Recall determinants (6.1, 6.2)

- for a square matrix A, $\det(A)$ is a scalar.

- defined using axioms (as a map from matrices to F-scalars, it is linear in each row, $\det(A) = 0 \iff \text{rk}(A) < n$
 for an $n \times n$ matrix A
 $\det(\text{Id}) = 1$)

Today: want to get comfortable with computing det.

So far, we have:

1) 1×1 - matrix \([a] \) $\det a.$

2) 2×2 - matrix: $\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc.$

\(\begin{vmatrix} a & b \\ c & d \end{vmatrix} \) means, $\det.$

Proof of the formula for area

- if you scale any side, area should multiply by the (abs. value of) the scale

- Area $= 0 \implies$ vectors are linearly dependent
 $\iff \text{rk} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \leq 1$
Area \((\square) = 1\).

Then: Area of \(\triangle (a,b,c,d)\) satisfies all the properties of \(\det\). Then it equals \(\det(A)\)!

3) For \(3 \times 3\) matrices:
 we have 3 ways of computing \(\det\):

1) Expansion by a row or column. \(\text{works for any size matrix}\)

\[
\begin{vmatrix}
 a_1 & a_2 & a_3 \\
 b_1 & b_2 & b_3 \\
 c_1 & c_2 & c_3 \\
\end{vmatrix} = +a_1 \begin{vmatrix}
 b_2 & b_3 \\
 c_2 & c_3 \\
\end{vmatrix} - a_2 \begin{vmatrix}
 b_1 & b_3 \\
 c_1 & c_3 \\
\end{vmatrix} + a_3 \begin{vmatrix}
 b_1 & b_2 \\
 c_1 & c_2 \\
\end{vmatrix}
\]

\(\text{signs}\)

2) Elementary row operations: \(\text{works for any size matrix}\)

- Interchange 2 rows \(\Rightarrow\) \(\det\) gets multiplied by \(-1\).
- Scale a row by a scalar \(\Rightarrow\) \(\det\) gets multiplied by that scalar
- \(R_i + cR_j\) (leave the \(j^{th}\) row unchanged, replace the \(i^{th}\) row with this sum)

These do not change \(\det\)!

- Once the matrix is upper-triangular,
 \[
 \begin{pmatrix}
 * & * & * \\
 0 & * & * \\
 0 & 0 & * \\
 \end{pmatrix}
 \]
 \(\det\) is easy: it is the product of the diagonal entries.
Example: \[
\begin{vmatrix}
1 & a & a^2 \\
1 & b & b^2 \\
1 & c & c^2 \\
\end{vmatrix}
\xrightarrow{R_2 - R_1}
\begin{vmatrix}
1 & a & a^2 \\
0 & b-a & b^2-a^2 \\
0 & c-a & c^2-a^2 \\
\end{vmatrix}
\]
(assume \(a, b, c\) are distinct, \(a, b, c \in \mathbb{F}\))

\[
\begin{align*}
R_3 & \xrightarrow{\frac{c-a}{b-a} \cdot R_2} \\
& \begin{vmatrix}
1 & a & a^2 \\
0 & b-a & b^2-a^2 \\
0 & 0 & c^2-a^2 - \frac{b^2-a^2}{b-a} \cdot (c-a) \\
\end{vmatrix}
\end{align*}
\]

upper-triangular

assuming \(b-a \neq 0\)

\[
= 1 \cdot (b-a) \cdot \left(c^2-a^2 - \frac{b^2-a^2}{b-a} \cdot (c-a) \right)
\]

\[
= (b-a) \cdot (c-a) \cdot (c-b)
\]

3) Just for 3x3: \[
\begin{vmatrix}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3 \\
\end{vmatrix}
= a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2
- a_3b_2c_1
- b_1a_2c_3
- c_2b_3a_1
\]

can be generalized to any rank: combination of products one element from each row and each column with "tricky" \(\pm\) signs. Leibniz formula.

(handy for 3x3)
About the sign in Leibniz formula:

Each monomial \[a_{j_1} a_{j_2} \ldots a_{j_n} \]

consists of a product of \(n \) elements of \(A \), exactly one from each row and each column.

