Linear Transformations

Def: \(V, W \) - vector spaces over \(F \).

\(f: V \to W \) is called a **linear transformation**

if: \(f(x+y) = f(x) + f(y) \) and \(f(\lambda \cdot x) = \lambda \cdot f(x) \) for \(\lambda \in F \).

(another word: **homomorphism** of vector spaces)

The set of all linear transformations from \(V \) to \(W \)

is denoted by \(\text{Hom}(V, W) \)

And \(\text{Hom}(V, W) \) is a vector space over \(F \)

(will put in homework)

Examples

1. \(\mathbb{R}^2 \to \mathbb{R}^2 \)

\[f(x, y) = (2x + 3y, x - y) \]

\[f: \mathbb{R}^2 \to \mathbb{R}^2 \]

\((1,0) \to (2,1,1) \)

\((0,1) \to (2,0+3,1, 0-1) \)

\(= (3, -1) \)

It is a lin. transf. (exer: check it!)

2. \(\mathbb{R}^2 \to \mathbb{R}^2 \)

\[f(x, y) = (3x, 2y) \]

linear transformation

\(\mathbb{R}^2 \to \mathbb{R}^2 \)
b) \(f: \mathbb{R} \rightarrow \mathbb{R} \)
\(f(x) = x^2 \)
Not a linear transfor.
\(\text{e.g., because } (x+y)^2 \neq x^2+y^2 \)
\((\lambda x)^2 \neq \lambda \cdot x^2 \)

same for \(f(x) = \frac{1}{x} \)
\(\Rightarrow f(x) = e^x \) \(f(x) = \sin(x) \)
NOT linear.

c) Trick question:
\(f: \mathbb{R} \rightarrow \mathbb{R} \) is a linear function: \(f(x) = ax + b \) where \(a, b \in \mathbb{R} \).

Then \(f \) is a linear transformation if and only if \(b = 0 \).

\(\text{PF: } \Rightarrow \) if a lin. transfor., \(\bullet \) want to prove \(b = 0 \)

\(\bullet \) apply it to \(\lambda \cdot x \):
Need to have:
\(a \cdot (\lambda x) + b = \lambda \cdot (ax + b) \) for \(\lambda \in \mathbb{R} \).

\(\lambda \cdot ax + b = \lambda \cdot ax + \lambda b \)
so \((\lambda - 1)b = 0 \) for all \(\lambda \in \mathbb{R} \)
so \(b = 0 \).

\(\Leftarrow \) \(f(x) = a \cdot x \) → easy to check it is a lin. transfor.
• For more examples of linear transformations from \mathbb{R}^2 to \mathbb{R}^2, see §4.6 in Jänisch.
(for the geometric point of view). We will also do a computer project about it.

Main points: a linear transformations have to take lines to lines (or points)
(and in higher dimensions, planes to lines or points, etc.)

• The set of fixed points of a linear transfor-
 mation must to be a linear subspace (exer).

A very important example: **Projector**:

![Diagram showing two lines and a point](image)

Let L_1, L_2 be lines in \mathbb{R}^2

passing through $(0,0)$.

The projector onto L_1 along L_2

can be defined geometrically:

for $x \in \mathbb{R}^2$, take a line

through x parallel to L_2

and define $P(x)$ to be the intersection

point of that line with L_1.

(Thus, the whole line L_2 maps to $(0,0)$.)

The image of this map is L_1, and the preimage of any point on L_1 is a

line parallel to L_2.

More examples: Let V be the space of all functions $f: \mathbb{R} \to \mathbb{R}$.

Any point $a \in \mathbb{R}$ defines a linear transformation $A_a: V \to \mathbb{R}$ — "point evaluator": $f \mapsto f(a)$

Def: Let V be a vector space over a field F. A linear transformation $f: V \to F$ is called a linear functional.

The example above is an example of a linear functional on the space of all functions.

Example: Let $a_1, \ldots, a_n \in \mathbb{R}$.

Consider the map $A: \mathbb{R}^n \to \mathbb{R}$ defined by:

$$ (x_1, \ldots, x_n) \mapsto a_1x_1 + \cdots + a_n x_n. $$

It is easy to remember the formula if we write it this way:

$$(a_1, \ldots, a_n) \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = a_1 x_1 + \cdots + a_n x_n.$$

We will later prove that all linear functionals from \mathbb{R}^n to \mathbb{R} are of this form.

Def: $A: V \to W$ is called an isomorphism of vector spaces if it has an inverse map $B: W \to V$ s.t. $A \circ B = \text{Id}_W$, $B \circ A = \text{Id}_V$.

(Homework: prove that such a B has to be linear.)
Example: we can use the above idea of how to write a linear functional on \mathbb{R}^n to make a linear map from \mathbb{R}^n to \mathbb{R}^m:

consider a matrix

$$
\begin{pmatrix}
 a_{11} & \cdots & a_{1m} \\
 \vdots & \ddots & \vdots \\
 a_{n1} & \cdots & a_{nm}
\end{pmatrix}
$$

and define, for $x = (x_1, \ldots, x_n)$

$$
A x := \begin{pmatrix}
 a_{11} & \cdots & a_{1m} \\
 \vdots & \ddots & \vdots \\
 a_{n1} & \cdots & a_{nm}
\end{pmatrix} \begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix}
$$

$$
\det \begin{pmatrix}
 a_{11} x_1 + a_{12} x_2 + \cdots + a_{1m} x_m \\
 \vdots \\
 a_{n1} x_1 + \cdots + a_{nm} x_m
\end{pmatrix}
$$

a vector with m components, an element of \mathbb{R}^m.

It turns out that every linear transform from \mathbb{R}^n to \mathbb{R}^m can be represented this way (will explain next class).