Topics to be covered in the midterm on October 20.

- (1) Congruences of integers; the greatest common divisor; Euclid's algorithm; the theorem that states that if (a,b) = d, then there exist integers m, n, such that am + bn = d, and some of its consequences (such as, if (a,b) = 1, and $a \mid c$, $b \mid c$, then $ab \mid c$).
- (2) Chinese remainder theorem.
- (3) Definitions of a group and subgroup. Composition tables. The theorem that H is a subgroup iff $xy^{-1} \in H$ for all $x, y \in H$. The fact that, for a fixed element $g \in G$, the map $f_g : G \to G$ defined by $f_g(x) = g \circ x$ is bijective.
- (4) You should be comfortable with the following examples of groups:
 - (a) \mathbb{Z}
 - (b) $\mathbb{Z}/n\mathbb{Z}$;
 - (c) $(\mathbb{Z}/n\mathbb{Z})^*$;
 - (d) $(\mathbb{R}, +)$ (the group of real numbers with addition as the group operation).
 - (e) \mathbb{R}^* (the group of nonzero real numbers with multiplication as the group operation).
 - (f) Klein group (it is the group of order four that is not isomorphic to $\mathbb{Z}/4\mathbb{Z}$. We have defined it by writing down its composition table, but now we know that it is actually isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$).
 - (g) The group D_3 of isometries of the triangle (which is isomorphic to the group S_3 of permutations of three elements).
 - (h) You need to know the definition of the group $GL_n(\mathbb{R})$.
 - (i) If V is a vector space, then V can be thought of as a group with respect to addition of vectors.
 - (j) The group S^1 of complex numbers of absolute value 1 (the unit circle in the complex plane), with (complex) multiplication as the operation. You need to know which groups on this list are commutative.
- (5) The notion of homomorphism of groups. Examples of homomorphisms (use the groups on the list above to make examples of homomorphisms).
- (6) The notion of isomorphism. The fact that a bijective homomorphism is an isomorphism. Examples of isomorphic groups.
- (7) If H is a subgroup of G, the notion of left and right cosets of H. You need to know at least one example of a subgroup such that the left and right cosets are not the same. The criterion that allows to check if two elements belong to the same coset of H.
- (8) Lagrange's theorem: |G| = |H||G/H|.
- (9) The notion of the order of an element $g \in G$.
- (10) The application of Lagrange's theorem to number theory: Euler's theorem.
- (11) The definition of a normal subgroup. You should know a few examples of subgroups that are normal, and a couple of examples of subgroups that are not normal.
- (12) The notion of the quotient group. You need to understand why the subgoup H has to be normal in order for the set of cosets G/H to be a group.
- (13) The definition of a kernel of a homomorphism, and the fact that Ker(f) is always a normal subgroup.

- (14) The Isomorphism theorem: if $f: G \to H$ is a homomorphism, then the group f(G) is isomorphic to the quotient group $G/\mathrm{Ker}(f)$.
- (15) Some examples of application of the Isomorphism theorem.
- (16) The definition of the centre Z(G) of a group G (it appeared in homework), and the fact that Z(G) is a normal subgroup. Examples of groups with large centre, and with small centre.
- (17) The notion of a product of groups.
- (18) Chinese remainder theorem as a statement about isomorphism of the groups $\mathbb{Z}/M\mathbb{Z}$ and $\mathbb{Z}/m_1\mathbb{Z}\times\cdots\times\mathbb{Z}/m_n\mathbb{Z}$, where $(m_i, m_j) = 1$, and $M = m_1m_2 \dots m_n$.