Math 323. Practice problems on modules.

- (1) Let R be an integral domain, and let F be a free module over R of finite rank, and let R^2 be the free module of rank 2 over R. Prove that $\operatorname{Hom}_R(F, R^2) \equiv F \oplus F$.
- (2) Let R be an integral domain, and let M be a torsion module over R, and F a free module over R. Prove that $\operatorname{Hom}_R(M, F) = \{0\}$. Is this statement still true if R is not an integral domain?
- (3) Give an example of three modules A, B and C over a PID such that $A/B \simeq C$, but A is not isomorphic to $B \oplus C$.
- (4) Let p and q be primes, and let m be an arbitrary integer. Compute

 $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/p\mathbb{Z}\times\mathbb{Z}/q\mathbb{Z},\mathbb{Z}/m\mathbb{Z}).$

- (5) Let I and J be two ideals in $\mathbb{Z}[i]$. Then we can think of them as $\mathbb{Z}[i]$ -modules. Find $\operatorname{Hom}_{\mathbb{Z}[i]}(I, J)$.
- (6) Consider the linear operator $T : \mathbb{R}^3 \to \mathbb{R}^3$ which acts as the orthogonal projection onto the x-axis (in the standard basis), that is, in the standard coordinates, if $\bar{v} = \langle x, y, z \rangle$, then $T\bar{v} = \langle x, 0, 0 \rangle$. Consider \mathbb{R}^3 as an $\mathbb{R}[x]$ -module via T.
 - (a) Decompose it into a direct sum of cyclic modules (using any method you like, including guessing).
 - (b) Find the invariant factors of this module.
 - (c) Write the rational canonical form for T, and Jordan canonical form.
- (7) Consider the submodule N of \mathbb{Z}^2 generated by the vectors $\langle 2, 4 \rangle$ and $\langle 4, 10 \rangle$. Describe the quotient module \mathbb{Z}^2/N .
- (8) Prove that any module over $\mathbb{Z}[i]$ is a direct sum of a free module and a torsion module. Is the same true for modules over $\mathbb{Z}[\sqrt{-5}]$?
- (9) (This requires Jordan canonical form). Classify all nilpotent linear operators in a 4-dimensional vector space over C, up to conjugacy.
- (10) (a) Make an example of a linear operator on some vector space V over \mathbb{R} , such that the corresponding $\mathbb{R}[x]$ -module has invariant factors x 2, $(x 2)^2$, $(x 2)^3(x 3)$.
 - (b) For this linear operator, write down its characteristic and minimal polynomials.
 - (c) Write the Jordan canonical form for the matrix from (a).
- (11) (a) Prove that if two 3 × 3-matrices have the same characteristic polynomial and the same minimal polynomial, then they are similar.
 - (b) Make an example of two 4×4 -matrices that have the same characteristic and minimal polynomials, but are not similar.