Determinants

Example 2x2-determinant.

\[A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \] - a 2x2-matrix

\[\det A = ad - bc \] - a scalar

The determinant formula for a 2x2-matrix is:

\[\det A = ad - bc \]

det is a map: square matrices over \(F \) \[\mathbb{F} \]

Let us talk about properties of this map for 2x2-matrices.

1) If you scale any row by \(\lambda \), \(\det(A) \) gets multiplied by \(\lambda \):

\[\begin{bmatrix} \lambda a & \lambda b \\ c & d \end{bmatrix} \]

\[\det = \lambda \det A \]

2) If we fix \(c, d \), replace \(a, b \) with \(a = a_1 + a_2 \)

\[\begin{bmatrix} a_1 + a_2 & b_1 + b_2 \\ c & d \end{bmatrix} \]

\[\det = \det \left(a_1 + a_2 \right) d - \left(b_1 + b_2 \right) c \]

\[= ad - bc + a_2 d - b_2 c \]

\[= \det \begin{bmatrix} a_1 & b_1 \\ c & d \end{bmatrix} + \det \begin{bmatrix} a_2 & b_2 \\ c & d \end{bmatrix} \]

(1) + (2) mean: "linear in each row" from last time.

3) \(\det \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0 \) but also \(\det(A) = 0 \) \(\Rightarrow \) \(\text{rk}(A) \leq 2 \)

\(\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = 0 \) \(\Rightarrow \) \(ad - bc = 0 \) \(\Rightarrow \) \(ad = bc \)

suppose, say, \(c \neq 0 \), \(d \neq 0 \)

Then \(\frac{a}{c} = \frac{b}{d} \)

Then rows are proportional. \(\Rightarrow \) \(\text{rk}(A) = 1 \)
If \(c = 0 \) and \(d = 0 \), we have a row of 0's, so \(\text{rk}(A) \leq 1 \).

If \(c = 0 \) and \(d \neq 0 \), then \(ad = 0 \) so \(a = 0 \). Then we have \(\begin{bmatrix} 0 & b \\ 0 & d \end{bmatrix} \) - a column of 0's, so \(\text{rk}(A) \leq 1 \).

\[\leq : \text{a reverse this argument.} \]

So:

\[\text{det}(A) \neq 0 \iff \text{rk}(A) = 2 \iff A^{-1} \text{ exists!} \]

4) \(\text{det}(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}) = 1 \).

Now we can axiomatize this: say that we want a map \(D : n \times n \text{-matrices} \to F \) over \(F \) satisfying:

(1) linear in each row (our (1) and (2))
(2) \(D(A) \neq 0 \iff \text{rk}(A) = n \)
(3) \(D(\text{Id}) = 1 \).

Together, these properties guarantee that there is at most one such map \(D \).
In the lecture, we talked about replacing Axiom (1) with an easier-to-understand collection of requirements about how the map \(D \) should behave under the elementary row operations:

1) If we replace row \(R_i \) with a combination of \(R_i \) and \(R_j \):

\[
(R_i, R_j) \mapsto (R_i + cR_j, R_j)
\]

then \(D(A) \) stays the same.

2) If we multiply a row by a constant (scalar), \(D(A) \) multiplies by the same scalar:

\[
D \left(\begin{array}{c}
\begin{array}{ccc}
\alpha_{11} & \cdots & \alpha_{1n} \\
\vdots & \ddots & \vdots \\
\alpha_{m1} & \cdots & \alpha_{mn}
\end{array}
\end{array} \right) = \lambda D \left(\begin{array}{c}
\begin{array}{ccc}
\alpha_{11} & \cdots & \alpha_{1n} \\
\vdots & \ddots & \vdots \\
\alpha_{m1} & \cdots & \alpha_{mn}
\end{array}
\end{array} \right)
\]

3) If we swap two rows, \(D \) changes sign.

It is proved in the book that their set of axioms implies these.

The converse is also true; you are not required to prove it (but you can if you want).
We skip the proof that \(\dim(\text{space of maps satisfying } (1) \text{ and } (2)) = 6 \leq 1 \). It is in 6.1 (recommended reading).

We will build the det map. (which shows it exists!)

Start with \(1 \times 1 \)-matrices:

1) \((1 \times 1 \text{- matrices give linear maps } F \rightarrow F) \)

 a scalar: \(\begin{bmatrix} a \end{bmatrix} \in 1 \times 1 \text{- matrix}, \)

 \[\det \begin{bmatrix} a \end{bmatrix} = a. \]

 \[\det \begin{bmatrix} a \end{bmatrix} = 0 \iff a = 0. \]

2) \(2 \times 2 \text{- matrices: we just did it.} \)

 \[\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = a \cdot \det \begin{bmatrix} d \end{bmatrix} - b \cdot \det \begin{bmatrix} c \end{bmatrix} = ad - bc \]

 take an entry in the first row, and remove the column containing it.

3) \(3 \times 3 \text{- matrices} \)

 \[\det \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = a_{11} \det \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} - a_{12} \det \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}
 + a_{13} \det \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \]

blocks alternate!
\[
= a_{11} (a_{22} a_{33} - a_{23} a_{32}) - a_{12} (a_{21} a_{33} - a_{23} a_{31}) \\
+ a_{13} (a_{21} a_{32} - a_{22} a_{31})
\]

Check that it agrees with:

\[
= a_{11} a_{22} a_{33} + a_{21} a_{32} a_{13} + a_{12} a_{23} a_{31} \\
- a_{13} a_{22} a_{31} - a_{11} a_{23} a_{32} \\
- a_{21} a_{12} a_{33}
\]

Each term has exactly one entry from each row and each column!

(This leads to an alternate description of \(\text{det} \) map, signs are hard to describe.)

\[\text{or - ?} \]

See below

For \(n \times n \):

\[
\text{det} \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = a_{11} \text{det } A_{11} \\
\text{minor of } a_{11}:
\text{obtained by throwing away row and column containing } a_{11}
\]

\[-a_{12} A_{12} + a_{13} A_{13} + \cdots + a_{1n} A_{1n} \leftrightarrow \text{ cofactor expansion in the first row.} \]
Key point:

- It doesn't change with elem. row/col ops of the form $R_i \rightarrow R_i + \lambda R_j$

- When you multiply a row or column by a scalar, det multiplies by that scalar.

- When you swap two rows or columns, det changes sign.

("easy" to derive from the recursive def'n.)

easy from the axioms.

So: we can do row ops to get a simpler matrix and get det that way.

Read: 6.1, 6.2