We arrange them so that the row indices are in order, as above. Then the column indices give a permutation \(j_1, \ldots, j_n \) of the numbers \(\{1, \ldots, n\} \).

Example: in the 3x3 matrix

\[
\begin{pmatrix}
 a_{13} & a_{12} & a_{11} \\
 a_{23} & a_{22} & a_{21} \\
 a_{33} & a_{32} & a_{31}
\end{pmatrix}
\]

the monomial corresponding to the anti-diagonal \(a_{31} a_{22} a_{13} \) corresponds to the permutation \((3, 2, 1) \).

Then we count the number of pairs in this permutation that are “out of order”:

\((3, 2, 1) \) has \((3, 1), (2, 1), (3, 2) \) of them.

The monomial comes with the sign \((-1)\) to the power of the number of out of order pairs.

In this example, it gives us \((-1)^3 = -1\).

\[\det(A) \text{ is the sum of all such monomials with these signs.} \]
4) Geometric way:
\[
\begin{vmatrix}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{vmatrix} = \text{vol} \left(\mathbf{a} \times \mathbf{b} \times \mathbf{c} \right)
\]

Build a parallelepiped spanned by the rows of the matrix.

Aside
This tells us how to define volume in \(\mathbb{R}^n\):

\[
\text{Vol} \left(\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{pmatrix} \right) = \left| \text{matrix of components of the vectors spanning it} \right|
\]

(and this is what gives rise to change of variable in integral formula in multi-variable calculus)
Aside: How this is used in calculus

Change of variables formula in a multi-variable integral.

1) \(n = 1 \):

\[\int h(y) \, dy = \int h(f(x)) \cdot f'(x) \, dx \]

\(y = f(x) \) "\(dy = f'(x) \, dx \)"

What happens here?

- \(f(x) \) scales every interval by \(c \), so if \(y = cx \), then \(dy = c \, dx \).

- Now, we approximate \(f \) by a linear function \(f'(x) \) at every point \(x \).

This is why if we set \(y = f(x) \), around every point \(x \), the interval of small length \(\Delta x \) becomes approximately an interval of length \(f'(x) \Delta x \).

- Now, in several variables:

Suppose you have a change of variables

in \(\mathbb{R}^2 \) :

\[
\begin{align*}
\theta &= f_1(x, y) \\
\sigma &= f_2(x, y)
\end{align*}
\]
To figure out what happens to area, you need to figure out approximately how big is the image at a small square around a given point \((x, y)\):

We approximate \(f\) by a linear operator around the point \((x, y)\). You know how to do it:

The matrix of this linear operator is the Jacobian matrix of \(f\):

\[
\begin{pmatrix}
\frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\
\frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2}
\end{pmatrix}
\]
Then the image of the little square around \((x, y)\) is approximately the parallelogram you get by applying this matrix to your little square; that is, the determinant of the Jacobian matrix.

We set the change of variables formula:

\[
\iint h(s,t) \, ds \, dt = \iint g(x(t), y(t)) \left| \det \left(\begin{array}{cc} \frac{\partial x}{\partial s} & \frac{\partial x}{\partial t} \\ \frac{\partial y}{\partial s} & \frac{\partial y}{\partial t} \end{array} \right) \right| \, dx \, dy
\]

This holds for any number of variables (with an nxn-Jacobian matrix).

Example Polar coordinates:

\[
x = r \cos \theta \\
y = r \sin \theta
\]

Jacobian:

\[
\left(\begin{array}{cc} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{array} \right) = \left(\begin{array}{cc} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{array} \right)
\]
\[\text{det (Jacobian)} = r \cos^2 \theta + r \sin^2 \theta = r \]

This is your \(r \) from the polar change.

If you don’t believe this works, compute the Jacobian for the spherical coords in \(\mathbb{R}^3 \):

\[
\begin{align*}
 x &= r \sin \phi \cos \theta \\
 y &= r \sin \phi \sin \theta \\
 z &= r \cos \phi.
\end{align*}
\]