.

or we give it by a matrix —
the standard basis

(this is what we did).

Does \(A \) stabilize any line?

The line doesn’t move.

Any such line is a line spanned by an eigenvector:

stabilizing a line spanned by \(v \) means:
\[A v \parallel v \quad \text{(i)} \]
\[A v = \lambda v \quad \text{for some scalar } \lambda. \quad \text{(ii)} \]

our def. of “eigenvector”.

The point is: eigenvectors (if you can find them) are a more natural basis for our linear op.